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Passenger incidence (station arrival) behavior has been studied primar-
ily to understand how changes to a transit service will affect passenger
waiting times. The impact of one intervention (e.g., increasing frequency)
could be overestimated when compared with another (e.g., improving
reliability), depending on the assumption of incidence behavior. Under-
standing passenger incidence allows management decisions to be based on
realistic behavioral assumptions. Earlier studies on passenger incidence
chose their data samples from stations with a single service pattern such
that the linking of passengers to services was straightforward. This choice
of data samples simplifies the analysis but heavily limits the stations that
can be studied. In any moderately complex network, many stations may
have more than one service pattern. This limitation prevents the method
from being systematically applied to the whole network and constrains its
use in practice. This paper considers incidence behavior in stations with
heterogeneous services and proposes a method for estimating incidence
headway and waiting time by integrating disaggregate smartcard data
with published timetables using schedule-based assignment. This method
is applied to stations in the entire London Overground to demonstrate
its practicality; incidence behavior varies across the network and across
times of day and reflects headways and reliability. Incidence is much
less timetable-dependent on the North London Line than on the other
lines because of shorter headways and poorer reliability. Where incidence
is timetable-dependent, passengers reduce their mean scheduled waiting
time by more than 3 min compared with random incidence.

This paper is concerned with passenger incidence behavior, which
is defined as the act or event of a person’s being incident to a public
transport service with intent to use that service. A lexical convention
is established here to avoid ambiguity between passenger incidence
to public transport services and arrival at certain destinations after
using public transport services.

Passenger incidence behavior has been studied primarily for the
sake of understanding how changes to a public transport service will
affect passenger waiting times. It is also of interest because it affects
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the relationship between the departure times of public transport
vehicles and the passenger loads on those vehicles. Understanding
passenger incidence behaviors allows management interventions to
be based on realistic behavioral assumptions. As pointed out in one
of the seminal investigations on the topic by Bowman and Turnquist,
the effects on passenger waiting time of one particular intervention
(e.g., increasing frequency) could be overestimated compared with a
different type of intervention (e.g., improving reliability), depending
on which assumptions are made about incidence behavior (/).

Earlier studies on passenger incidence behavior chose their data
samples from stations or stops with a single service pattern such
that the linking of passengers to scheduled or actual services was
straightforward. This choice of data samples simplifies the analysis
and may suffice for an academic study. But such simplification also
heavily limits the stations or stops that can be studied in the transit
network. In any moderately complex network, many stations may
have more than one service pattern. This limitation prevents the
method from being systematically applied to the entire network and
therefore limits its use in transit management practice. In environ-
ments in which passengers at a given station have a choice of ser-
vices, a more sophisticated approach is needed to study passenger
incidence behavior.

This paper is concerned with the relationship between the times
of passenger incidence and published timetables in a rail network
with heterogeneous service patterns. It proposes a method to study
this relationship by integrating disaggregate passenger journey data
from automatic fare collection (AFC) smartcard systems with pub-
lished timetables using schedule-based assignment. The purpose of
this paper is twofold: first, to develop a method that contributes to
the study of passenger incidence behavior across a railway network
with heterogeneous service patterns and frequencies using pub-
lished timetables and AFC data; and second, to apply this method
to the London Overground to demonstrate its practicality and shed
light on the incidence behavior of its passengers.

LITERATURE

Previous research has identified arich set of passenger incidence behav-
iors and related them to certain aspects of public transport services.
Using manually and automatically collected data sources, research
has investigated the diversity of the behavior cross-sectionally and the
consistency of such behaviors longitudinally over time. It has been
found that the randomness of passenger incidence behavior is highly
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dependent on the service headway and the reliability of the departure
time of the service to which passengers are incident.

After briefly introducing the random incidence model, which is
often assumed to hold at short headways, the balance of this section
reviews six studies of passenger incidence behavior that are moti-
vated by understanding the relationships between service headway,
service reliability, passenger incidence behavior, and passenger
waiting time in a more nuanced fashion than is embedded in the
random incidence assumption (2). Three of these studies depend on
manually collected data, two studies use data from AFC systems,
and one study analyzes the issue purely theoretically. These studies
reveal much about passenger incidence behavior, but all are found
to be limited in their general applicability by the methods with
which they collect information about passengers and the services
those passengers intend to use.

Random Passenger Incidence Behavior

One characterization of passenger incidence behavior is that of ran-
dom incidence (3). The key assumption underlying the random inci-
dence model is that the process of passenger arrivals to the public
transport service is independent from the vehicle departure process
of the service. This implies that passengers become incident to the
service at a random time, and thus the instantaneous rate of passen-
ger arrivals to the service is uniform over a given period of time. Let
W and H be random variables representing passenger waiting times
and service headways, respectively. Under the random incidence
assumption and the assumption that vehicle capacity is not a binding
constraint, a classic result of transportation science is that

E(W)= % = E[2H]

(1+cv(n)) 0)

where E[X] is the probabilistic expectation of some random variable
X and CV(H) is the coefficient of variation of H, a unitless measure
of the variability of H defined as

CV(H)= 2)

where 6 is the standard deviation of H (4). The second expression
in Equation 1 is particularly useful because it expresses the mean
passenger waiting time as the sum of two components: the waiting
time caused by the mean headway (i.e., the reciprocal of service fre-
quency) and the waiting time caused by the variability of the head-
ways (which is one measure of service reliability). When the service
is perfectly reliable with constant headways, the mean waiting time
will be simply half the headway.

More Behaviorally Realistic Incidence Models

Jolliffe and Hutchinson studied bus passenger incidence in South
London suburbs (5). They observed 10 bus stops for 1 h per day
over 8 days, recording the times of passenger incidence and actual
and scheduled bus departures. They limited their stop selection to
those served by only a single bus route with a single service pat-
tern so as to avoid ambiguity about which service a passenger was
waiting for. The authors found that the actual average passenger
waiting time was 30% less than predicted by the random incidence
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model. They also found that the empirical distributions of passenger
incidence times (by time of day) had peaks just before the respec-
tive average bus departure times. They hypothesized the existence
of three classes of passengers: with proportion ¢, passengers whose
time of incidence is causally coincident with that of a bus departure
(e.g., because they saw the approaching bus from their home or a
shop window); with proportion p(1 — g), passengers who time their
arrivals to minimize expected waiting time; and with proportion
(1 —p)(1 — g), passengers who are randomly incident. The authors
found that p was positively correlated with the potential reduction
in waiting time (compared with arriving randomly) that resulted
from knowledge of the timetable and of service reliability. They also
found p to be higher in the peak commuting periods rather than in
the off-peak periods, indicating more awareness of the timetable or
historical reliability, or both, by commuters.

Bowman and Turnquist built on the concept of aware and unaware
passengers of proportions p and (1 — p), respectively. They proposed
a utility-based model to estimate p and the distribution of incidence
times, and thus the mean waiting time, of aware passengers over
a given headway as a function of the headway and reliability of
bus departure times (/). They observed seven bus stops in Chicago,
[llinois, each served by a single (different) bus route, between 6:00
and 8:00 a.m. for 5 to 10 days each. The bus routes had headways
of 5 to 20 min and a range of reliabilities. The authors found that
actual average waiting time was substantially less than predicted
by the random incidence model. They estimated that p was not
statistically significantly different from 1.0, which they explain by
the fact that all observations were taken during peak commuting
times. Their model predicts that the longer the headway and the
more reliable the departures, the more peaked the distribution of
incidence times will be and the closer that peak will be to the next
scheduled departure time. This prediction demonstrates what they
refer to as a safety margin that passengers add to reduce the chance
of missing their bus when the service is known to be somewhat
unreliable. Such a safety margin can also result from unreliability in
passengers’ journeys to the public transport stop or station. Bowman
and Turnquist conclude from their model that the random incidence
model underestimates the waiting time benefits of improving reli-
ability and overestimates the waiting time benefits of increasing ser-
vice frequency. This is because as reliability increases passengers
can better predict departure times and so can time their incidence to
decrease their waiting time.

Furth and Muller study the issue in a theoretical context and gener-
ally agree with the above findings (2). They are primarily concerned
with the use of data from automatic vehicle-tracking systems to assess
the impacts of reliability on passenger incidence behavior and wait-
ing times. They propose that passengers will react to unreliability by
departing earlier than they would with reliable services. Randomly
incident unaware passengers will experience unreliability as a more
dispersed distribution of headways and simply allocate additional
time to their trip plan to improve the chance of arriving at their des-
tination on time. Aware passengers, whose incidence is not entirely
random, will react by timing their incidence somewhat earlier than
the scheduled departure time to increase their chance of catching the
desired service. The authors characterize these reactions as the costs
of unreliability.

Luethi et al. continued with the analysis of manually collected
data on actual passenger behavior (6). They use the language
of probability to describe two classes of passengers. The first is
timetable-dependent passengers (i.e., the aware passengers), whose
incidence behavior is affected by awareness (possibly gained
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through their own experience with the service) of the timetable or
service reliability, or both. The second class is timetable-independent
passengers, whose incidence behavior is random and so does not
reflect any such awareness (whether or not they have it). The lan-
guage of timetable dependency is adopted for the balance of this
paper to describe the randomness of passenger incidence behavior,
regardless of what exactly is driving the behavior on the part of
the passengers. This language is preferred because it expresses the
probabilistic association between two observed variables (incidence
times and scheduled departure times) rather than some unobserved
passenger state of mind. Luethi et al. observed passenger incidence
during morning and evening peak hours and midday off-peak hours
at 28 bus, tram, and commuter rail stations in and around Zurich,
Switzerland, with headways of 2.33 to 30 min. To avoid ambiguity,
they limited their station selection to nonterminal, noninterchange
stations served by a single route with constant headways over the
period of observation. The authors observed that a substantial share
of passengers appear to be timetable dependent for headways as low
as 5 min. They proposed distributions of passenger incidence times
over a given headway to be the weighted superposition of two dis-
tributions: one for timetable-independent passengers, with weight
1 — p, distributed uniformly over the headway, and the other for
timetable-dependent passengers, with weight p, distributed accord-
ing to a Johnson SB distribution. The authors found the fit of their
distribution to the observed data to be statistically significant. This
distribution is parameterized in terms of the headway, but not in
terms of the reliability of the service. Estimations of their model
yield values of p for the different time periods of the day, which they
find to be highest in the morning peak and lowest in the off-peak
period, supporting the conclusion that the incidence of commuters
is more timetable dependent than the incidence of noncommuters.
Csikos and Currie studied this phenomenon, first cross-sectionally
and then longitudinally, using data from the AFC system of the heavy
rail network in Melbourne, Australia (7, 8). In their first study they
used 4 weeks’ worth of data from 07:30 to 15:00, but limited them-
selves to analyzing seven particular stations out of 209, for a total
of 38,000 observations over approximately 1,470 h. The stations
were, as in the other studies, selected to avoid ambiguity regard-
ing which scheduled service each passenger intended to use. They
also obtained high-level data about the aggregate reliability (6-min
terminal on-time performance) of the train lines serving the selected
stations. Their findings generally confirm those of the other studies.
In their second study, they used the same 4-week data set, but tracked
individual ticket holders over time to study the consistency of behav-
ior. They focused on the 15,000 trips made between 06:00 and 10:00
by 1,043 individual passengers who, as morning commuters, are
expected to exhibit the most consistent behavior patterns. They
characterized the passengers by the times of incidence and the offset
times until the next scheduled departure. They classified passengers
into four distinct archetypes exhibiting various levels of consistency
in these two variables, finding roughly equal numbers of passengers
in each category. On one end of the spectrum are clockwork-like
passengers who exhibit consistent behavior that often minimizes
their waiting time with respect to the schedule. On the other end,
largely random passengers have very little consistency with respect
to waiting time, exhibiting largely timetable-independent behavior.
The authors’ overall conclusion in this work is one of heterogeneity
in passenger behavior, even under homogeneous conditions (i.e., at
the same station at the same time of day served by the same line).
As a brief summary of the six studies, passenger incidence
behavior has been characterized primarily in terms of how random
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it appears to be with respect to the timetable and to actual vehicle
departure times. The appearance of randomness (or its lack) has
been used to indicate the degree to which passengers have and use
knowledge of the published timetable and of actual departure times.
At longer headways, passengers have more to gain by gaining and
using knowledge of the timetable; their behavior tends to be less
random, peaking somewhat before the scheduled departure time.
Passengers also appear to gain and use knowledge of the actual,
rather than scheduled, departure times. When departure times are
reliable, even if they are reliably late (or early) by a particular
amount, incidence behavior tends to be less random, with more pas-
sengers being incident shortly before the reliable departure time.
When departure times are inconsistent (i.e., unreliable), passengers
have less to gain from choosing any particular time of incidence, so
their behavior tends to be more random.

METHODOLOGY

This section proposes a method for studying passenger incidence
with respect to scheduled departure times by using AFC smartcard
data and schedule-based assignment. For a given passenger jour-
ney, the method depends on the concepts of attractive departure,
scheduled waiting time (SWT), and incidence headway.

An attractive departure is a departure scheduled from the passen-
ger’s station of incidence that the passenger is or would have been
willing to board, regardless of how willing is defined. The use of
“attractive” is in the tradition of Spiess and Florian and Nguyen and
Pallottino in their work on hyperpaths and optimal strategies (9, 10).
They defined the attractive set of lines as the set that a passenger
is willing to board at a given location. This concept makes explicit
the possibility that some scheduled departures may not be viable
alternatives for a given passenger as a function of that passenger’s
destination and of the subsequent itinerary of those departures. For
example, on a line with a trunk and branches, passengers bound for
one of the branches may experience longer headways than those
traveling only on the trunk.

SWT is the time the passenger should have to wait according
to the schedule, given his or her time of incidence and attractive
departures. SWT is defined as the length of time between passenger
incidence and the next attractive departure.

Incidence headway is the (scheduled) headway applicable to
the passenger given his or her time of incidence and set of attrac-
tive departures. Incidence headway is defined as the length of time
between the last attractive departure before the time of incidence
and the next such departure after the time of incidence.

The above six studies of passenger incidence all selected places
and times of observation so as to avoid ambiguity with respect to
each passenger’s attractive departures. They minimized the mea-
surement of SWT and incidence headways by selecting stations
served by only a single service pattern and, in some cases, with a
constant headway. While this may be sufficient for modeling the
behavior of certain group of passengers, it is clearly inadequate
for understanding behavior across an entire network. In many real-
world public transport networks, the largest numbers of passengers
are incident at large stations or terminals that provide access to
heterogeneous services.

In the case of the London Overground, this incidence is most
problematic on the North London Line (NLL). Consider, for exam-
ple, passengers incident to the NLL at Stratford, one of the Over-
ground’s busiest stations. In 2008 peak-period timetables, the NLL
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was running a mostly (but not perfectly) regular 15-min (i.e., four
trains per hour) service all day from Stratford to the end of the NLL
at Richmond. This service was augmented with occasional irregular
services, including a shuttle that ran only as far as Camden Road,
and one special that ran on the NLL to Willesden Junction but then
on the West London Line to Clapham Junction. It is not immediately
obvious which of these services would be attractive to a given pas-
senger at Stratford, and thus not clear what incidence headway each
passenger would experience. Earlier literature avoided this issue by
avoiding stations such as Stratford altogether.

The method proposed here is designed as a tool to support the
study of passenger incidence behavior in general (i.e., by including
locations with heterogeneous services) and to facilitate its applica-
tion in practical transit management. The method does so by estimat-
ing SWT and incidence headway automatically from the integration
of published timetables with disaggregate AFC passenger journey
data via schedule-based assignment.

Schedule-based assignment depends on a run-based model
of public transport supply, which is very similar to the line-based
model of supply, but unfolded in the temporal dimension (/7). In
such a model, each individual scheduled or actual run (or trip) of
the public transport service is represented individually by its own
subgraph. In the subgraph for a given run, the nodes represent the
arrival, departure, or transit of that run at a specific location at a
specific time. The links represent travel (or dwelling) on that run
between specific points in time and space. The combination of the
subgraphs of all runs is referred to as the service subgraph. Demand
is also modeled with temporal as well as spatial dimensions in the
demand subgraph. Nodes in this subgraph represent centroids of
demand in time (according to user departure and arrival times)
and space (according to the physical network). The access—egress
subgraph joins the service and demand subgraphs with boarding
and alighting links. The union of these three subgraphs is referred
to as the diachronic graph representation. One benefit of such a
representation is that shortest travel time paths can be found via
standard shortest-path network algorithms such as Bellman-Ford or
Dijkstra’s (12).

In this paper it is assumed that for a given origin, destination, and
time of incidence, all passengers plan to use the single schedule-
based path (i.e., set of scheduled services) through the network that
minimizes total travel time. Additionally, it is assumed that passen-
gers plan itineraries to minimize the number of total boardings up
to the point at which total travel time is not increased (e.g., in the
trunk-and-branch example, branch-bound passengers won’t board
a train bound for the wrong branch just to get to the end of the
trunk and transfer to the correct branch). These assumptions are
necessarily a simplification of the true behaviors and perceptions of
passengers. The degree to which the assumptions hold is a function
of the attributes of the particular network to which they are applied
and of the behavioral preferences of the passengers in question.
These assumptions are sufficient to determine, for each passenger
journey, the attractive departures before and subsequent to the time
of incidence. SWT and incidence headway can be determined once
the times of these two departures are known.

ALGORITHM AND IMPLEMENTATION

For a given passenger journey on a given public transport network, let

SWT = scheduled waiting time for given journey,
H; = incidence headway for given journey,
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I = time of passenger incidence for given
journey,
L, = location of incidence of journey in ques-
tion (i.e., the origin),
Lp = destination of that journey,
Do = time of last attractive departure before 7,
D, = time of first attractive departure after /,
H,.. = maximum normal headway (i.e., time
between any two successive departures
in same direction from same location) on
network,
H,;, = minimum normal headway on network,
Path(from, to, time) = function that finds shortest weighted travel
time path from location from to location
to with departure time strictly greater than
time, with all travel time weights equal to
1 except for transfer or boarding penalty
that is positive but less than H,;,, and
Departure(path) = function that returns scheduled departure
time of path path.

Equation Box 1 illustrates the algorithm to find H;and SWT for the
journey in question under the above assumptions. Lines 1 through 3
accomplish the simple task of finding the next attractive departure
and thus determining SWT. Lines 4 through 9 search backward in
time in increments of H,;, until either a new attractive departure
time d is found or the time has been moved by more than H,,.x. Hyin
is the largest step possible such that the search will never skip over
a possible attractive departure. In theory, the algorithm could use
the timetable to determine the next departure time in this backward
search process rather than blindly stepping in increments of H,,.
However, the algorithm is unaware of particular departure times
since the Path( ) function encapsulates all knowledge of the timetable
itself. This particular algorithmic design is motivated primarily by
implementation concerns that are discussed in the following section.

A 272-line Perl script was written to implement the algorithm for
individual Oyster passenger journey records. The Path( ) function

EQUATION BOX 1  Algorithm to Find SWT and Incidence Headway
for a Given Passenger Journey

: p=Path(L,, L,, I)
D, = Departure( p)
:SWT =D, -1
i=1I
d=D,,
:whiled=D,_,
i=i—-H,

d= Departure(Path(Lo, L,, z))
9: end while

10: if d # D, then

11: D, =d

12: H, =D
13: else

14: D, =null
15: H, =null
16: end if

or D

next

—-i<H_ do

next D prior
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encapsulates the complexity of conducting a schedule-based assign-
ment for a single passenger trip. The Path( ) function will either find
the earlier attractive departure time Dy, or determine that there is
no prior attractive departure in at most H,,,,/H.;, steps. If the Path( )
function does find D, the function uses that result to determine
H,. Embedded in this function is the algorithm for finding the short-
est weighted travel time paths in a schedule-based network. The
travel time weightings are such as to enforce the assumption that
passengers minimize the number of boardings (without affecting
total travel time). A robust implementation of Path( ) function using
a modified Dijkstra’s algorithm is available in the free open-source
software library Graphserver (/3). Graphserver reads timetables in
the widely used general transit feed specification (/4). This speci-
fication was defined by Google to facilitate the transfer of public
transport schedules from operators to Google to power its own web-
based journey planning software. The specification has become a de
facto standard for public distribution of public transport timetables.
Unfortunately, London Overground timetables do not come in gen-
eral transit feed specification format, so another 302-line Perl script
was written to do the transformation (/5). This algorithm improves
on the previous approaches to finding SWT and H, by considering the
timetable in the context of each individual journey. The origin, des-
tination, and incidence time of each individual journey determine
which departures will be attractive.
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APPLICATION TO LONDON
OVERGROUND NETWORK

This section applies the proposed methodology to examine pas-
senger incidence behavior on the London Overground network by
using a large sample of passenger journey data from the Oyster
smartcard ticketing system.

Figure 1 shows a schematic map of the rail services for Trans-
port for London (TfL) as of spring 2010, including London Under-
ground, Dockland Light Rail, and Overground. The Overground
network is for the most part circumferential, primarily orbiting
London to the north and west, with the majority of stations in Zones
2 and 3. The Overground is very much part of the integrated net-
work of TfL services, with 19 of its stations offering interchanges
to London Underground or Dockland Light Rail services. In 2010,
the Overground ran 407 scheduled weekday train trips with 27 units
of rolling stock (A. Brimbacombe, personal communication, 2010).

Services on the Overground are divided into four service patterns
(Table 1). The core of this network is the NLL, which runs 28 km
between Stratford in the northeast of London and Richmond in the
southwest, connecting to every other Overground service and to
numerous other TfL and National Rail services along the way. The
NLL is by far the busiest Overground line, with the most frequent ser-
vice and an estimated 58% of all Overground boardings (C. Smales,
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FIGURE 1 Transport for London’s rail service map (spring 2010).
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TABLE 1 London Overground Services
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Frequency
Service Pattern Code Primary Terminals (Peak tph)
North London Line NLL Stratford < Richmond 4-6
Gospel Oak to Barking Line GOB Gospel Oak < Barking
Watford DC Line WAT Watford Junction <> London Euston
West London Line WLL Clapham Junction < Willesden Junction 2-3

NOTE: tph = trains per hour.

personal communication, 2010). The NLL runs four (end-to-end)
trains per hour over most of the day, with some segments receiving
six trains per hour during peak periods. The other Overground lines
run at lower frequencies (three trains per hour during the peak periods
and two to three trains per hour during other periods).

Data

On November 11, 2007, overall management and revenue respon-
sibility for this set of services was transferred to TfL from the
Silverlink, which held the prior National Rail franchise. At that
time, the network was rebranded as the Overground and became
fully Oyster enabled. Oyster is TfL’s AFC smartcard system. London’s
fare policy and technologies require most Oyster users to validate
their cards on all entries and exits to the system. The centralized
computer system archives these Oyster entry and exit transactions,
including their location, time stamp, and Oyster ID, in an easily
accessible database. As a result, disaggregate Oyster journey data
are cheap to gather in large volumes and provide a prime source of
data on individual passenger journeys.

The data analyzed here are a 100% sample of all Oyster journeys
between all pairs of London Overground stations for the 52 business
days from March 31, 2008, through June 10, 2008, inclusive. Pub-
lic timetables were obtained for the Overground network. The data
set was filtered to include only those journeys for which it can be
assumed with relative certainty that the passenger in question used
only Overground services; that is, this data set does not include jour-
neys that interchanged to the Overground but with initial Oyster val-
idations elsewhere in the railway system. The data set also excludes
journeys initially incident to the Overground but interchanging to
other railway services. Journeys with interchanges to or from buses
will be included here, since the Oyster system effectively separates
the recording of bus and rail journeys. Passengers transferring from
buses to London Overground may exhibit a different incidence
behavior because they do not have control over the time when the
bus arrives at the transfer stops. Their incidences at London Over-
ground stations are only a function of the timetable coordination
between bus and Overground services, if there is any such coordina-
tion. In general these journeys may demonstrate random incidence
behavior. The resulting data set contains nearly 1,670,000 journeys
from 54 stations on 1,442 origin—destination pairs made by more
than 290,000 passengers. The data set constitutes approximately
53,000 station-hours of observation of passenger incidence to
Overground services.

The methodology described in the previous section was applied
to each Oyster journey in the data set: the transaction time of the
Oyster entry was taken as the time of incidence, and the origin and
destination of the journey were used along with the timetable to

estimate which services the journey was incident to. This processing
took some number of hours for the entire data set, but it was fully
automated. A large set of observations was obtained for which the
following data were measured or estimated:

Date and time of incidence,

Incidence headway,

SWT,

Location (i.e., station) of incidence (i.e., the journey’s origin),
Journey’s destination, and

Overground line to which the passenger was incident.

For journeys that required an interchange within the Overground
system (of which there are relatively few), the above data were
measured or estimated for only the first incidence event.

As a point of validation, Figure 2 plots distributions of incidence
headway for passengers on the Gospel Oak to Barking (GOB) and
North London Lines. The findings are consistent with expectations.
On the NLL, the mode of all the distributions is 15 min, reflect-
ing the core service. The distribution is more concentrated during
the interpeak period, when there are no scheduled shuttles or spe-
cials. The opposite is true on the GOB, which runs a regular 20-min
service in the peak periods but transitions to and from a 30-min
service in the interpeak period. The morning peak distribution is
somewhat more dispersed than that of the evening peak because the
morning peak includes a transition from 30-min headways in the
early morning.

Results

Consistent with the reviewed studies of passenger incidence behav-
ior, the first results of interest are distributions of passenger inci-
dence time over a given headway. Figure 3 plots these distributions
for the London Overground network by line and by time period.
In this plot, incidence times are normalized by the incidence head-
way because different passengers experience different incidence
headways.

It is clear from Figure 3 that passenger incidence behavior, with
respect to published timetables, varies spatially and temporally across
the Overground network. Passenger incidence on the GOB and
Watford DC lines is much more peaked (i.e., timetable-dependent),
each with 20-min headways, than on the NLL, with 7- to 15-min
headways, during any time period. Also, the NLL is acknowledged by
Overground management to have the most serious reliability problems
(O. Bratton, personal communication, 2010). These variations are con-
sistent with the literature that passenger incidence is more timetable-
dependent with a more peaked distribution for longer headways and
for more reliable services.
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FIGURE 2 Distributions of passenger incidence headways by line and time period.

Also consistent with the literature is that, for all lines, the distri-
bution is more peaked in the morning peak period than in the eve-
ning peak or midday interpeak periods. It appears that Overground
commuters in the morning peak period, more likely to have knowl-
edge of the timetable and the service and more sensitive to time
saving, exhibit less random incidence behavior than do passengers
in other time periods, despite the shorter headways and less reliable
service found in the morning peak. The distribution in the late-night
period is also very peaked because of longer headways and possibly
higher sensitivity to time.

L __ Eaty 1  AM Peak _Inter-Peak _

The peaks of all of the distributions are somewhat before the very
end of the headway, indicating some type of safety margin or wait-
ing time—minimization behavior on the part of passengers. Many of
the distributions have small spikes at the beginning of the headway,
indicating possible late running awareness among some passengers.
While such awareness may in fact be found on the Overground, it is
also possible that it is the passengers themselves who are running late.
They may be planning to take a train scheduled to depart at a certain
time but, because of uncontrollable circumstances or their own poor
planning, arrive at the station shortly after that departure time.
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Figure 4 shows the mean waiting time, for each line and time period,
under two models of passenger behavior and train operations: random
incidence versus timetable-dependent incidence. In the first case, it is
assumed that all passengers are randomly incident to constant head-
way services, so the mean waiting time is calculated as half the mean
incidence headway. In the second case, no behavioral assumption is
made and all trains are assumed to run as per the timetable, so the
observed mean waiting time is calculated as the mean SWT. Figure 4
thus indicates the effects of the observed incidence behaviors
(compared with random incidence) on passenger waiting times.

On the NLL, the relatively slight skew in the incidence distribu-
tions translates into relatively small impacts on waiting time. In the
morning peak, timetable dependence decreases waiting time by 7.2%
from 6.82 to 6.33 min (about 30 s). In the interpeak and evening peak
periods, the reductions are only 0.2% and 2.2%, respectively. On the
GOB, however, the implications of timetable dependence are substan-
tial. In the morning peak, the waiting time decreases by 29% (3.1 min)
from 10.5 to 7.4 min. In the interpeak and evening peak periods, the
reductions are 20.4% and 17.5%, respectively.

Transit assignment models often make an assumption that no ser-
vice would be assigned a mean passenger waiting time over a certain
threshold, say, 10 min in the London Overground case. The results
of this section lend support to this assumption. Regular weekday
headways on the Overground network go as high as 30 min, but the
observed mean SWT is above 11 min in only two cases (on the West
London Line during the interpeak and evening time periods) and is
never above 12.1 min.

DISCUSSION AND CONCLUSIONS

This paper developed a methodology to relate disaggregate AFC
journey data to published timetables for the purpose of studying
passenger incidence behavior and applied this methodology to the
London Overground (16).

The following conclusions are drawn about the methodology
developed here. First, it can be used to study passenger incidence
behavior using large samples of disaggregate journey data from
AFC systems such as the Oyster smartcard system. Second, the
methodology can for each passenger journey estimate SWT and
incidence headway under heterogeneous conditions. Finally, this
methodology is able to efficiently process millions of data records
and can be implemented using open standard timetable formats and
free software tools.

As a limitation the proposed method hinges on the schedule-
based assignment, for which there are unsolved methodological
issues such as station congestion or train crowding. The London
Overground is a relatively simple network (i.e., compared with the
London Underground), so that the methodology would not be sub-
ject to those issues. As the inner workings of schedule-based assign-
ment improve, the method of this paper will continue to become
more broadly applicable.

With respect to the London Overground, the following conclu-
sions can be drawn. Generally, passenger incidence behavior varies
across the network and across times of day, and the differences reflect
different headways, reliability of service, and time of day (indicating
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different knowledge of the network and sensitivity to time); these
findings reflect the findings in the literature to date. Specifically, inci-
dence appears to be much less timetable dependent on the NLL than
on the other Overground lines because of shorter headways and less
reliable service on this line as compared with others. The method
and results of the paper also provide one service quality measure,
SWT, for the entire Overground network. On the GOB, Watford DC,
and West London lines, where incidence behavior is more timetable-
dependent, passengers reduce their mean SWT by more than 3 min,
or up to 30%, during daytime hours compared with random inci-
dence behavior. On the NLL, such reductions are much smaller, in
some cases nearly zero, in both relative and absolute terms.

The method developed in this paper can support further study
of passenger incidence behavior in a more systematic way; that is,
researchers no longer need to select a special subset of stations with
only one service pattern. The work of Bowman and Turnquist has
been influential in shaping the understanding of the relationships
between headway, reliability, passenger behavior, and waiting time
(I). Their work should be updated by using the method of this paper so
that large samples of passenger data across heterogeneous networks
can be easily analyzed. The London Overground network represents
an ideal opportunity to conduct such a study because its passengers
can clearly be studied via Oyster data, and its trains are tracked by a
computerized signaling system. After the East London Line opened,
the network has headways ranging from 5 to 30 min during most
hours of the day, thus providing a good range of variation.

Another application is to study the impact of real-time informa-
tion. Many strides have been made toward informing passengers in
real time about the status of public transport services. Such infor-
mation is now often distributed via in-station signs and announce-
ments, as well as over the Internet to passengers’ computers and,
more importantly, mobile devices. It is crucial to advance the
understanding of passenger incidence to include the effects of real-
time information. Such an advance in understanding will require
careful thinking and research designs, but it should be able to take
advantage of the methodology developed here. For example, actual
recorded train arrival and departure times (rather than published
timetables) could be used in the schedule-based assignment.
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