Unverified Commit ea94a35b authored by Xiaomeng Zhao's avatar Xiaomeng Zhao Committed by GitHub
Browse files

Merge pull request #1074 from myhloli/dev

feat(demo): add visualization bbox parameter and refactor parsing process
parents 29b38d12 17ef5c0f
This source diff could not be displayed because it is too large. You can view the blob instead.
[{"layout_dets": [{"category_id": 0, "poly": [282.1632080078125, 156.2249755859375, 1416.6795654296875, 156.2249755859375, 1416.6795654296875, 313.81280517578125, 282.1632080078125, 313.81280517578125], "score": 0.999998927116394}, {"category_id": 1, "poly": [861.656982421875, 522.7763061523438, 1569.3853759765625, 522.7763061523438, 1569.3853759765625, 656.883544921875, 861.656982421875, 656.883544921875], "score": 0.9999970197677612}, {"category_id": 1, "poly": [131.8020782470703, 924.7362670898438, 838.9530639648438, 924.7362670898438, 838.9530639648438, 1323.7529296875, 131.8020782470703, 1323.7529296875], "score": 0.9999949932098389}, {"category_id": 1, "poly": [133.32005310058594, 1324.5035400390625, 839.2289428710938, 1324.5035400390625, 839.2289428710938, 1589.4503173828125, 133.32005310058594, 1589.4503173828125], "score": 0.999994158744812}, {"category_id": 1, "poly": [863.3811645507812, 1486.610107421875, 1569.2880859375, 1486.610107421875, 1569.2880859375, 1852.443603515625, 863.3811645507812, 1852.443603515625], "score": 0.9999936819076538}, {"category_id": 1, "poly": [862.9096069335938, 1187.8067626953125, 1568.2279052734375, 1187.8067626953125, 1568.2279052734375, 1486.08935546875, 862.9096069335938, 1486.08935546875], "score": 0.9999932050704956}, {"category_id": 1, "poly": [131.8186492919922, 1652.7752685546875, 837.5543823242188, 1652.7752685546875, 837.5543823242188, 2019.429443359375, 131.8186492919922, 2019.429443359375], "score": 0.9999901056289673}, {"category_id": 0, "poly": [375.1526794433594, 881.8807983398438, 594.3075561523438, 881.8807983398438, 594.3075561523438, 913.4786987304688, 375.1526794433594, 913.4786987304688], "score": 0.9999892115592957}, {"category_id": 2, "poly": [636.1867065429688, 2099.795654296875, 1063.7423095703125, 2099.795654296875, 1063.7423095703125, 2124.524169921875, 636.1867065429688, 2124.524169921875], "score": 0.9999860525131226}, {"category_id": 0, "poly": [375.91864013671875, 1610.209228515625, 592.8395385742188, 1610.209228515625, 592.8395385742188, 1641.5789794921875, 375.91864013671875, 1641.5789794921875], "score": 0.9999815821647644}, {"category_id": 4, "poly": [860.6583251953125, 995.6574096679688, 1569.622314453125, 995.6574096679688, 1569.622314453125, 1126.8409423828125, 860.6583251953125, 1126.8409423828125], "score": 0.9999815821647644}, {"category_id": 1, "poly": [443.1008605957031, 353.8008728027344, 1250.531494140625, 353.8008728027344, 1250.531494140625, 464.65576171875, 443.1008605957031, 464.65576171875], "score": 0.9999791979789734}, {"category_id": 1, "poly": [130.8282928466797, 523.2079467773438, 836.5639038085938, 523.2079467773438, 836.5639038085938, 862.0206909179688, 130.8282928466797, 862.0206909179688], "score": 0.9999784231185913}, {"category_id": 1, "poly": [862.6514282226562, 1851.426513671875, 1568.510498046875, 1851.426513671875, 1568.510498046875, 2017.93359375, 862.6514282226562, 2017.93359375], "score": 0.9999769926071167}, {"category_id": 3, "poly": [882.3795166015625, 685.376708984375, 1544.4088134765625, 685.376708984375, 1544.4088134765625, 969.22265625, 882.3795166015625, 969.22265625], "score": 0.9994785785675049}, {"category_id": 13, "poly": [1195, 1062, 1226, 1062, 1226, 1096, 1195, 1096], "score": 0.88, "latex": "d_{p}"}, {"category_id": 13, "poly": [1304, 1030, 1327, 1030, 1327, 1061, 1304, 1061], "score": 0.65, "latex": "\\bar{\\bf p}"}, {"category_id": 15, "poly": [344.0, 165.0, 1354.0, 172.0, 1353.0, 236.0, 344.0, 229.0], "score": 0.99, "text": "Real-time Temporal Stereo Matching"}, {"category_id": 15, "poly": [293.0, 254.0, 1402.0, 254.0, 1402.0, 309.0, 293.0, 309.0], "score": 0.99, "text": "using Iterative Adaptive Support Weights"}, {"category_id": 15, "poly": [864.0, 527.0, 1568.0, 527.0, 1568.0, 559.0, 864.0, 559.0], "score": 0.99, "text": "disparity map. Note that individual disparities can be converted"}, {"category_id": 15, "poly": [864.0, 561.0, 1568.0, 561.0, 1568.0, 594.0, 864.0, 594.0], "score": 0.98, "text": "to actual depths if the geometry of the camera setup is"}, {"category_id": 15, "poly": [859.0, 587.0, 1568.0, 591.0, 1568.0, 630.0, 859.0, 626.0], "score": 0.98, "text": " known, i.e., the stereo configuration of cameras has been pre-"}, {"category_id": 15, "poly": [862.0, 626.0, 984.0, 626.0, 984.0, 658.0, 862.0, 658.0], "score": 1.0, "text": "calibrated."}, {"category_id": 15, "poly": [155.0, 921.0, 839.0, 924.0, 838.0, 963.0, 155.0, 960.0], "score": 0.98, "text": " Modern stereo matching algorithms achieve excellent results"}, {"category_id": 15, "poly": [127.0, 956.0, 838.0, 958.0, 838.0, 997.0, 127.0, 995.0], "score": 0.98, "text": " on static stereo images, as demonstrated by the Middlebury"}, {"category_id": 15, "poly": [132.0, 995.0, 836.0, 995.0, 836.0, 1027.0, 132.0, 1027.0], "score": 0.98, "text": "stereo performance benchmark [1], [2]. However, their ap-"}, {"category_id": 15, "poly": [134.0, 1027.0, 834.0, 1027.0, 834.0, 1059.0, 134.0, 1059.0], "score": 1.0, "text": "plication to stereo video sequences does not guarantee inter-"}, {"category_id": 15, "poly": [134.0, 1061.0, 836.0, 1061.0, 836.0, 1093.0, 134.0, 1093.0], "score": 0.99, "text": "frame consistency of matches extracted from subsequent stereo"}, {"category_id": 15, "poly": [132.0, 1095.0, 838.0, 1095.0, 838.0, 1125.0, 132.0, 1125.0], "score": 0.99, "text": "frame pairs. The lack of temporal consistency of matches"}, {"category_id": 15, "poly": [134.0, 1128.0, 836.0, 1128.0, 836.0, 1157.0, 134.0, 1157.0], "score": 1.0, "text": "between successive frames introduces spurious artifacts in the"}, {"category_id": 15, "poly": [132.0, 1160.0, 836.0, 1160.0, 836.0, 1192.0, 132.0, 1192.0], "score": 0.99, "text": "resulting disparity maps. The problem of obtaining temporally"}, {"category_id": 15, "poly": [132.0, 1194.0, 838.0, 1194.0, 838.0, 1226.0, 132.0, 1226.0], "score": 0.98, "text": "consistent sequences of disparity maps from video streams is"}, {"category_id": 15, "poly": [134.0, 1228.0, 838.0, 1228.0, 838.0, 1260.0, 134.0, 1260.0], "score": 0.98, "text": "known as the temporal stereo correspondence problem, yet"}, {"category_id": 15, "poly": [129.0, 1258.0, 841.0, 1260.0, 841.0, 1293.0, 129.0, 1290.0], "score": 0.98, "text": "the amount of research efforts oriented towards finding an"}, {"category_id": 15, "poly": [134.0, 1292.0, 760.0, 1292.0, 760.0, 1325.0, 134.0, 1325.0], "score": 0.99, "text": "effective solution to this problem is surprisingly small."}, {"category_id": 15, "poly": [157.0, 1320.0, 836.0, 1322.0, 836.0, 1361.0, 157.0, 1359.0], "score": 0.98, "text": " A method is proposed for real-time temporal stereo match-"}, {"category_id": 15, "poly": [134.0, 1361.0, 836.0, 1361.0, 836.0, 1393.0, 134.0, 1393.0], "score": 1.0, "text": "ing that efficiently propagates matching cost information be-"}, {"category_id": 15, "poly": [134.0, 1393.0, 836.0, 1393.0, 836.0, 1425.0, 134.0, 1425.0], "score": 0.99, "text": "tween consecutive frames of a stereo video sequence. This"}, {"category_id": 15, "poly": [132.0, 1423.0, 834.0, 1425.0, 834.0, 1458.0, 132.0, 1455.0], "score": 0.98, "text": "method is invariant to the number of prior frames being"}, {"category_id": 15, "poly": [134.0, 1458.0, 836.0, 1458.0, 836.0, 1490.0, 134.0, 1490.0], "score": 0.99, "text": "considered, and can be easily incorporated into any local stereo"}, {"category_id": 15, "poly": [132.0, 1492.0, 836.0, 1492.0, 836.0, 1524.0, 132.0, 1524.0], "score": 0.98, "text": "method based on edge-aware filters. The iterative adaptive"}, {"category_id": 15, "poly": [132.0, 1526.0, 838.0, 1526.0, 838.0, 1558.0, 132.0, 1558.0], "score": 0.99, "text": "support matching algorithm presented in [3] serves as a"}, {"category_id": 15, "poly": [132.0, 1558.0, 557.0, 1558.0, 557.0, 1590.0, 132.0, 1590.0], "score": 0.99, "text": "foundation for the proposed method."}, {"category_id": 15, "poly": [887.0, 1483.0, 1571.0, 1485.0, 1571.0, 1524.0, 887.0, 1522.0], "score": 0.98, "text": " In contrast, local methods, which are typically built upon"}, {"category_id": 15, "poly": [859.0, 1517.0, 1573.0, 1519.0, 1573.0, 1558.0, 859.0, 1556.0], "score": 0.97, "text": " the Winner-Takes-All (WTA) framework, have the property of "}, {"category_id": 15, "poly": [864.0, 1556.0, 1566.0, 1556.0, 1566.0, 1588.0, 864.0, 1588.0], "score": 0.99, "text": "computational regularity and are thus suitable for implemen-"}, {"category_id": 15, "poly": [862.0, 1588.0, 1566.0, 1588.0, 1566.0, 1620.0, 862.0, 1620.0], "score": 1.0, "text": "tation on parallel graphics hardware. Within the WTA frame-"}, {"category_id": 15, "poly": [862.0, 1616.0, 1568.0, 1618.0, 1568.0, 1657.0, 862.0, 1655.0], "score": 0.98, "text": "work, local stereo algorithms consider a range of disparity"}, {"category_id": 15, "poly": [864.0, 1655.0, 1566.0, 1655.0, 1566.0, 1687.0, 864.0, 1687.0], "score": 0.98, "text": "hypotheses and compute a volume of pixel-wise dissimilarity"}, {"category_id": 15, "poly": [862.0, 1689.0, 1571.0, 1689.0, 1571.0, 1721.0, 862.0, 1721.0], "score": 0.99, "text": "metrics between the reference image and the matched image at"}, {"category_id": 15, "poly": [862.0, 1723.0, 1568.0, 1721.0, 1568.0, 1753.0, 862.0, 1755.0], "score": 0.99, "text": "every considered disparity value. Final disparities are chosen"}, {"category_id": 15, "poly": [864.0, 1755.0, 1568.0, 1755.0, 1568.0, 1785.0, 864.0, 1785.0], "score": 1.0, "text": "from the cost volume by traversing through its values and"}, {"category_id": 15, "poly": [866.0, 1788.0, 1568.0, 1788.0, 1568.0, 1820.0, 866.0, 1820.0], "score": 0.99, "text": "selecting the disparities associated with minimum matching"}, {"category_id": 15, "poly": [859.0, 1817.0, 1377.0, 1820.0, 1377.0, 1859.0, 859.0, 1856.0], "score": 0.98, "text": " costs for every pixel of the reference image."}, {"category_id": 15, "poly": [885.0, 1187.0, 1571.0, 1187.0, 1571.0, 1226.0, 885.0, 1226.0], "score": 0.97, "text": " In their excellent taxonomy paper [1], Scharstein and"}, {"category_id": 15, "poly": [864.0, 1224.0, 1566.0, 1224.0, 1566.0, 1254.0, 864.0, 1254.0], "score": 0.99, "text": "Szeliski classify stereo algorithms as local or global meth-"}, {"category_id": 15, "poly": [859.0, 1249.0, 1571.0, 1254.0, 1570.0, 1293.0, 859.0, 1288.0], "score": 0.99, "text": " ods. Global methods, which offer outstanding accuracy, are"}, {"category_id": 15, "poly": [862.0, 1288.0, 1571.0, 1288.0, 1571.0, 1327.0, 862.0, 1327.0], "score": 0.98, "text": "typically derived from an energy minimization framework"}, {"category_id": 15, "poly": [859.0, 1322.0, 1566.0, 1322.0, 1566.0, 1352.0, 859.0, 1352.0], "score": 0.99, "text": "that allows for explicit integration of disparity smoothness"}, {"category_id": 15, "poly": [864.0, 1357.0, 1568.0, 1357.0, 1568.0, 1389.0, 864.0, 1389.0], "score": 0.99, "text": "constraints and thus is capable of regularizing the solution"}, {"category_id": 15, "poly": [864.0, 1391.0, 1568.0, 1391.0, 1568.0, 1421.0, 864.0, 1421.0], "score": 1.0, "text": "in weakly textured areas. The minimization, however, is often"}, {"category_id": 15, "poly": [864.0, 1423.0, 1568.0, 1423.0, 1568.0, 1455.0, 864.0, 1455.0], "score": 0.99, "text": "achieved using iterative methods or graph cuts, which do not"}, {"category_id": 15, "poly": [864.0, 1458.0, 1418.0, 1458.0, 1418.0, 1487.0, 864.0, 1487.0], "score": 0.99, "text": "lend themselves well to parallel implementation."}, {"category_id": 15, "poly": [155.0, 1650.0, 839.0, 1652.0, 838.0, 1691.0, 155.0, 1689.0], "score": 0.97, "text": " Stereo matching is the process of identifying correspon-"}, {"category_id": 15, "poly": [134.0, 1687.0, 838.0, 1687.0, 838.0, 1719.0, 134.0, 1719.0], "score": 0.99, "text": "dences between pixels in stereo images obtained using a"}, {"category_id": 15, "poly": [132.0, 1723.0, 838.0, 1721.0, 838.0, 1753.0, 132.0, 1755.0], "score": 0.98, "text": "pair of synchronized cameras. These correspondences are"}, {"category_id": 15, "poly": [134.0, 1755.0, 836.0, 1755.0, 836.0, 1788.0, 134.0, 1788.0], "score": 0.99, "text": "conveniently represented using the notion of disparity, i.e. the"}, {"category_id": 15, "poly": [134.0, 1788.0, 836.0, 1788.0, 836.0, 1820.0, 134.0, 1820.0], "score": 1.0, "text": "positional offset between two matching pixels. It is assumed"}, {"category_id": 15, "poly": [134.0, 1822.0, 836.0, 1822.0, 836.0, 1854.0, 134.0, 1854.0], "score": 0.99, "text": "that the stereo images are rectified, such that matching pixels"}, {"category_id": 15, "poly": [132.0, 1854.0, 836.0, 1854.0, 836.0, 1886.0, 132.0, 1886.0], "score": 0.99, "text": "are confined within corresponding rows of the images and"}, {"category_id": 15, "poly": [134.0, 1888.0, 838.0, 1888.0, 838.0, 1918.0, 134.0, 1918.0], "score": 1.0, "text": "thus disparities are restricted to the horizontal dimension, as"}, {"category_id": 15, "poly": [134.0, 1920.0, 838.0, 1920.0, 838.0, 1952.0, 134.0, 1952.0], "score": 1.0, "text": "illustrated in Figure 1. For visualization purposes, disparities"}, {"category_id": 15, "poly": [134.0, 1955.0, 838.0, 1955.0, 838.0, 1987.0, 134.0, 1987.0], "score": 0.99, "text": "recovered for every pixel of a reference image are stored"}, {"category_id": 15, "poly": [129.0, 1985.0, 841.0, 1982.0, 841.0, 2021.0, 129.0, 2024.0], "score": 0.98, "text": "together in the form of an image, which is known as the"}, {"category_id": 15, "poly": [370.0, 885.0, 594.0, 885.0, 594.0, 917.0, 370.0, 917.0], "score": 1.0, "text": "1. INTRODUCTION"}, {"category_id": 15, "poly": [638.0, 2099.0, 1062.0, 2099.0, 1062.0, 2131.0, 638.0, 2131.0], "score": 0.98, "text": "978-1-4673-5208-6/13/$31.00 @2013 IEEE"}, {"category_id": 15, "poly": [374.0, 1613.0, 591.0, 1613.0, 591.0, 1645.0, 374.0, 1645.0], "score": 0.95, "text": "II. BACKGROUND"}, {"category_id": 15, "poly": [859.0, 992.0, 1571.0, 995.0, 1571.0, 1034.0, 859.0, 1031.0], "score": 0.99, "text": " Figure 1: Geometry of two horizontally aligned views where p"}, {"category_id": 15, "poly": [864.0, 1098.0, 1291.0, 1098.0, 1291.0, 1130.0, 864.0, 1130.0], "score": 0.99, "text": "them along the horizontal dimension."}, {"category_id": 15, "poly": [859.0, 1061.0, 1194.0, 1059.0, 1194.0, 1098.0, 859.0, 1100.0], "score": 0.98, "text": " pixel in the target frame, and"}, {"category_id": 15, "poly": [1227.0, 1061.0, 1571.0, 1059.0, 1571.0, 1098.0, 1227.0, 1100.0], "score": 0.97, "text": " denotes the disparity between"}, {"category_id": 15, "poly": [864.0, 1034.0, 1303.0, 1034.0, 1303.0, 1063.0, 864.0, 1063.0], "score": 0.99, "text": "denotes a pixel in the reference frame,"}, {"category_id": 15, "poly": [1328.0, 1034.0, 1566.0, 1034.0, 1566.0, 1063.0, 1328.0, 1063.0], "score": 0.96, "text": " denotes its matching"}, {"category_id": 15, "poly": [508.0, 357.0, 1194.0, 360.0, 1194.0, 392.0, 508.0, 390.0], "score": 0.98, "text": "Jedrzej Kowalczuk, Eric T. Psota, and Lance C. P\u00e9rez"}, {"category_id": 15, "poly": [443.0, 392.0, 1245.0, 392.0, 1245.0, 424.0, 443.0, 424.0], "score": 0.99, "text": "Department of Electrical Engineering, University of Nebraska-Lincoln"}, {"category_id": 15, "poly": [614.0, 435.0, 1081.0, 435.0, 1081.0, 465.0, 614.0, 465.0], "score": 0.99, "text": "[jkowalczuk2,epsota,lperez] @unl.edu"}, {"category_id": 15, "poly": [159.0, 527.0, 836.0, 527.0, 836.0, 559.0, 159.0, 559.0], "score": 0.98, "text": "Abstract-Stereo matching algorithms are nearly always de-"}, {"category_id": 15, "poly": [132.0, 555.0, 838.0, 555.0, 838.0, 587.0, 132.0, 587.0], "score": 0.98, "text": "signed to find matches between a single pair of images. A method"}, {"category_id": 15, "poly": [134.0, 580.0, 836.0, 580.0, 836.0, 612.0, 134.0, 612.0], "score": 1.0, "text": "is presented that was specifically designed to operate on sequences"}, {"category_id": 15, "poly": [132.0, 605.0, 838.0, 607.0, 838.0, 646.0, 132.0, 644.0], "score": 0.99, "text": "of images. This method considers the cost of matching image"}, {"category_id": 15, "poly": [132.0, 637.0, 838.0, 637.0, 838.0, 669.0, 132.0, 669.0], "score": 0.98, "text": "points in both the spatial and temporal domain. To maintain"}, {"category_id": 15, "poly": [134.0, 667.0, 838.0, 667.0, 838.0, 699.0, 134.0, 699.0], "score": 0.97, "text": "real-time operation, a temporal cost aggregation method is used"}, {"category_id": 15, "poly": [132.0, 692.0, 836.0, 692.0, 836.0, 722.0, 132.0, 722.0], "score": 0.98, "text": "to evaluate the likelihood of matches that is invariant with respect"}, {"category_id": 15, "poly": [127.0, 717.0, 841.0, 715.0, 841.0, 754.0, 127.0, 756.0], "score": 0.97, "text": "to the number of prior images being considered. This method"}, {"category_id": 15, "poly": [127.0, 742.0, 841.0, 745.0, 841.0, 784.0, 127.0, 781.0], "score": 0.98, "text": "has been implemented on massively parallel GPU hardware,"}, {"category_id": 15, "poly": [132.0, 777.0, 838.0, 777.0, 838.0, 809.0, 132.0, 809.0], "score": 0.99, "text": "and the implementation ranks as one of the fastest and most"}, {"category_id": 15, "poly": [132.0, 802.0, 838.0, 804.0, 838.0, 836.0, 132.0, 834.0], "score": 0.99, "text": "accurate real-time stereo matching methods as measured by the"}, {"category_id": 15, "poly": [134.0, 830.0, 619.0, 830.0, 619.0, 862.0, 134.0, 862.0], "score": 0.99, "text": "Middlebury stereo performance benchmark."}, {"category_id": 15, "poly": [887.0, 1849.0, 1568.0, 1852.0, 1568.0, 1891.0, 887.0, 1888.0], "score": 0.99, "text": " Disparity maps obtained using this simple strategy are often"}, {"category_id": 15, "poly": [862.0, 1888.0, 1568.0, 1888.0, 1568.0, 1920.0, 862.0, 1920.0], "score": 0.98, "text": "too noisy to be considered useable. To reduce the effects"}, {"category_id": 15, "poly": [864.0, 1923.0, 1568.0, 1923.0, 1568.0, 1952.0, 864.0, 1952.0], "score": 0.99, "text": "of noise and enforce spatial consistency of matches, local"}, {"category_id": 15, "poly": [862.0, 1948.0, 1568.0, 1950.0, 1568.0, 1989.0, 861.0, 1987.0], "score": 0.99, "text": "stereo algorithms consider arbitrarily shaped and sized support"}, {"category_id": 15, "poly": [864.0, 1989.0, 1568.0, 1989.0, 1568.0, 2021.0, 864.0, 2021.0], "score": 0.99, "text": "windows centered at each pixel of the reference image, and"}], "page_info": {"page_no": 0, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 8, "poly": [962.3624267578125, 1513.2073974609375, 1465.4017333984375, 1513.2073974609375, 1465.4017333984375, 1669.1397705078125, 962.3624267578125, 1669.1397705078125], "score": 0.9999995231628418}, {"category_id": 9, "poly": [1530.72998046875, 1101.879638671875, 1565.2568359375, 1101.879638671875, 1565.2568359375, 1130.8609619140625, 1530.72998046875, 1130.8609619140625], "score": 0.9999992251396179}, {"category_id": 9, "poly": [1529.8787841796875, 1575.843505859375, 1565.931396484375, 1575.843505859375, 1565.931396484375, 1607.2161865234375, 1529.8787841796875, 1607.2161865234375], "score": 0.9999987483024597}, {"category_id": 1, "poly": [865.1971435546875, 1684.040283203125, 1566.561279296875, 1684.040283203125, 1566.561279296875, 1813.7021484375, 865.1971435546875, 1813.7021484375], "score": 0.9999987483024597}, {"category_id": 9, "poly": [1530.5263671875, 1839.3990478515625, 1565.1201171875, 1839.3990478515625, 1565.1201171875, 1869.825439453125, 1530.5263671875, 1869.825439453125], "score": 0.9999977946281433}, {"category_id": 8, "poly": [972.3255004882812, 1075.85498046875, 1461.2088623046875, 1075.85498046875, 1461.2088623046875, 1155.465087890625, 972.3255004882812, 1155.465087890625], "score": 0.999996542930603}, {"category_id": 1, "poly": [865.4874267578125, 158.47100830078125, 1565.84375, 158.47100830078125, 1565.84375, 355.3230285644531, 865.4874267578125, 355.3230285644531], "score": 0.9999960660934448}, {"category_id": 1, "poly": [133.51382446289062, 158.21670532226562, 835.5382080078125, 158.21670532226562, 835.5382080078125, 558.8020629882812, 133.51382446289062, 558.8020629882812], "score": 0.9999951124191284}, {"category_id": 1, "poly": [134.01239013671875, 954.4151000976562, 836.1470336914062, 954.4151000976562, 836.1470336914062, 1618.77197265625, 134.01239013671875, 1618.77197265625], "score": 0.9999947547912598}, {"category_id": 1, "poly": [134.4542999267578, 558.8201904296875, 834.2548828125, 558.8201904296875, 834.2548828125, 954.7811279296875, 134.4542999267578, 954.7811279296875], "score": 0.9999943971633911}, {"category_id": 1, "poly": [866.33642578125, 421.84442138671875, 1566.451904296875, 421.84442138671875, 1566.451904296875, 787.1864624023438, 866.33642578125, 787.1864624023438], "score": 0.9999930262565613}, {"category_id": 1, "poly": [864.974853515625, 1167.92236328125, 1567.0927734375, 1167.92236328125, 1567.0927734375, 1298.29541015625, 864.974853515625, 1298.29541015625], "score": 0.9999929666519165}, {"category_id": 1, "poly": [864.5220947265625, 853.943359375, 1565.82080078125, 853.943359375, 1565.82080078125, 1080.8125, 864.5220947265625, 1080.8125], "score": 0.9999923706054688}, {"category_id": 1, "poly": [865.4466552734375, 1919.30615234375, 1566.4720458984375, 1919.30615234375, 1566.4720458984375, 2017.154541015625, 865.4466552734375, 2017.154541015625], "score": 0.9999904036521912}, {"category_id": 1, "poly": [864.801513671875, 1302.438232421875, 1566.760986328125, 1302.438232421875, 1566.760986328125, 1498.9681396484375, 864.801513671875, 1498.9681396484375], "score": 0.9999889135360718}, {"category_id": 1, "poly": [133.34628295898438, 1620.0596923828125, 836.7553100585938, 1620.0596923828125, 836.7553100585938, 2018.44873046875, 133.34628295898438, 2018.44873046875], "score": 0.9999861717224121}, {"category_id": 0, "poly": [865.5296020507812, 809.8997802734375, 1302.7711181640625, 809.8997802734375, 1302.7711181640625, 841.3140869140625, 865.5296020507812, 841.3140869140625], "score": 0.9999798536300659}, {"category_id": 0, "poly": [1131.11181640625, 378.66229248046875, 1299.6181640625, 378.66229248046875, 1299.6181640625, 409.04852294921875, 1131.11181640625, 409.04852294921875], "score": 0.9999651908874512}, {"category_id": 8, "poly": [1003.5569458007812, 1824.2362060546875, 1420.7132568359375, 1824.2362060546875, 1420.7132568359375, 1905.175048828125, 1003.5569458007812, 1905.175048828125], "score": 0.999914288520813}, {"category_id": 14, "poly": [974, 1076, 1454, 1076, 1454, 1155, 974, 1155], "score": 0.94, "latex": "w(p,q)=\\exp{\\left(-\\frac{\\Delta_{g}(p,q)}{\\gamma_{g}}-\\frac{\\Delta_{c}(p,q)}{\\gamma_{c}}\\right)},"}, {"category_id": 14, "poly": [1006, 1825, 1423, 1825, 1423, 1907, 1006, 1907], "score": 0.94, "latex": "\\delta(q,\\bar{q})=\\sum_{c=\\{r,g,b\\}}\\operatorname*{min}(|q_{c}-\\bar{q}_{c}|,\\tau)."}, {"category_id": 14, "poly": [963, 1510, 1464, 1510, 1464, 1671, 963, 1671], "score": 0.93, "latex": "C(p,\\bar{p})=\\frac{\\displaystyle\\sum_{q\\in\\Omega_{p},\\bar{q}\\in\\Omega_{\\bar{p}}}w(p,q)w(\\bar{p},\\bar{q})\\delta(q,\\bar{q})}{\\displaystyle\\sum_{q\\in\\Omega_{p},\\bar{q}\\in\\Omega_{\\bar{p}}}w(p,q)w(\\bar{p},\\bar{q})}\\,,"}, {"category_id": 13, "poly": [1335, 1166, 1432, 1166, 1432, 1200, 1335, 1200], "score": 0.93, "latex": "\\Delta_{c}(p,q)"}, {"category_id": 13, "poly": [939, 1166, 1039, 1166, 1039, 1201, 939, 1201], "score": 0.93, "latex": "\\Delta_{g}(p,q)"}, {"category_id": 13, "poly": [1289, 1683, 1365, 1683, 1365, 1717, 1289, 1717], "score": 0.93, "latex": "\\delta(q,\\bar{q})"}, {"category_id": 13, "poly": [1362, 1367, 1441, 1367, 1441, 1401, 1362, 1401], "score": 0.92, "latex": "\\bar{p}\\in S_{p}"}, {"category_id": 13, "poly": [864, 1019, 951, 1019, 951, 1053, 864, 1053], "score": 0.92, "latex": "q\\in\\Omega_{p}"}, {"category_id": 13, "poly": [1351, 953, 1388, 953, 1388, 987, 1351, 987], "score": 0.9, "latex": "\\Omega_{p}"}, {"category_id": 13, "poly": [913, 1467, 949, 1467, 949, 1501, 913, 1501], "score": 0.89, "latex": "\\Omega_{\\bar{p}}"}, {"category_id": 13, "poly": [1531, 1367, 1565, 1367, 1565, 1401, 1531, 1401], "score": 0.89, "latex": "S_{p}"}, {"category_id": 13, "poly": [1528, 1434, 1565, 1434, 1565, 1468, 1528, 1468], "score": 0.89, "latex": "\\Omega_{p}"}, {"category_id": 13, "poly": [1485, 1205, 1516, 1205, 1516, 1234, 1485, 1234], "score": 0.88, "latex": "\\gamma_{g}"}, {"category_id": 13, "poly": [1159, 1206, 1178, 1206, 1178, 1233, 1159, 1233], "score": 0.82, "latex": "p"}, {"category_id": 13, "poly": [863, 1238, 893, 1238, 893, 1266, 863, 1266], "score": 0.82, "latex": "\\gamma_{c}"}, {"category_id": 13, "poly": [1177, 1436, 1196, 1436, 1196, 1465, 1177, 1465], "score": 0.8, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [1371, 1024, 1391, 1024, 1391, 1051, 1371, 1051], "score": 0.8, "latex": "p"}, {"category_id": 13, "poly": [1540, 1406, 1558, 1406, 1558, 1432, 1540, 1432], "score": 0.8, "latex": "p"}, {"category_id": 13, "poly": [1447, 1024, 1465, 1024, 1465, 1051, 1447, 1051], "score": 0.79, "latex": "q"}, {"category_id": 13, "poly": [1101, 1437, 1121, 1437, 1121, 1465, 1101, 1465], "score": 0.79, "latex": "p"}, {"category_id": 13, "poly": [1389, 1307, 1407, 1307, 1407, 1332, 1389, 1332], "score": 0.79, "latex": "p"}, {"category_id": 13, "poly": [1230, 1206, 1247, 1206, 1247, 1233, 1230, 1233], "score": 0.78, "latex": "q"}, {"category_id": 13, "poly": [1029, 1372, 1048, 1372, 1048, 1399, 1029, 1399], "score": 0.78, "latex": "p"}, {"category_id": 13, "poly": [916, 1752, 934, 1752, 934, 1782, 916, 1782], "score": 0.76, "latex": "\\bar{q}"}, {"category_id": 13, "poly": [1407, 1925, 1425, 1925, 1425, 1946, 1407, 1946], "score": 0.75, "latex": "\\tau"}, {"category_id": 13, "poly": [1548, 1722, 1565, 1722, 1565, 1749, 1548, 1749], "score": 0.75, "latex": "q"}, {"category_id": 13, "poly": [1050, 992, 1068, 992, 1068, 1018, 1050, 1018], "score": 0.75, "latex": "p"}, {"category_id": 15, "poly": [864.0, 1783.0, 1298.0, 1783.0, 1298.0, 1822.0, 864.0, 1822.0], "score": 0.99, "text": "green, and blue components given by"}, {"category_id": 15, "poly": [866.0, 1687.0, 1288.0, 1687.0, 1288.0, 1719.0, 866.0, 1719.0], "score": 0.96, "text": "where the pixel dissimilarity metric"}, {"category_id": 15, "poly": [1366.0, 1687.0, 1564.0, 1687.0, 1564.0, 1719.0, 1366.0, 1719.0], "score": 0.97, "text": "ischosen as the"}, {"category_id": 15, "poly": [866.0, 1751.0, 915.0, 1751.0, 915.0, 1783.0, 866.0, 1783.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [935.0, 1751.0, 1564.0, 1751.0, 1564.0, 1783.0, 935.0, 1783.0], "score": 0.98, "text": ". Here, the truncation of color difference for the red,"}, {"category_id": 15, "poly": [866.0, 1719.0, 1547.0, 1719.0, 1547.0, 1749.0, 866.0, 1749.0], "score": 0.99, "text": "sum of truncated absolute color differences between pixels"}, {"category_id": 15, "poly": [864.0, 163.0, 1568.0, 163.0, 1568.0, 192.0, 864.0, 192.0], "score": 1.0, "text": "temporal information, making it possible to process a temporal"}, {"category_id": 15, "poly": [859.0, 188.0, 1571.0, 193.0, 1570.0, 229.0, 859.0, 225.0], "score": 0.99, "text": " collection of cost volumes. The filtering operation was shown"}, {"category_id": 15, "poly": [864.0, 229.0, 1566.0, 229.0, 1566.0, 261.0, 864.0, 261.0], "score": 0.99, "text": "to preserve spatio-temporal edges present in the cost volumes,"}, {"category_id": 15, "poly": [859.0, 261.0, 1564.0, 264.0, 1564.0, 296.0, 859.0, 293.0], "score": 0.98, "text": " resulting in increased temporal consistency of disparity maps,"}, {"category_id": 15, "poly": [864.0, 296.0, 1566.0, 296.0, 1566.0, 328.0, 864.0, 328.0], "score": 0.99, "text": "greater robustness to image noise, and more accurate behavior"}, {"category_id": 15, "poly": [866.0, 328.0, 1160.0, 328.0, 1160.0, 360.0, 866.0, 360.0], "score": 1.0, "text": "around object boundaries."}, {"category_id": 15, "poly": [129.0, 158.0, 841.0, 153.0, 841.0, 192.0, 130.0, 197.0], "score": 0.99, "text": "aggregate cost values within the pixel neighborhoods defined"}, {"category_id": 15, "poly": [129.0, 188.0, 841.0, 190.0, 841.0, 229.0, 129.0, 227.0], "score": 0.99, "text": "by these windows. In 2005, Yoon and Kweon [4] proposed"}, {"category_id": 15, "poly": [132.0, 229.0, 838.0, 229.0, 838.0, 261.0, 132.0, 261.0], "score": 1.0, "text": "an adaptive matching cost aggregation scheme, which assigns"}, {"category_id": 15, "poly": [132.0, 261.0, 838.0, 261.0, 838.0, 293.0, 132.0, 293.0], "score": 0.98, "text": "a weight value to every pixel located in the support window"}, {"category_id": 15, "poly": [132.0, 293.0, 838.0, 293.0, 838.0, 325.0, 132.0, 325.0], "score": 0.98, "text": "of a given pixel of interest. The weight value is based on"}, {"category_id": 15, "poly": [132.0, 328.0, 836.0, 328.0, 836.0, 360.0, 132.0, 360.0], "score": 0.99, "text": "the spatial and color similarity between the pixel of interest"}, {"category_id": 15, "poly": [134.0, 360.0, 836.0, 360.0, 836.0, 392.0, 134.0, 392.0], "score": 1.0, "text": "and a pixel in its support window, and the aggregated cost is"}, {"category_id": 15, "poly": [134.0, 394.0, 836.0, 394.0, 836.0, 426.0, 134.0, 426.0], "score": 0.99, "text": "computed as a weighted average of the pixel-wise costs within"}, {"category_id": 15, "poly": [127.0, 422.0, 839.0, 424.0, 838.0, 463.0, 127.0, 461.0], "score": 0.98, "text": " the considered support window. The edge-preserving nature"}, {"category_id": 15, "poly": [129.0, 456.0, 838.0, 454.0, 838.0, 493.0, 129.0, 495.0], "score": 0.99, "text": " and matching accuracy of adaptive support weights have made"}, {"category_id": 15, "poly": [132.0, 490.0, 841.0, 490.0, 841.0, 529.0, 132.0, 529.0], "score": 0.99, "text": "them one of the most popular choices for cost aggregation in"}, {"category_id": 15, "poly": [132.0, 527.0, 797.0, 527.0, 797.0, 559.0, 132.0, 559.0], "score": 0.97, "text": "recently proposed stereo matching algorithms [3], [5]-[8]."}, {"category_id": 15, "poly": [157.0, 958.0, 836.0, 958.0, 836.0, 988.0, 157.0, 988.0], "score": 0.99, "text": "It has been demonstrated that the performance of stereo"}, {"category_id": 15, "poly": [132.0, 990.0, 838.0, 990.0, 838.0, 1022.0, 132.0, 1022.0], "score": 0.99, "text": "algorithms designed to match a single pair of images can"}, {"category_id": 15, "poly": [132.0, 1024.0, 836.0, 1024.0, 836.0, 1056.0, 132.0, 1056.0], "score": 0.99, "text": "be adapted to take advantage of the temporal dependencies"}, {"category_id": 15, "poly": [129.0, 1054.0, 838.0, 1054.0, 838.0, 1093.0, 129.0, 1093.0], "score": 0.97, "text": "available in stereo video sequences. Early proposed solutions"}, {"category_id": 15, "poly": [132.0, 1091.0, 836.0, 1091.0, 836.0, 1123.0, 132.0, 1123.0], "score": 0.99, "text": "to temporal stereo matching attempted to average matching"}, {"category_id": 15, "poly": [134.0, 1123.0, 836.0, 1123.0, 836.0, 1155.0, 134.0, 1155.0], "score": 0.99, "text": "costs across subsequent frames of a video sequence [13],"}, {"category_id": 15, "poly": [129.0, 1153.0, 841.0, 1150.0, 841.0, 1189.0, 129.0, 1192.0], "score": 0.98, "text": "[14]. Attempts have been made to integrate estimation of"}, {"category_id": 15, "poly": [134.0, 1192.0, 838.0, 1192.0, 838.0, 1224.0, 134.0, 1224.0], "score": 0.99, "text": "motion fields (optical flow) into temporal stereo matching. The"}, {"category_id": 15, "poly": [132.0, 1224.0, 838.0, 1224.0, 838.0, 1256.0, 132.0, 1256.0], "score": 0.99, "text": "methods of [15] and [16] perform smoothing of disparities"}, {"category_id": 15, "poly": [129.0, 1254.0, 841.0, 1254.0, 841.0, 1292.0, 129.0, 1292.0], "score": 0.99, "text": " along motion vectors recovered from the video sequence. The"}, {"category_id": 15, "poly": [132.0, 1290.0, 838.0, 1290.0, 838.0, 1322.0, 132.0, 1322.0], "score": 0.99, "text": "estimation of the motion field, however, prevents real-time"}, {"category_id": 15, "poly": [132.0, 1325.0, 838.0, 1325.0, 838.0, 1354.0, 132.0, 1354.0], "score": 0.99, "text": "implementation, since state-of-the-art optical flow algorithms"}, {"category_id": 15, "poly": [129.0, 1354.0, 841.0, 1354.0, 841.0, 1393.0, 129.0, 1393.0], "score": 0.99, "text": " do not, in general, approach real-time frame rates. In a related"}, {"category_id": 15, "poly": [129.0, 1386.0, 841.0, 1384.0, 841.0, 1423.0, 129.0, 1425.0], "score": 0.99, "text": "approach, Sizintsev and Wildes [17], [18] used steerable"}, {"category_id": 15, "poly": [134.0, 1423.0, 836.0, 1423.0, 836.0, 1455.0, 134.0, 1455.0], "score": 0.99, "text": "filters to obtain descriptors characterizing motion of image"}, {"category_id": 15, "poly": [134.0, 1455.0, 836.0, 1455.0, 836.0, 1487.0, 134.0, 1487.0], "score": 0.99, "text": "features in both space and time. Unlike traditional algorithms,"}, {"category_id": 15, "poly": [132.0, 1490.0, 838.0, 1490.0, 838.0, 1522.0, 132.0, 1522.0], "score": 0.98, "text": "their method performs matching on spatio-temporal motion"}, {"category_id": 15, "poly": [129.0, 1519.0, 841.0, 1517.0, 841.0, 1556.0, 129.0, 1558.0], "score": 0.99, "text": " descriptors, rather than on pure pixel intensity values, which"}, {"category_id": 15, "poly": [132.0, 1554.0, 841.0, 1554.0, 841.0, 1593.0, 132.0, 1593.0], "score": 0.99, "text": "leads to improved temporal coherence of disparity maps at the"}, {"category_id": 15, "poly": [132.0, 1586.0, 698.0, 1586.0, 698.0, 1618.0, 132.0, 1618.0], "score": 0.99, "text": "cost of reduced accuracy at depth discontinuities."}, {"category_id": 15, "poly": [159.0, 559.0, 838.0, 559.0, 838.0, 591.0, 159.0, 591.0], "score": 0.99, "text": "Recently, Rheman et al. [9], [10] have revisited the cost"}, {"category_id": 15, "poly": [132.0, 594.0, 838.0, 589.0, 839.0, 621.0, 132.0, 626.0], "score": 1.0, "text": "aggregation step of stereo algorithms, and demonstrated that"}, {"category_id": 15, "poly": [132.0, 626.0, 838.0, 626.0, 838.0, 658.0, 132.0, 658.0], "score": 0.99, "text": "cost aggregation can be performed by filtering of subsequent"}, {"category_id": 15, "poly": [134.0, 660.0, 834.0, 660.0, 834.0, 692.0, 134.0, 692.0], "score": 1.0, "text": "layers of the initially computed matching cost volume. In par-"}, {"category_id": 15, "poly": [132.0, 692.0, 836.0, 692.0, 836.0, 724.0, 132.0, 724.0], "score": 0.99, "text": "ticular, the edge-aware image filters, such as the bilateral filter"}, {"category_id": 15, "poly": [127.0, 719.0, 839.0, 724.0, 838.0, 761.0, 127.0, 756.0], "score": 0.99, "text": " of Tomasi and Manducci [11] or the guided filter of He [12],"}, {"category_id": 15, "poly": [132.0, 759.0, 838.0, 759.0, 838.0, 791.0, 132.0, 791.0], "score": 0.98, "text": "have been rendered useful for the problem of matching cost"}, {"category_id": 15, "poly": [132.0, 793.0, 838.0, 791.0, 838.0, 823.0, 132.0, 825.0], "score": 0.99, "text": "aggregation, enabling stereo algorithms to correctly recover"}, {"category_id": 15, "poly": [134.0, 825.0, 838.0, 825.0, 838.0, 857.0, 134.0, 857.0], "score": 0.98, "text": "disparities along object boundaries. In fact, Yoon and Kweon's"}, {"category_id": 15, "poly": [134.0, 859.0, 838.0, 859.0, 838.0, 891.0, 134.0, 891.0], "score": 1.0, "text": "adaptive support-weight cost aggregation scheme is equivalent"}, {"category_id": 15, "poly": [132.0, 891.0, 838.0, 891.0, 838.0, 924.0, 132.0, 924.0], "score": 0.98, "text": "to the application of the so-called joint bilateral filter to the"}, {"category_id": 15, "poly": [134.0, 924.0, 547.0, 924.0, 547.0, 956.0, 134.0, 956.0], "score": 1.0, "text": "layers of the matching cost volume."}, {"category_id": 15, "poly": [889.0, 422.0, 1568.0, 424.0, 1568.0, 456.0, 889.0, 454.0], "score": 0.98, "text": "The proposed temporal stereo matching algorithm is an"}, {"category_id": 15, "poly": [862.0, 456.0, 1571.0, 456.0, 1571.0, 495.0, 862.0, 495.0], "score": 1.0, "text": "extension of the real-time iterative adaptive support-weight"}, {"category_id": 15, "poly": [864.0, 490.0, 1568.0, 490.0, 1568.0, 522.0, 864.0, 522.0], "score": 0.99, "text": "algorithm described in [3]. In addition to real-time two-"}, {"category_id": 15, "poly": [864.0, 525.0, 1566.0, 525.0, 1566.0, 557.0, 864.0, 557.0], "score": 1.0, "text": "pass aggregation of the cost values in the spatial domain,"}, {"category_id": 15, "poly": [864.0, 557.0, 1568.0, 557.0, 1568.0, 589.0, 864.0, 589.0], "score": 0.99, "text": "the proposed algorithm enhances stereo matching on video"}, {"category_id": 15, "poly": [866.0, 594.0, 1566.0, 594.0, 1566.0, 626.0, 866.0, 626.0], "score": 0.97, "text": "sequences by aggregating costs along the time dimension."}, {"category_id": 15, "poly": [864.0, 626.0, 1568.0, 626.0, 1568.0, 658.0, 864.0, 658.0], "score": 1.0, "text": "The operation of the algorithm has been divided into four"}, {"category_id": 15, "poly": [866.0, 660.0, 1568.0, 660.0, 1568.0, 692.0, 866.0, 692.0], "score": 0.99, "text": "stages: 1) two-pass spatial cost aggregation, 2) temporal cost"}, {"category_id": 15, "poly": [862.0, 688.0, 1568.0, 685.0, 1568.0, 724.0, 862.0, 727.0], "score": 1.0, "text": "aggregation, 3) disparity selection and confidence assessment,"}, {"category_id": 15, "poly": [866.0, 724.0, 1568.0, 724.0, 1568.0, 756.0, 866.0, 756.0], "score": 1.0, "text": "and 4) iterative disparity refinement. In the following, each of"}, {"category_id": 15, "poly": [864.0, 759.0, 1254.0, 759.0, 1254.0, 791.0, 864.0, 791.0], "score": 1.0, "text": "these stages is described in detail."}, {"category_id": 15, "poly": [860.0, 1265.0, 1194.0, 1270.0, 1194.0, 1306.0, 859.0, 1301.0], "score": 0.99, "text": " color similarity, respectively."}, {"category_id": 15, "poly": [1433.0, 1169.0, 1566.0, 1169.0, 1566.0, 1201.0, 1433.0, 1201.0], "score": 0.98, "text": "is the color"}, {"category_id": 15, "poly": [864.0, 1169.0, 938.0, 1169.0, 938.0, 1201.0, 864.0, 1201.0], "score": 1.0, "text": "where"}, {"category_id": 15, "poly": [1040.0, 1169.0, 1334.0, 1169.0, 1334.0, 1201.0, 1040.0, 1201.0], "score": 0.98, "text": "is the geometric distance,"}, {"category_id": 15, "poly": [1517.0, 1196.0, 1566.0, 1201.0, 1566.0, 1240.0, 1517.0, 1235.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [862.0, 1196.0, 1158.0, 1201.0, 1158.0, 1240.0, 861.0, 1235.0], "score": 1.0, "text": "difference between pixels"}, {"category_id": 15, "poly": [894.0, 1233.0, 1566.0, 1231.0, 1566.0, 1270.0, 894.0, 1272.0], "score": 0.97, "text": "regulate the strength of grouping by geometric distance and"}, {"category_id": 15, "poly": [1179.0, 1196.0, 1229.0, 1201.0, 1229.0, 1240.0, 1179.0, 1235.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [1248.0, 1196.0, 1484.0, 1201.0, 1484.0, 1240.0, 1248.0, 1235.0], "score": 0.99, "text": ", and the coefficients"}, {"category_id": 15, "poly": [887.0, 848.0, 1568.0, 850.0, 1568.0, 889.0, 887.0, 887.0], "score": 0.99, "text": " Humans group shapes by observing the geometric distance"}, {"category_id": 15, "poly": [859.0, 885.0, 1568.0, 882.0, 1568.0, 921.0, 859.0, 924.0], "score": 0.98, "text": " and color similarity of points in space. To mimic this vi-"}, {"category_id": 15, "poly": [864.0, 921.0, 1568.0, 921.0, 1568.0, 953.0, 864.0, 953.0], "score": 0.99, "text": "sual grouping, the adaptive support-weight stereo matching"}, {"category_id": 15, "poly": [864.0, 1054.0, 899.0, 1054.0, 899.0, 1084.0, 864.0, 1084.0], "score": 1.0, "text": "by"}, {"category_id": 15, "poly": [866.0, 956.0, 1350.0, 956.0, 1350.0, 988.0, 866.0, 988.0], "score": 0.98, "text": "algorithm [4] considers a support window"}, {"category_id": 15, "poly": [1389.0, 956.0, 1566.0, 956.0, 1566.0, 988.0, 1389.0, 988.0], "score": 0.98, "text": " centered at the"}, {"category_id": 15, "poly": [952.0, 1022.0, 1370.0, 1022.0, 1370.0, 1054.0, 952.0, 1054.0], "score": 0.98, "text": ". The support weight relating pixels"}, {"category_id": 15, "poly": [1392.0, 1022.0, 1446.0, 1022.0, 1446.0, 1054.0, 1392.0, 1054.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [1466.0, 1022.0, 1566.0, 1022.0, 1566.0, 1054.0, 1466.0, 1054.0], "score": 0.98, "text": "is given"}, {"category_id": 15, "poly": [866.0, 990.0, 1049.0, 990.0, 1049.0, 1022.0, 866.0, 1022.0], "score": 1.0, "text": "pixel of interest"}, {"category_id": 15, "poly": [1069.0, 990.0, 1566.0, 990.0, 1566.0, 1022.0, 1069.0, 1022.0], "score": 1.0, "text": ", and assigns a support weight to each pixel"}, {"category_id": 15, "poly": [862.0, 1948.0, 1568.0, 1950.0, 1568.0, 1989.0, 861.0, 1987.0], "score": 0.98, "text": "vides additional robustness to outliers. Rather than evaluating"}, {"category_id": 15, "poly": [864.0, 1989.0, 1566.0, 1989.0, 1566.0, 2021.0, 864.0, 2021.0], "score": 0.98, "text": "Equation (2) directly, real-time algorithms often approximate"}, {"category_id": 15, "poly": [862.0, 1920.0, 1406.0, 1920.0, 1406.0, 1952.0, 862.0, 1952.0], "score": 0.99, "text": "This limits each of their magnitudes to at most"}, {"category_id": 15, "poly": [1426.0, 1920.0, 1561.0, 1920.0, 1561.0, 1952.0, 1426.0, 1952.0], "score": 0.96, "text": ",whichpro-"}, {"category_id": 15, "poly": [859.0, 1331.0, 1571.0, 1334.0, 1571.0, 1373.0, 859.0, 1370.0], "score": 0.98, "text": " iterative adaptive support-weight algorithm evaluates matching"}, {"category_id": 15, "poly": [859.0, 1464.0, 912.0, 1467.0, 912.0, 1506.0, 859.0, 1503.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [950.0, 1464.0, 1474.0, 1467.0, 1474.0, 1506.0, 950.0, 1503.0], "score": 1.0, "text": ", the initial matching cost is aggregated using"}, {"category_id": 15, "poly": [1442.0, 1370.0, 1530.0, 1370.0, 1530.0, 1402.0, 1442.0, 1402.0], "score": 0.98, "text": ", where"}, {"category_id": 15, "poly": [1197.0, 1437.0, 1527.0, 1437.0, 1527.0, 1469.0, 1197.0, 1469.0], "score": 0.97, "text": ", and their support windows"}, {"category_id": 15, "poly": [866.0, 1402.0, 1539.0, 1402.0, 1539.0, 1435.0, 866.0, 1435.0], "score": 1.0, "text": "denotes a set of matching candidates associated with pixel"}, {"category_id": 15, "poly": [864.0, 1437.0, 1100.0, 1437.0, 1100.0, 1469.0, 864.0, 1469.0], "score": 0.97, "text": "For a pair of pixels"}, {"category_id": 15, "poly": [1122.0, 1437.0, 1176.0, 1437.0, 1176.0, 1469.0, 1122.0, 1469.0], "score": 0.94, "text": " and"}, {"category_id": 15, "poly": [887.0, 1299.0, 1388.0, 1304.0, 1388.0, 1336.0, 887.0, 1331.0], "score": 0.96, "text": " To identify a match for the pixel of interest"}, {"category_id": 15, "poly": [1408.0, 1299.0, 1568.0, 1304.0, 1568.0, 1336.0, 1408.0, 1331.0], "score": 1.0, "text": ", the real-time"}, {"category_id": 15, "poly": [864.0, 1370.0, 1028.0, 1370.0, 1028.0, 1402.0, 864.0, 1402.0], "score": 1.0, "text": "costs between"}, {"category_id": 15, "poly": [1049.0, 1370.0, 1361.0, 1370.0, 1361.0, 1402.0, 1049.0, 1402.0], "score": 0.99, "text": " and every match candidate"}, {"category_id": 15, "poly": [160.0, 1618.0, 836.0, 1623.0, 836.0, 1655.0, 159.0, 1650.0], "score": 0.99, "text": "Most recently, local stereo algorithms based on edge-aware"}, {"category_id": 15, "poly": [127.0, 1650.0, 841.0, 1652.0, 841.0, 1691.0, 127.0, 1689.0], "score": 0.97, "text": " filters were extended to incorporate temporal evidence into"}, {"category_id": 15, "poly": [132.0, 1687.0, 836.0, 1687.0, 836.0, 1719.0, 132.0, 1719.0], "score": 0.97, "text": "the matching process. The method of Richardt et al. [19]"}, {"category_id": 15, "poly": [134.0, 1723.0, 838.0, 1723.0, 838.0, 1753.0, 134.0, 1753.0], "score": 0.99, "text": "employs a variant of the bilateral grid [20] implemented on"}, {"category_id": 15, "poly": [134.0, 1755.0, 838.0, 1755.0, 838.0, 1788.0, 134.0, 1788.0], "score": 0.99, "text": "graphics hardware, which accelerates cost aggregation and"}, {"category_id": 15, "poly": [134.0, 1788.0, 838.0, 1788.0, 838.0, 1820.0, 134.0, 1820.0], "score": 1.0, "text": "allows for weighted propagation of pixel dissimilarity metrics"}, {"category_id": 15, "poly": [132.0, 1822.0, 838.0, 1822.0, 838.0, 1854.0, 132.0, 1854.0], "score": 0.99, "text": "from previous frames to the current one. Although this method"}, {"category_id": 15, "poly": [129.0, 1856.0, 838.0, 1856.0, 838.0, 1888.0, 129.0, 1888.0], "score": 1.0, "text": " outperforms the baseline frame-to-frame approach, the amount"}, {"category_id": 15, "poly": [132.0, 1888.0, 838.0, 1888.0, 838.0, 1920.0, 132.0, 1920.0], "score": 0.97, "text": "of hardware memory necessary to construct the bilateral grid"}, {"category_id": 15, "poly": [127.0, 1916.0, 841.0, 1918.0, 841.0, 1957.0, 127.0, 1955.0], "score": 0.99, "text": "limits its application to single-channel, i.e., grayscale images "}, {"category_id": 15, "poly": [132.0, 1955.0, 838.0, 1955.0, 838.0, 1985.0, 132.0, 1985.0], "score": 0.99, "text": "only. Hosni et al. [10], on the other hand, reformulated kernels"}, {"category_id": 15, "poly": [132.0, 1989.0, 838.0, 1989.0, 838.0, 2021.0, 132.0, 2021.0], "score": 0.99, "text": "of the guided image filter to operate on both spatial and"}, {"category_id": 15, "poly": [859.0, 809.0, 1307.0, 809.0, 1307.0, 848.0, 859.0, 848.0], "score": 0.99, "text": "A. Two-Pass Spatial Cost Aggregation"}, {"category_id": 15, "poly": [1129.0, 376.0, 1300.0, 376.0, 1300.0, 417.0, 1129.0, 417.0], "score": 0.94, "text": "III. METHOD"}], "page_info": {"page_no": 1, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 1, "poly": [865.5088500976562, 856.5537109375, 1567.692626953125, 856.5537109375, 1567.692626953125, 1420.9698486328125, 865.5088500976562, 1420.9698486328125], "score": 0.9999963045120239}, {"category_id": 8, "poly": [281.1294860839844, 1001.0513916015625, 689.37451171875, 1001.0513916015625, 689.37451171875, 1075.8765869140625, 281.1294860839844, 1075.8765869140625], "score": 0.9999961256980896}, {"category_id": 1, "poly": [133.53353881835938, 158.6427459716797, 836.7297973632812, 158.6427459716797, 836.7297973632812, 390.48828125, 133.53353881835938, 390.48828125], "score": 0.9999960660934448}, {"category_id": 8, "poly": [145.77777099609375, 1839.6416015625, 803.4192504882812, 1839.6416015625, 803.4192504882812, 1993.239013671875, 145.77777099609375, 1993.239013671875], "score": 0.9999958872795105}, {"category_id": 1, "poly": [864.9884643554688, 1420.8831787109375, 1567.3118896484375, 1420.8831787109375, 1567.3118896484375, 2023.257080078125, 864.9884643554688, 2023.257080078125], "score": 0.9999951124191284}, {"category_id": 9, "poly": [1529.267333984375, 388.6717834472656, 1565.1744384765625, 388.6717834472656, 1565.1744384765625, 416.4899597167969, 1529.267333984375, 416.4899597167969], "score": 0.9999918937683105}, {"category_id": 9, "poly": [800.3933715820312, 1551.524169921875, 833.2618408203125, 1551.524169921875, 833.2618408203125, 1582.073486328125, 800.3933715820312, 1582.073486328125], "score": 0.9999911189079285}, {"category_id": 1, "poly": [864.3720092773438, 200.97483825683594, 1565.6871337890625, 200.97483825683594, 1565.6871337890625, 365.6230163574219, 864.3720092773438, 365.6230163574219], "score": 0.9999903440475464}, {"category_id": 1, "poly": [134.87628173828125, 1369.5762939453125, 835.0336303710938, 1369.5762939453125, 835.0336303710938, 1533.884765625, 134.87628173828125, 1533.884765625], "score": 0.9999880790710449}, {"category_id": 1, "poly": [134.59988403320312, 444.5299377441406, 836.5606079101562, 444.5299377441406, 836.5606079101562, 709.0791015625, 134.59988403320312, 709.0791015625], "score": 0.999987006187439}, {"category_id": 1, "poly": [134.15472412109375, 1084.4288330078125, 836.2360229492188, 1084.4288330078125, 836.2360229492188, 1314.6600341796875, 134.15472412109375, 1314.6600341796875], "score": 0.9999866485595703}, {"category_id": 9, "poly": [800.6007690429688, 1023.1047973632812, 833.2154541015625, 1023.1047973632812, 833.2154541015625, 1055.7227783203125, 800.6007690429688, 1055.7227783203125], "score": 0.9999839663505554}, {"category_id": 8, "poly": [948.4016723632812, 372.03607177734375, 1486.11279296875, 372.03607177734375, 1486.11279296875, 449.3696594238281, 948.4016723632812, 449.3696594238281], "score": 0.9999831914901733}, {"category_id": 8, "poly": [145.31065368652344, 714.4036254882812, 820.3599853515625, 714.4036254882812, 820.3599853515625, 791.855712890625, 145.31065368652344, 791.855712890625], "score": 0.9999772906303406}, {"category_id": 1, "poly": [863.8760986328125, 599.6033325195312, 1566.84619140625, 599.6033325195312, 1566.84619140625, 797.44189453125, 863.8760986328125, 797.44189453125], "score": 0.999976396560669}, {"category_id": 1, "poly": [864.925537109375, 464.9669189453125, 1565.212158203125, 464.9669189453125, 1565.212158203125, 529.045654296875, 864.925537109375, 529.045654296875], "score": 0.999973475933075}, {"category_id": 1, "poly": [133.88735961914062, 797.7457885742188, 835.5986328125, 797.7457885742188, 835.5986328125, 994.4456176757812, 133.88735961914062, 994.4456176757812], "score": 0.9999661445617676}, {"category_id": 1, "poly": [134.8787841796875, 1615.116455078125, 835.4554443359375, 1615.116455078125, 835.4554443359375, 1815.4564208984375, 134.8787841796875, 1815.4564208984375], "score": 0.9999580383300781}, {"category_id": 9, "poly": [1530.1783447265625, 550.1576538085938, 1564.607177734375, 550.1576538085938, 1564.607177734375, 578.6950073242188, 1530.1783447265625, 578.6950073242188], "score": 0.9999532103538513}, {"category_id": 9, "poly": [801.0740966796875, 738.4259643554688, 834.7449340820312, 738.4259643554688, 834.7449340820312, 770.4969482421875, 801.0740966796875, 770.4969482421875], "score": 0.9996598958969116}, {"category_id": 0, "poly": [1134.302490234375, 815.6021728515625, 1295.3885498046875, 815.6021728515625, 1295.3885498046875, 844.6544799804688, 1134.302490234375, 844.6544799804688], "score": 0.9994980096817017}, {"category_id": 9, "poly": [798.6090698242188, 1986.7332763671875, 834.5460205078125, 1986.7332763671875, 834.5460205078125, 2017.6595458984375, 798.6090698242188, 2017.6595458984375], "score": 0.9992558360099792}, {"category_id": 0, "poly": [135.0093994140625, 406.12335205078125, 475.6328125, 406.12335205078125, 475.6328125, 437.4545593261719, 135.0093994140625, 437.4545593261719], "score": 0.9990860819816589}, {"category_id": 8, "poly": [1029.3924560546875, 541.857177734375, 1400.174072265625, 541.857177734375, 1400.174072265625, 585.1640625, 1029.3924560546875, 585.1640625], "score": 0.9979717135429382}, {"category_id": 0, "poly": [133.26077270507812, 1330.139892578125, 713.5426635742188, 1330.139892578125, 713.5426635742188, 1363.1341552734375, 133.26077270507812, 1363.1341552734375], "score": 0.9967154860496521}, {"category_id": 8, "poly": [338.6681823730469, 1547.7218017578125, 626.6519775390625, 1547.7218017578125, 626.6519775390625, 1604.587646484375, 338.6681823730469, 1604.587646484375], "score": 0.9945433139801025}, {"category_id": 1, "poly": [864.5469970703125, 160.16702270507812, 1251.313720703125, 160.16702270507812, 1251.313720703125, 190.15760803222656, 864.5469970703125, 190.15760803222656], "score": 0.9902143478393555}, {"category_id": 13, "poly": [550, 577, 648, 577, 648, 612, 550, 612], "score": 0.95, "latex": "C_{a}(p,\\bar{p})"}, {"category_id": 13, "poly": [183, 1780, 304, 1780, 304, 1813, 183, 1813], "score": 0.95, "latex": "p^{\\prime}=m(\\bar{p})"}, {"category_id": 14, "poly": [279, 1000, 687, 1000, 687, 1078, 279, 1078], "score": 0.95, "latex": "w_{t}(p,p_{t-1})=\\exp\\bigg({-\\frac{\\Delta_{c}(p,p_{t-1})}{\\gamma_{t}}}\\bigg),"}, {"category_id": 14, "poly": [147, 1843, 820, 1843, 820, 1992, 147, 1992], "score": 0.94, "latex": "F_{p}=\\left\\{\\begin{array}{l l}{\\underset{\\bar{p}\\in S_{p}\\setminus m(p)}{\\mathrm{min}}\\,C(p,\\bar{p})-\\underset{\\bar{p}\\in S_{p}}{\\mathrm{min}}\\,C(p,\\bar{p})}\\\\ {\\underset{\\bar{p}\\in S_{p}\\setminus m(p)}{\\mathrm{min}}\\,C(p,\\bar{p})}&{|d_{p}-d_{p^{\\prime}}|\\leq1}\\\\ {0,}&{\\mathrm{otherwise}}\\end{array}\\right.."}, {"category_id": 14, "poly": [340, 1546, 628, 1546, 628, 1608, 340, 1608], "score": 0.93, "latex": "m(p)=\\underset{\\bar{p}\\in S_{p}}{\\mathrm{argmin}}\\,C(p,\\bar{p})\\,."}, {"category_id": 13, "poly": [321, 830, 443, 830, 443, 864, 321, 864], "score": 0.93, "latex": "w_{t}(p,p_{t-1})"}, {"category_id": 13, "poly": [581, 1713, 694, 1713, 694, 1747, 581, 1747], "score": 0.93, "latex": "{\\bar{p}}=m(p)"}, {"category_id": 14, "poly": [947, 373, 1478, 373, 1478, 454, 947, 454], "score": 0.93, "latex": "\\Lambda^{i}(p,\\bar{p})=\\alpha\\times\\sum_{q\\in\\Omega_{p}}w(p,q)F_{q}^{i-1}\\left|D_{q}^{i-1}-d_{p}\\right|\\,,"}, {"category_id": 13, "poly": [426, 445, 512, 445, 512, 479, 426, 479], "score": 0.93, "latex": "C(p,{\\bar{p}})"}, {"category_id": 13, "poly": [337, 356, 414, 356, 414, 391, 337, 391], "score": 0.93, "latex": "\\mathcal{O}(\\omega^{2})"}, {"category_id": 13, "poly": [1341, 730, 1565, 730, 1565, 765, 1341, 765], "score": 0.92, "latex": "C_{a}(p,\\bar{p})\\gets C(p,\\bar{p})"}, {"category_id": 13, "poly": [629, 1436, 691, 1436, 691, 1470, 629, 1470], "score": 0.92, "latex": "m(p)"}, {"category_id": 13, "poly": [277, 1469, 361, 1469, 361, 1504, 277, 1504], "score": 0.92, "latex": "\\bar{p}\\in S_{p}"}, {"category_id": 14, "poly": [1030, 541, 1398, 541, 1398, 582, 1030, 582], "score": 0.92, "latex": "C^{i}(p,\\bar{p})=C^{0}(p,\\bar{p})+{\\Lambda^{i}}(p,\\bar{p})\\,,"}, {"category_id": 13, "poly": [453, 356, 518, 356, 518, 391, 453, 391], "score": 0.91, "latex": "\\mathcal{O}(\\omega)"}, {"category_id": 14, "poly": [146, 714, 787, 714, 787, 791, 146, 791], "score": 0.91, "latex": "C(p,\\bar{p})\\gets\\frac{(1-\\lambda)\\cdot C(p,\\bar{p})+\\lambda\\cdot w_{t}(p,p_{t-1})\\cdot C_{a}(p,\\bar{p})}{(1-\\lambda)+\\lambda\\cdot w_{t}(p,p_{t-1})},"}, {"category_id": 13, "poly": [1095, 231, 1134, 231, 1134, 270, 1095, 270], "score": 0.9, "latex": "D_{p}^{i}"}, {"category_id": 13, "poly": [1313, 1752, 1447, 1752, 1447, 1783, 1313, 1783], "score": 0.89, "latex": "640~\\times~480"}, {"category_id": 13, "poly": [593, 1782, 627, 1782, 627, 1815, 593, 1815], "score": 0.89, "latex": "F_{p}"}, {"category_id": 13, "poly": [133, 326, 209, 326, 209, 355, 133, 355], "score": 0.88, "latex": "\\omega\\times\\omega"}, {"category_id": 13, "poly": [208, 1089, 236, 1089, 236, 1116, 208, 1116], "score": 0.85, "latex": "\\gamma_{t}"}, {"category_id": 13, "poly": [1466, 769, 1484, 769, 1484, 797, 1466, 797], "score": 0.83, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [133, 935, 177, 935, 177, 963, 133, 963], "score": 0.83, "latex": "p_{t-1}"}, {"category_id": 13, "poly": [608, 1753, 627, 1753, 627, 1779, 608, 1779], "score": 0.81, "latex": "p"}, {"category_id": 13, "poly": [491, 799, 511, 799, 511, 825, 491, 825], "score": 0.81, "latex": "\\lambda"}, {"category_id": 13, "poly": [1018, 770, 1037, 770, 1037, 796, 1018, 796], "score": 0.81, "latex": "p"}, {"category_id": 13, "poly": [1086, 470, 1107, 470, 1107, 491, 1086, 491], "score": 0.8, "latex": "\\alpha"}, {"category_id": 13, "poly": [466, 901, 485, 901, 485, 929, 466, 929], "score": 0.8, "latex": "p"}, {"category_id": 13, "poly": [208, 484, 227, 484, 227, 511, 208, 511], "score": 0.79, "latex": "p"}, {"category_id": 13, "poly": [462, 1443, 480, 1443, 480, 1468, 462, 1468], "score": 0.77, "latex": "p"}, {"category_id": 13, "poly": [266, 514, 288, 514, 288, 544, 266, 544], "score": 0.77, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [816, 1716, 836, 1716, 836, 1746, 816, 1746], "score": 0.73, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [132, 405, 154, 405, 154, 432, 132, 432], "score": 0.27, "latex": "B"}, {"category_id": 13, "poly": [862, 160, 887, 160, 887, 187, 862, 187], "score": 0.26, "latex": "D"}, {"category_id": 15, "poly": [887.0, 852.0, 1568.0, 855.0, 1568.0, 894.0, 887.0, 891.0], "score": 0.98, "text": " The speed and accuracy of real-time stereo matching al-"}, {"category_id": 15, "poly": [864.0, 891.0, 1566.0, 891.0, 1566.0, 924.0, 864.0, 924.0], "score": 0.99, "text": "gorithms are traditionally demonstrated using still-frame im-"}, {"category_id": 15, "poly": [859.0, 921.0, 1571.0, 919.0, 1571.0, 958.0, 859.0, 960.0], "score": 0.97, "text": " ages from the Middlebury stereo benchmark [1], [2]. Still"}, {"category_id": 15, "poly": [862.0, 956.0, 1568.0, 958.0, 1568.0, 990.0, 862.0, 988.0], "score": 0.99, "text": "frames, however, are insufficient for evaluating stereo match-"}, {"category_id": 15, "poly": [864.0, 992.0, 1571.0, 992.0, 1571.0, 1024.0, 864.0, 1024.0], "score": 1.0, "text": "ing algorithms that incorporate frame-to-frame prediction to"}, {"category_id": 15, "poly": [864.0, 1027.0, 1568.0, 1027.0, 1568.0, 1059.0, 864.0, 1059.0], "score": 0.97, "text": "enhance matching accuracy. An alternative approach is to"}, {"category_id": 15, "poly": [864.0, 1059.0, 1566.0, 1059.0, 1566.0, 1089.0, 864.0, 1089.0], "score": 0.99, "text": "use a stereo video sequence with a ground truth disparity"}, {"category_id": 15, "poly": [862.0, 1091.0, 1566.0, 1091.0, 1566.0, 1123.0, 862.0, 1123.0], "score": 1.0, "text": "for each frame. Obtaining the ground truth disparity of real"}, {"category_id": 15, "poly": [866.0, 1125.0, 1566.0, 1125.0, 1566.0, 1157.0, 866.0, 1157.0], "score": 0.98, "text": "world video sequences is a difficult undertaking due to the"}, {"category_id": 15, "poly": [859.0, 1153.0, 1568.0, 1155.0, 1568.0, 1194.0, 859.0, 1192.0], "score": 0.99, "text": "high frame rate of video and limitations in depth sensing-"}, {"category_id": 15, "poly": [864.0, 1192.0, 1568.0, 1192.0, 1568.0, 1224.0, 864.0, 1224.0], "score": 0.99, "text": "technology. To address the need for stereo video with ground"}, {"category_id": 15, "poly": [864.0, 1224.0, 1568.0, 1224.0, 1568.0, 1256.0, 864.0, 1256.0], "score": 0.99, "text": "truth disparities, five pairs of synthetic stereo video sequences"}, {"category_id": 15, "poly": [864.0, 1258.0, 1568.0, 1258.0, 1568.0, 1290.0, 864.0, 1290.0], "score": 0.99, "text": "of a computer-generated scene were given in [19]. While these"}, {"category_id": 15, "poly": [864.0, 1290.0, 1566.0, 1290.0, 1566.0, 1322.0, 864.0, 1322.0], "score": 1.0, "text": "videos incorporate a sufficient amount of movement variation,"}, {"category_id": 15, "poly": [862.0, 1325.0, 1568.0, 1325.0, 1568.0, 1357.0, 862.0, 1357.0], "score": 0.99, "text": "they were generated from relatively simple models using low-"}, {"category_id": 15, "poly": [862.0, 1359.0, 1571.0, 1359.0, 1571.0, 1389.0, 862.0, 1389.0], "score": 0.99, "text": "resolution rendering, and they do not provide occlusion or"}, {"category_id": 15, "poly": [862.0, 1386.0, 1088.0, 1394.0, 1087.0, 1426.0, 861.0, 1418.0], "score": 0.98, "text": "discontinuity maps."}, {"category_id": 15, "poly": [129.0, 156.0, 839.0, 158.0, 838.0, 197.0, 129.0, 195.0], "score": 0.99, "text": "the matching cost by performing two-pass aggregation using"}, {"category_id": 15, "poly": [130.0, 188.0, 841.0, 193.0, 841.0, 229.0, 129.0, 225.0], "score": 0.98, "text": "two orthogonal 1D windows [5], [6], [8]. The two-pass method "}, {"category_id": 15, "poly": [129.0, 225.0, 841.0, 222.0, 841.0, 261.0, 129.0, 264.0], "score": 0.99, "text": "first aggregates matching costs in the vertical direction, and"}, {"category_id": 15, "poly": [134.0, 261.0, 838.0, 261.0, 838.0, 293.0, 134.0, 293.0], "score": 0.99, "text": "then computes a weighted sum of the aggregated costs in the"}, {"category_id": 15, "poly": [132.0, 291.0, 838.0, 291.0, 838.0, 330.0, 132.0, 330.0], "score": 0.99, "text": "horizontal direction. Given that support regions are of size"}, {"category_id": 15, "poly": [136.0, 360.0, 336.0, 360.0, 336.0, 392.0, 136.0, 392.0], "score": 0.99, "text": "aggregation from"}, {"category_id": 15, "poly": [415.0, 360.0, 452.0, 360.0, 452.0, 392.0, 415.0, 392.0], "score": 0.98, "text": "to"}, {"category_id": 15, "poly": [210.0, 321.0, 836.0, 321.0, 836.0, 360.0, 210.0, 360.0], "score": 0.98, "text": ", the two-pass method reduces the complexity of cost"}, {"category_id": 15, "poly": [887.0, 1416.0, 1571.0, 1419.0, 1571.0, 1458.0, 887.0, 1455.0], "score": 0.98, "text": " To evaluate the performance of temporal aggregation, a"}, {"category_id": 15, "poly": [862.0, 1453.0, 1566.0, 1453.0, 1566.0, 1485.0, 862.0, 1485.0], "score": 0.98, "text": "new synthetic stereo video sequence is introduced along with"}, {"category_id": 15, "poly": [862.0, 1490.0, 1566.0, 1487.0, 1566.0, 1519.0, 862.0, 1522.0], "score": 0.99, "text": "corresponding disparity maps, occlusion maps, and disconti-"}, {"category_id": 15, "poly": [862.0, 1519.0, 1571.0, 1519.0, 1571.0, 1558.0, 862.0, 1558.0], "score": 0.99, "text": "nuity maps for evaluating the performance of temporal stereo"}, {"category_id": 15, "poly": [864.0, 1556.0, 1568.0, 1556.0, 1568.0, 1588.0, 864.0, 1588.0], "score": 1.0, "text": "matching algorithms. To create the video sequence, a complex"}, {"category_id": 15, "poly": [864.0, 1590.0, 1568.0, 1590.0, 1568.0, 1620.0, 864.0, 1620.0], "score": 0.99, "text": "scene was constructed using Google Sketchup and a pair"}, {"category_id": 15, "poly": [864.0, 1622.0, 1568.0, 1622.0, 1568.0, 1655.0, 864.0, 1655.0], "score": 0.99, "text": "of animated paths were rendered photorealistically using the"}, {"category_id": 15, "poly": [859.0, 1650.0, 1571.0, 1652.0, 1571.0, 1691.0, 859.0, 1689.0], "score": 0.99, "text": " Kerkythea rendering software. Realistic material properties"}, {"category_id": 15, "poly": [864.0, 1689.0, 1566.0, 1689.0, 1566.0, 1721.0, 864.0, 1721.0], "score": 1.0, "text": "were used to give surfaces a natural-looking appearance by"}, {"category_id": 15, "poly": [864.0, 1723.0, 1566.0, 1723.0, 1566.0, 1755.0, 864.0, 1755.0], "score": 0.98, "text": "adjusting their specularity, reflectance, and diffusion. The"}, {"category_id": 15, "poly": [864.0, 1788.0, 1568.0, 1788.0, 1568.0, 1820.0, 864.0, 1820.0], "score": 1.0, "text": "frame rate of 30 frames per second, and a duration of 4"}, {"category_id": 15, "poly": [862.0, 1817.0, 1568.0, 1820.0, 1568.0, 1859.0, 861.0, 1856.0], "score": 0.98, "text": "seconds. In addition to performing photorealistic rendering."}, {"category_id": 15, "poly": [864.0, 1856.0, 1568.0, 1856.0, 1568.0, 1888.0, 864.0, 1888.0], "score": 0.99, "text": "depth renders of both video sequences were also generated and"}, {"category_id": 15, "poly": [864.0, 1888.0, 1566.0, 1888.0, 1566.0, 1920.0, 864.0, 1920.0], "score": 0.98, "text": "converted to ground truth disparity for the stereo video. The"}, {"category_id": 15, "poly": [862.0, 1920.0, 1564.0, 1920.0, 1564.0, 1952.0, 862.0, 1952.0], "score": 0.99, "text": "video sequences and ground truth data have been made avail-"}, {"category_id": 15, "poly": [862.0, 1950.0, 1566.0, 1953.0, 1566.0, 1985.0, 862.0, 1982.0], "score": 0.99, "text": "able at http://mc2.unl.edu/current-research"}, {"category_id": 15, "poly": [866.0, 1989.0, 1566.0, 1989.0, 1566.0, 2019.0, 866.0, 2019.0], "score": 0.98, "text": "/ image-processing/. Figure 2 shows two sample frames"}, {"category_id": 15, "poly": [862.0, 1755.0, 1312.0, 1755.0, 1312.0, 1788.0, 862.0, 1788.0], "score": 0.97, "text": "video sequence has a resolution of "}, {"category_id": 15, "poly": [1448.0, 1755.0, 1566.0, 1755.0, 1566.0, 1788.0, 1448.0, 1788.0], "score": 0.99, "text": "pixels,a"}, {"category_id": 15, "poly": [889.0, 197.0, 1566.0, 199.0, 1566.0, 238.0, 889.0, 236.0], "score": 1.0, "text": "Once the first iteration of stereo matching is complete,"}, {"category_id": 15, "poly": [864.0, 268.0, 1566.0, 268.0, 1566.0, 300.0, 864.0, 300.0], "score": 0.99, "text": "subsequent iterations. This is done by penalizing disparities"}, {"category_id": 15, "poly": [864.0, 302.0, 1568.0, 302.0, 1568.0, 335.0, 864.0, 335.0], "score": 1.0, "text": "that deviate from their expected values. The penalty function"}, {"category_id": 15, "poly": [862.0, 337.0, 996.0, 337.0, 996.0, 369.0, 862.0, 369.0], "score": 0.97, "text": "is given by"}, {"category_id": 15, "poly": [864.0, 236.0, 1094.0, 236.0, 1094.0, 268.0, 864.0, 268.0], "score": 0.96, "text": "disparityestimates"}, {"category_id": 15, "poly": [1135.0, 236.0, 1568.0, 236.0, 1568.0, 268.0, 1135.0, 268.0], "score": 0.97, "text": " can be used to guide matching in"}, {"category_id": 15, "poly": [157.0, 1366.0, 839.0, 1368.0, 838.0, 1407.0, 157.0, 1405.0], "score": 1.0, "text": "Having performed temporal cost aggregation, matches are"}, {"category_id": 15, "poly": [134.0, 1405.0, 834.0, 1405.0, 834.0, 1437.0, 134.0, 1437.0], "score": 0.99, "text": "determined using the Winner-Takes-All (WTA) match selec-"}, {"category_id": 15, "poly": [132.0, 1506.0, 374.0, 1506.0, 374.0, 1538.0, 132.0, 1538.0], "score": 1.0, "text": "cost, and is given by"}, {"category_id": 15, "poly": [692.0, 1439.0, 834.0, 1439.0, 834.0, 1471.0, 692.0, 1471.0], "score": 0.99, "text": ", is the can-"}, {"category_id": 15, "poly": [134.0, 1474.0, 276.0, 1474.0, 276.0, 1506.0, 134.0, 1506.0], "score": 0.98, "text": "didate pixel"}, {"category_id": 15, "poly": [362.0, 1474.0, 836.0, 1474.0, 836.0, 1506.0, 362.0, 1506.0], "score": 0.99, "text": " characterized by the minimum matching"}, {"category_id": 15, "poly": [134.0, 1439.0, 461.0, 1439.0, 461.0, 1471.0, 134.0, 1471.0], "score": 1.0, "text": "tion criteria. The match for"}, {"category_id": 15, "poly": [481.0, 1439.0, 628.0, 1439.0, 628.0, 1471.0, 481.0, 1471.0], "score": 0.96, "text": ", denoted as"}, {"category_id": 15, "poly": [134.0, 548.0, 838.0, 545.0, 838.0, 577.0, 134.0, 580.0], "score": 0.99, "text": "aggregation routine is exectuted. At each time instance, the"}, {"category_id": 15, "poly": [134.0, 614.0, 834.0, 614.0, 834.0, 646.0, 134.0, 646.0], "score": 1.0, "text": "weighted summation of costs obtained in the previous frames."}, {"category_id": 15, "poly": [132.0, 646.0, 838.0, 644.0, 838.0, 676.0, 132.0, 678.0], "score": 1.0, "text": "During temporal aggregation, the auxiliary cost is merged with"}, {"category_id": 15, "poly": [132.0, 678.0, 675.0, 681.0, 674.0, 713.0, 132.0, 710.0], "score": 0.99, "text": "the cost obtained from the current frame using"}, {"category_id": 15, "poly": [134.0, 580.0, 549.0, 580.0, 549.0, 612.0, 134.0, 612.0], "score": 1.0, "text": "algorithm stores an auxiliary cost"}, {"category_id": 15, "poly": [649.0, 580.0, 841.0, 580.0, 841.0, 612.0, 649.0, 612.0], "score": 0.96, "text": "which holds a"}, {"category_id": 15, "poly": [157.0, 445.0, 425.0, 442.0, 425.0, 481.0, 157.0, 484.0], "score": 0.98, "text": " Once aggregated costs"}, {"category_id": 15, "poly": [513.0, 445.0, 838.0, 442.0, 838.0, 481.0, 513.0, 484.0], "score": 0.96, "text": " have been computed for all"}, {"category_id": 15, "poly": [132.0, 481.0, 207.0, 481.0, 207.0, 513.0, 132.0, 513.0], "score": 1.0, "text": "pixels"}, {"category_id": 15, "poly": [228.0, 481.0, 838.0, 481.0, 838.0, 513.0, 228.0, 513.0], "score": 0.97, "text": " in the reference image and their respective matching"}, {"category_id": 15, "poly": [134.0, 516.0, 265.0, 516.0, 265.0, 548.0, 134.0, 548.0], "score": 1.0, "text": "candidates"}, {"category_id": 15, "poly": [289.0, 516.0, 838.0, 516.0, 838.0, 548.0, 289.0, 548.0], "score": 0.98, "text": " in the target image, a single-pass temporal"}, {"category_id": 15, "poly": [132.0, 1116.0, 841.0, 1116.0, 841.0, 1155.0, 132.0, 1155.0], "score": 0.99, "text": "in the temporal dimension. The temporal adaptive weight has "}, {"category_id": 15, "poly": [134.0, 1153.0, 838.0, 1153.0, 838.0, 1185.0, 134.0, 1185.0], "score": 0.99, "text": "the effect of preserving edges in the temporal domain, such"}, {"category_id": 15, "poly": [132.0, 1182.0, 836.0, 1182.0, 836.0, 1215.0, 132.0, 1215.0], "score": 0.98, "text": "that when a pixel coordinate transitions from one side of an"}, {"category_id": 15, "poly": [134.0, 1219.0, 838.0, 1219.0, 838.0, 1251.0, 134.0, 1251.0], "score": 0.98, "text": "edge to another in subsequent frames, the auxiliary cost is"}, {"category_id": 15, "poly": [134.0, 1254.0, 838.0, 1254.0, 838.0, 1283.0, 134.0, 1283.0], "score": 0.99, "text": "assigned a small weight and the majority of the cost is derived"}, {"category_id": 15, "poly": [130.0, 1283.0, 404.0, 1286.0, 404.0, 1318.0, 129.0, 1315.0], "score": 1.0, "text": "from the current frame."}, {"category_id": 15, "poly": [134.0, 1086.0, 207.0, 1086.0, 207.0, 1118.0, 134.0, 1118.0], "score": 0.99, "text": "where"}, {"category_id": 15, "poly": [237.0, 1086.0, 836.0, 1086.0, 836.0, 1118.0, 237.0, 1118.0], "score": 0.99, "text": "regulates the strength of grouping by color similarity"}, {"category_id": 15, "poly": [864.0, 600.0, 1568.0, 600.0, 1568.0, 632.0, 864.0, 632.0], "score": 1.0, "text": "and the matches are reselected using the WTA match selection"}, {"category_id": 15, "poly": [864.0, 635.0, 1568.0, 635.0, 1568.0, 667.0, 864.0, 667.0], "score": 0.99, "text": "criteria. The resulting disparity maps are then post-processed"}, {"category_id": 15, "poly": [864.0, 669.0, 1564.0, 669.0, 1564.0, 699.0, 864.0, 699.0], "score": 0.98, "text": "using a combination of median filtering and occlusion filling."}, {"category_id": 15, "poly": [864.0, 701.0, 1566.0, 701.0, 1566.0, 731.0, 864.0, 731.0], "score": 0.98, "text": "Finally, the current cost becomes the auxiliary cost for the next"}, {"category_id": 15, "poly": [862.0, 731.0, 1340.0, 731.0, 1340.0, 770.0, 862.0, 770.0], "score": 0.99, "text": "pair of frames in the video sequence, i.e.,"}, {"category_id": 15, "poly": [864.0, 768.0, 1017.0, 768.0, 1017.0, 800.0, 864.0, 800.0], "score": 1.0, "text": "for all pixels"}, {"category_id": 15, "poly": [1038.0, 768.0, 1465.0, 768.0, 1465.0, 800.0, 1038.0, 800.0], "score": 0.98, "text": " in the and their matching candidates"}, {"category_id": 15, "poly": [864.0, 502.0, 1427.0, 502.0, 1427.0, 532.0, 864.0, 532.0], "score": 1.0, "text": "values are incorporated into the matching cost as"}, {"category_id": 15, "poly": [864.0, 468.0, 1085.0, 468.0, 1085.0, 500.0, 864.0, 500.0], "score": 0.96, "text": "where the value of"}, {"category_id": 15, "poly": [1108.0, 468.0, 1564.0, 468.0, 1564.0, 500.0, 1108.0, 500.0], "score": 0.99, "text": "is chosen empirically. Next, the penalty"}, {"category_id": 15, "poly": [134.0, 866.0, 838.0, 866.0, 838.0, 898.0, 134.0, 898.0], "score": 0.99, "text": "temporal domain. The temporal adaptive weight computed"}, {"category_id": 15, "poly": [132.0, 967.0, 263.0, 967.0, 263.0, 999.0, 132.0, 999.0], "score": 0.93, "text": "is given by"}, {"category_id": 15, "poly": [134.0, 834.0, 320.0, 834.0, 320.0, 866.0, 134.0, 866.0], "score": 0.97, "text": "smoothing and"}, {"category_id": 15, "poly": [444.0, 834.0, 836.0, 834.0, 836.0, 866.0, 444.0, 866.0], "score": 0.92, "text": " enforces color similarity in the"}, {"category_id": 15, "poly": [178.0, 930.0, 838.0, 928.0, 839.0, 967.0, 178.0, 969.0], "score": 0.99, "text": ", located at the same spatial coordinate in the prior frame,"}, {"category_id": 15, "poly": [132.0, 795.0, 490.0, 800.0, 490.0, 832.0, 132.0, 827.0], "score": 0.99, "text": "where the feedback coefficient"}, {"category_id": 15, "poly": [512.0, 795.0, 836.0, 800.0, 836.0, 832.0, 512.0, 827.0], "score": 0.97, "text": " controls the amount of cost"}, {"category_id": 15, "poly": [136.0, 898.0, 465.0, 898.0, 465.0, 930.0, 136.0, 930.0], "score": 0.99, "text": "between the pixel of interest"}, {"category_id": 15, "poly": [486.0, 898.0, 838.0, 898.0, 838.0, 930.0, 486.0, 930.0], "score": 1.0, "text": "in the current frame and pixel"}, {"category_id": 15, "poly": [159.0, 1616.0, 836.0, 1616.0, 836.0, 1648.0, 159.0, 1648.0], "score": 0.99, "text": "To asses the level of confidence associated with selecting"}, {"category_id": 15, "poly": [132.0, 1648.0, 836.0, 1650.0, 836.0, 1682.0, 132.0, 1680.0], "score": 1.0, "text": "minimum cost matches, the algorithm determines another set"}, {"category_id": 15, "poly": [134.0, 1684.0, 838.0, 1684.0, 838.0, 1716.0, 134.0, 1716.0], "score": 1.0, "text": "of matches, this time from the target to reference image, and"}, {"category_id": 15, "poly": [134.0, 1783.0, 182.0, 1783.0, 182.0, 1815.0, 134.0, 1815.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [136.0, 1714.0, 580.0, 1714.0, 580.0, 1746.0, 136.0, 1746.0], "score": 0.98, "text": "verifies if the results agree. Given that"}, {"category_id": 15, "poly": [305.0, 1783.0, 592.0, 1783.0, 592.0, 1815.0, 305.0, 1815.0], "score": 0.99, "text": ", the confidence measure"}, {"category_id": 15, "poly": [628.0, 1783.0, 811.0, 1783.0, 811.0, 1815.0, 628.0, 1815.0], "score": 0.97, "text": "is computed as"}, {"category_id": 15, "poly": [132.0, 1746.0, 607.0, 1751.0, 607.0, 1783.0, 132.0, 1778.0], "score": 1.0, "text": "in the right image is the match for pixel"}, {"category_id": 15, "poly": [628.0, 1746.0, 836.0, 1751.0, 836.0, 1783.0, 628.0, 1778.0], "score": 0.98, "text": "in the left image,"}, {"category_id": 15, "poly": [695.0, 1714.0, 815.0, 1714.0, 815.0, 1746.0, 695.0, 1746.0], "score": 0.99, "text": ", i.e. pixel"}, {"category_id": 15, "poly": [1132.0, 814.0, 1298.0, 814.0, 1298.0, 852.0, 1132.0, 852.0], "score": 1.0, "text": "IV. RESULTS"}, {"category_id": 15, "poly": [155.0, 401.0, 481.0, 406.0, 480.0, 445.0, 155.0, 440.0], "score": 0.99, "text": "Temporal cost aggregation"}, {"category_id": 15, "poly": [129.0, 1325.0, 718.0, 1327.0, 718.0, 1366.0, 129.0, 1363.0], "score": 0.99, "text": "C. Disparity Selection and Confidence Assessment"}, {"category_id": 15, "poly": [888.0, 158.0, 1252.0, 158.0, 1252.0, 197.0, 888.0, 197.0], "score": 0.97, "text": "Iterative Disparity Refinement"}], "page_info": {"page_no": 2, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 1, "poly": [133.2669677734375, 156.7020721435547, 840.6729125976562, 156.7020721435547, 840.6729125976562, 257.75836181640625, 133.2669677734375, 257.75836181640625], "score": 0.9999951124191284}, {"category_id": 3, "poly": [866.177734375, 171.2958526611328, 1510.944580078125, 171.2958526611328, 1510.944580078125, 848.8190307617188, 866.177734375, 848.8190307617188], "score": 0.9999942779541016}, {"category_id": 1, "poly": [131.3756561279297, 1520.5887451171875, 838.545166015625, 1520.5887451171875, 838.545166015625, 1885.353515625, 131.3756561279297, 1885.353515625], "score": 0.9999925494194031}, {"category_id": 4, "poly": [131.56919860839844, 1352.6187744140625, 840.1758422851562, 1352.6187744140625, 840.1758422851562, 1490.513671875, 131.56919860839844, 1490.513671875], "score": 0.9999915361404419}, {"category_id": 1, "poly": [132.41786193847656, 1886.0615234375, 838.675537109375, 1886.0615234375, 838.675537109375, 2019.347412109375, 132.41786193847656, 2019.347412109375], "score": 0.9999526739120483}, {"category_id": 3, "poly": [136.71240234375, 278.259765625, 816.1984252929688, 278.259765625, 816.1984252929688, 1348.5758056640625, 136.71240234375, 1348.5758056640625], "score": 0.9999439120292664}, {"category_id": 1, "poly": [863.4852905273438, 1917.056884765625, 1569.6337890625, 1917.056884765625, 1569.6337890625, 2020.57421875, 863.4852905273438, 2020.57421875], "score": 0.9999344348907471}, {"category_id": 4, "poly": [861.7813720703125, 1749.4459228515625, 1567.659912109375, 1749.4459228515625, 1567.659912109375, 1852.389892578125, 861.7813720703125, 1852.389892578125], "score": 0.9986151456832886}, {"category_id": 3, "poly": [874.6467895507812, 1536.7642822265625, 1506.6514892578125, 1536.7642822265625, 1506.6514892578125, 1734.9659423828125, 874.6467895507812, 1734.9659423828125], "score": 0.9940656423568726}, {"category_id": 4, "poly": [859.3250122070312, 861.2320556640625, 1569.650634765625, 861.2320556640625, 1569.650634765625, 1033.0804443359375, 859.3250122070312, 1033.0804443359375], "score": 0.985899806022644}, {"category_id": 1, "poly": [861.6172485351562, 1064.186279296875, 1564.036865234375, 1064.186279296875, 1564.036865234375, 1135.5125732421875, 861.6172485351562, 1135.5125732421875], "score": 0.9128350019454956}, {"category_id": 3, "poly": [888.8074340820312, 1163.7965087890625, 1529.8028564453125, 1163.7965087890625, 1529.8028564453125, 1510.91162109375, 888.8074340820312, 1510.91162109375], "score": 0.7896175384521484}, {"category_id": 5, "poly": [900.75146484375, 1161.0631103515625, 1527.15673828125, 1161.0631103515625, 1527.15673828125, 1490.2149658203125, 900.75146484375, 1490.2149658203125], "score": 0.7772396802902222}, {"category_id": 0, "poly": [1178.85791015625, 152.25347900390625, 1284.6339111328125, 152.25347900390625, 1284.6339111328125, 179.1011962890625, 1178.85791015625, 179.1011962890625], "score": 0.5732811689376831}, {"category_id": 4, "poly": [1178.981689453125, 152.21678161621094, 1284.4158935546875, 152.21678161621094, 1284.4158935546875, 179.05447387695312, 1178.981689453125, 179.05447387695312], "score": 0.4503781795501709}, {"category_id": 13, "poly": [1295, 896, 1483, 896, 1483, 931, 1295, 931], "score": 0.93, "latex": "\\{\\pm0,\\pm20,\\pm40\\}"}, {"category_id": 13, "poly": [481, 1919, 534, 1919, 534, 1949, 481, 1949], "score": 0.87, "latex": "\\pm20"}, {"category_id": 13, "poly": [591, 1919, 644, 1919, 644, 1949, 591, 1949], "score": 0.87, "latex": "\\pm40"}, {"category_id": 13, "poly": [1227, 1436, 1253, 1436, 1253, 1459, 1227, 1459], "score": 0.86, "latex": "\\gamma_{c}"}, {"category_id": 13, "poly": [1295, 1436, 1323, 1436, 1323, 1461, 1295, 1461], "score": 0.85, "latex": "\\gamma_{g}"}, {"category_id": 13, "poly": [133, 1588, 186, 1588, 186, 1618, 133, 1618], "score": 0.85, "latex": "\\pm20"}, {"category_id": 13, "poly": [249, 1587, 302, 1587, 302, 1618, 249, 1618], "score": 0.84, "latex": "\\pm40"}, {"category_id": 13, "poly": [787, 1555, 828, 1555, 828, 1585, 787, 1585], "score": 0.82, "latex": "\\pm0"}, {"category_id": 13, "poly": [532, 1421, 572, 1421, 572, 1452, 532, 1452], "score": 0.81, "latex": "3^{\\mathrm{rd}}"}, {"category_id": 13, "poly": [230, 1389, 266, 1389, 266, 1419, 230, 1419], "score": 0.8, "latex": "1^{\\mathrm{st}}"}, {"category_id": 13, "poly": [655, 1986, 675, 1986, 675, 2013, 655, 2013], "score": 0.78, "latex": "\\lambda"}, {"category_id": 13, "poly": [200, 1455, 240, 1455, 240, 1486, 200, 1486], "score": 0.75, "latex": "4^{\\mathrm{th}}"}, {"category_id": 13, "poly": [954, 1255, 980, 1255, 980, 1275, 954, 1275], "score": 0.75, "latex": "\\gamma_{c}"}, {"category_id": 13, "poly": [954, 1281, 980, 1281, 980, 1302, 954, 1302], "score": 0.74, "latex": "\\gamma_{g}"}, {"category_id": 13, "poly": [959, 1227, 976, 1227, 976, 1245, 959, 1245], "score": 0.74, "latex": "\\tau"}, {"category_id": 13, "poly": [960, 1352, 976, 1352, 976, 1372, 960, 1372], "score": 0.72, "latex": "k"}, {"category_id": 13, "poly": [410, 1986, 430, 1986, 430, 2013, 410, 2013], "score": 0.7, "latex": "\\lambda"}, {"category_id": 13, "poly": [955, 1331, 979, 1331, 979, 1351, 955, 1351], "score": 0.7, "latex": "\\gamma_{t}"}, {"category_id": 13, "poly": [1489, 1752, 1510, 1752, 1510, 1778, 1489, 1778], "score": 0.69, "latex": "\\lambda"}, {"category_id": 13, "poly": [1176, 965, 1195, 965, 1195, 992, 1176, 992], "score": 0.69, "latex": "\\lambda"}, {"category_id": 13, "poly": [246, 1421, 289, 1421, 289, 1452, 246, 1452], "score": 0.69, "latex": "2^{\\mathrm{nd}}"}, {"category_id": 13, "poly": [958, 1302, 977, 1302, 977, 1323, 958, 1323], "score": 0.63, "latex": "\\lambda"}, {"category_id": 13, "poly": [959, 1380, 977, 1380, 977, 1397, 959, 1397], "score": 0.58, "latex": "\\alpha"}, {"category_id": 13, "poly": [436, 1621, 455, 1621, 455, 1648, 436, 1648], "score": 0.58, "latex": "\\lambda"}, {"category_id": 13, "poly": [959, 1204, 977, 1204, 977, 1219, 959, 1219], "score": 0.42, "latex": "\\omega"}, {"category_id": 13, "poly": [870, 1592, 890, 1592, 890, 1617, 870, 1617], "score": 0.31, "latex": "\\lambda"}, {"category_id": 15, "poly": [134.0, 160.0, 836.0, 160.0, 836.0, 192.0, 134.0, 192.0], "score": 0.99, "text": "of the synthetic stereo scene from a single camera perspective,"}, {"category_id": 15, "poly": [134.0, 195.0, 838.0, 195.0, 838.0, 227.0, 134.0, 227.0], "score": 0.99, "text": "along with the ground truth disparity, occlusion map, and"}, {"category_id": 15, "poly": [130.0, 222.0, 347.0, 230.0, 346.0, 264.0, 129.0, 256.0], "score": 0.99, "text": "discontinuity map."}, {"category_id": 15, "poly": [155.0, 1517.0, 841.0, 1519.0, 841.0, 1558.0, 155.0, 1556.0], "score": 0.99, "text": " The results of temporal stereo matching are given in Figure"}, {"category_id": 15, "poly": [132.0, 1657.0, 838.0, 1657.0, 838.0, 1689.0, 132.0, 1689.0], "score": 0.99, "text": "stereo matching methods, improvements are negligible when"}, {"category_id": 15, "poly": [132.0, 1691.0, 838.0, 1691.0, 838.0, 1723.0, 132.0, 1723.0], "score": 0.99, "text": "no noise is added to the images [10], [19]. This is largely due"}, {"category_id": 15, "poly": [132.0, 1723.0, 836.0, 1723.0, 836.0, 1753.0, 132.0, 1753.0], "score": 0.98, "text": "to the fact that the video used to evaluate these methods is"}, {"category_id": 15, "poly": [129.0, 1753.0, 838.0, 1751.0, 839.0, 1790.0, 129.0, 1792.0], "score": 0.99, "text": " computer generated with very little noise to start with, thus"}, {"category_id": 15, "poly": [134.0, 1790.0, 836.0, 1790.0, 836.0, 1822.0, 134.0, 1822.0], "score": 0.99, "text": "the noise suppression achieved with temporal stereo matching"}, {"category_id": 15, "poly": [132.0, 1817.0, 839.0, 1822.0, 838.0, 1859.0, 132.0, 1854.0], "score": 0.99, "text": "shows little to no improvement over methods that operate on"}, {"category_id": 15, "poly": [130.0, 1856.0, 319.0, 1859.0, 318.0, 1891.0, 129.0, 1888.0], "score": 0.99, "text": "pairs of images."}, {"category_id": 15, "poly": [187.0, 1590.0, 248.0, 1590.0, 248.0, 1622.0, 187.0, 1622.0], "score": 0.87, "text": ",and"}, {"category_id": 15, "poly": [303.0, 1590.0, 838.0, 1590.0, 838.0, 1622.0, 303.0, 1622.0], "score": 0.98, "text": ". Each performance plot is given as a function"}, {"category_id": 15, "poly": [127.0, 1551.0, 786.0, 1554.0, 786.0, 1593.0, 127.0, 1590.0], "score": 0.98, "text": " 3 for uniform additive noise confined to the ranges of"}, {"category_id": 15, "poly": [134.0, 1622.0, 435.0, 1622.0, 435.0, 1655.0, 134.0, 1655.0], "score": 0.99, "text": "of the feedback coefficient"}, {"category_id": 15, "poly": [456.0, 1622.0, 836.0, 1622.0, 836.0, 1655.0, 456.0, 1655.0], "score": 0.97, "text": ". As with the majority of temporal"}, {"category_id": 15, "poly": [134.0, 1359.0, 834.0, 1359.0, 834.0, 1391.0, 134.0, 1391.0], "score": 0.99, "text": "Figure 2: Two sample frames from the synthetic video se-"}, {"category_id": 15, "poly": [573.0, 1418.0, 836.0, 1421.0, 836.0, 1460.0, 573.0, 1457.0], "score": 1.0, "text": "row), and discontinuity"}, {"category_id": 15, "poly": [134.0, 1393.0, 229.0, 1393.0, 229.0, 1425.0, 134.0, 1425.0], "score": 0.96, "text": "quence ("}, {"category_id": 15, "poly": [267.0, 1393.0, 836.0, 1393.0, 836.0, 1425.0, 267.0, 1425.0], "score": 0.98, "text": "row), along with their corresponding ground truth"}, {"category_id": 15, "poly": [127.0, 1456.0, 199.0, 1450.0, 199.0, 1489.0, 128.0, 1495.0], "score": 0.91, "text": "map ("}, {"category_id": 15, "poly": [241.0, 1456.0, 309.0, 1450.0, 310.0, 1489.0, 241.0, 1495.0], "score": 1.0, "text": "row)."}, {"category_id": 15, "poly": [129.0, 1418.0, 245.0, 1421.0, 245.0, 1460.0, 129.0, 1457.0], "score": 0.93, "text": " disparity "}, {"category_id": 15, "poly": [290.0, 1418.0, 531.0, 1421.0, 531.0, 1460.0, 290.0, 1457.0], "score": 1.0, "text": "row), occlusion map ("}, {"category_id": 15, "poly": [159.0, 1888.0, 836.0, 1888.0, 836.0, 1920.0, 159.0, 1920.0], "score": 0.99, "text": " Significant improvements in accuracy can be seen in Figure"}, {"category_id": 15, "poly": [132.0, 1950.0, 839.0, 1955.0, 838.0, 1987.0, 132.0, 1982.0], "score": 1.0, "text": "the effect of noise in the current frame is reduced by increasing"}, {"category_id": 15, "poly": [134.0, 1920.0, 480.0, 1920.0, 480.0, 1952.0, 134.0, 1952.0], "score": 0.99, "text": "3 when the noise has ranges of"}, {"category_id": 15, "poly": [535.0, 1920.0, 590.0, 1920.0, 590.0, 1952.0, 535.0, 1952.0], "score": 0.92, "text": " and"}, {"category_id": 15, "poly": [645.0, 1920.0, 836.0, 1920.0, 836.0, 1952.0, 645.0, 1952.0], "score": 0.96, "text": ". In this scenario,"}, {"category_id": 15, "poly": [676.0, 1989.0, 838.0, 1989.0, 838.0, 2019.0, 676.0, 2019.0], "score": 0.98, "text": "has the effect"}, {"category_id": 15, "poly": [134.0, 1989.0, 409.0, 1989.0, 409.0, 2019.0, 134.0, 2019.0], "score": 1.0, "text": "the feedback coefficient"}, {"category_id": 15, "poly": [431.0, 1989.0, 654.0, 1989.0, 654.0, 2019.0, 431.0, 2019.0], "score": 0.97, "text": ". This increasing of"}, {"category_id": 15, "poly": [864.0, 1920.0, 1566.0, 1920.0, 1566.0, 1952.0, 864.0, 1952.0], "score": 0.98, "text": "of averaging out noise in the per-pixel costs by selecting"}, {"category_id": 15, "poly": [861.0, 1950.0, 1566.0, 1948.0, 1566.0, 1987.0, 862.0, 1989.0], "score": 0.98, "text": "matches based more heavily upon the auxiliary cost, which"}, {"category_id": 15, "poly": [862.0, 1989.0, 1568.0, 1989.0, 1568.0, 2021.0, 862.0, 2021.0], "score": 0.99, "text": "is essentially a much more stable running average of the cost"}, {"category_id": 15, "poly": [864.0, 1788.0, 1564.0, 1785.0, 1564.0, 1817.0, 864.0, 1820.0], "score": 0.99, "text": "responding to the smallest mean squared error (MSE) of the"}, {"category_id": 15, "poly": [864.0, 1822.0, 1427.0, 1822.0, 1427.0, 1854.0, 864.0, 1854.0], "score": 0.99, "text": "disparity estimates for a range of noise strengths."}, {"category_id": 15, "poly": [862.0, 1748.0, 1488.0, 1753.0, 1488.0, 1785.0, 861.0, 1781.0], "score": 0.99, "text": "Figure 4: Optimal values of the feedback coefficient "}, {"category_id": 15, "poly": [1511.0, 1748.0, 1561.0, 1753.0, 1561.0, 1785.0, 1511.0, 1781.0], "score": 0.96, "text": "cor-"}, {"category_id": 15, "poly": [864.0, 866.0, 1566.0, 866.0, 1566.0, 898.0, 864.0, 898.0], "score": 0.99, "text": "Figure 3: Performance of temporal matching at different levels"}, {"category_id": 15, "poly": [864.0, 935.0, 1566.0, 933.0, 1566.0, 965.0, 864.0, 967.0], "score": 0.98, "text": "squared error (MSE) of disparities is plotted versus the values"}, {"category_id": 15, "poly": [864.0, 1001.0, 1492.0, 1001.0, 1492.0, 1031.0, 864.0, 1031.0], "score": 0.99, "text": "values of MSE obtained without temporal aggregation."}, {"category_id": 15, "poly": [864.0, 901.0, 1294.0, 901.0, 1294.0, 933.0, 864.0, 933.0], "score": 0.99, "text": "of uniformly distributed image noise"}, {"category_id": 15, "poly": [1484.0, 901.0, 1568.0, 901.0, 1568.0, 933.0, 1484.0, 933.0], "score": 0.99, "text": ".Mean"}, {"category_id": 15, "poly": [864.0, 967.0, 1175.0, 967.0, 1175.0, 999.0, 864.0, 999.0], "score": 0.99, "text": "of the feedback coefficient"}, {"category_id": 15, "poly": [1196.0, 967.0, 1568.0, 967.0, 1568.0, 999.0, 1196.0, 999.0], "score": 0.99, "text": ". Dashed lines correspond to the"}, {"category_id": 15, "poly": [857.0, 1061.0, 1566.0, 1068.0, 1566.0, 1107.0, 857.0, 1100.0], "score": 0.99, "text": " Table I: Parameters used in the evaluation of real-time tempo-"}, {"category_id": 15, "poly": [859.0, 1102.0, 1093.0, 1105.0, 1092.0, 1137.0, 859.0, 1134.0], "score": 1.0, "text": "ral stereo matching."}, {"category_id": 15, "poly": [1178.0, 151.0, 1282.0, 151.0, 1282.0, 186.0, 1178.0, 186.0], "score": 1.0, "text": "Noise: \u00b10"}, {"category_id": 15, "poly": [1178.0, 151.0, 1282.0, 151.0, 1282.0, 186.0, 1178.0, 186.0], "score": 1.0, "text": "Noise: \u00b10"}], "page_info": {"page_no": 3, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 5, "poly": [880.81298828125, 613.750244140625, 1552.5638427734375, 613.750244140625, 1552.5638427734375, 855.9174194335938, 880.81298828125, 855.9174194335938], "score": 0.9999957084655762}, {"category_id": 1, "poly": [862.7925415039062, 158.05548095703125, 1569.6671142578125, 158.05548095703125, 1569.6671142578125, 456.6153869628906, 862.7925415039062, 456.6153869628906], "score": 0.9999922513961792}, {"category_id": 1, "poly": [864.6585083007812, 1061.7374267578125, 1570.4825439453125, 1061.7374267578125, 1570.4825439453125, 1459.7132568359375, 864.6585083007812, 1459.7132568359375], "score": 0.9999921321868896}, {"category_id": 1, "poly": [130.64285278320312, 1519.7022705078125, 836.2221069335938, 1519.7022705078125, 836.2221069335938, 1882.68359375, 130.64285278320312, 1882.68359375], "score": 0.9999898672103882}, {"category_id": 1, "poly": [133.1135711669922, 158.4307861328125, 837.9683837890625, 158.4307861328125, 837.9683837890625, 323.343017578125, 133.1135711669922, 323.343017578125], "score": 0.9999892115592957}, {"category_id": 4, "poly": [132.3511199951172, 1347.8763427734375, 839.7514038085938, 1347.8763427734375, 839.7514038085938, 1476.9757080078125, 132.3511199951172, 1476.9757080078125], "score": 0.9999880790710449}, {"category_id": 7, "poly": [887.6280517578125, 860.9362182617188, 1551.5972900390625, 860.9362182617188, 1551.5972900390625, 964.0142211914062, 887.6280517578125, 964.0142211914062], "score": 0.9999836683273315}, {"category_id": 1, "poly": [869.9986572265625, 1514.7762451171875, 1571.624755859375, 1514.7762451171875, 1571.624755859375, 2022.618896484375, 869.9986572265625, 2022.618896484375], "score": 0.9999811053276062}, {"category_id": 3, "poly": [164.82151794433594, 352.74810791015625, 805.8219604492188, 352.74810791015625, 805.8219604492188, 1320.43310546875, 164.82151794433594, 1320.43310546875], "score": 0.9999799728393555}, {"category_id": 0, "poly": [1137.668701171875, 1477.0120849609375, 1293.498046875, 1477.0120849609375, 1293.498046875, 1502.5439453125, 1137.668701171875, 1502.5439453125], "score": 0.9999679327011108}, {"category_id": 1, "poly": [133.0285186767578, 1886.7501220703125, 837.0147705078125, 1886.7501220703125, 837.0147705078125, 2018.0294189453125, 133.0285186767578, 2018.0294189453125], "score": 0.9999630451202393}, {"category_id": 0, "poly": [1114.8399658203125, 1022.4933471679688, 1317.0313720703125, 1022.4933471679688, 1317.0313720703125, 1052.679931640625, 1114.8399658203125, 1052.679931640625], "score": 0.9999338984489441}, {"category_id": 1, "poly": [862.0576171875, 480.8196105957031, 1565.8367919921875, 480.8196105957031, 1565.8367919921875, 577.5508422851562, 862.0576171875, 577.5508422851562], "score": 0.8958550691604614}, {"category_id": 6, "poly": [862.0606079101562, 480.7809753417969, 1565.667724609375, 480.7809753417969, 1565.667724609375, 577.4689331054688, 862.0606079101562, 577.4689331054688], "score": 0.4145430028438568}, {"category_id": 13, "poly": [736, 1445, 827, 1445, 827, 1475, 736, 1475], "score": 0.9, "latex": "\\lambda=0.8"}, {"category_id": 13, "poly": [1003, 887, 1105, 887, 1105, 911, 1003, 911], "score": 0.89, "latex": "320\\times240"}, {"category_id": 13, "poly": [338, 1446, 391, 1446, 391, 1475, 338, 1475], "score": 0.87, "latex": "\\pm30"}, {"category_id": 13, "poly": [166, 1619, 219, 1619, 219, 1649, 166, 1649], "score": 0.85, "latex": "\\pm40"}, {"category_id": 13, "poly": [301, 196, 329, 196, 329, 224, 301, 224], "score": 0.84, "latex": "\\gamma_{t}"}, {"category_id": 13, "poly": [795, 1586, 836, 1586, 836, 1616, 795, 1616], "score": 0.84, "latex": "\\pm0"}, {"category_id": 13, "poly": [1037, 939, 1059, 939, 1059, 960, 1037, 960], "score": 0.83, "latex": "\\%"}, {"category_id": 13, "poly": [462, 1586, 482, 1586, 482, 1613, 462, 1613], "score": 0.78, "latex": "\\lambda"}, {"category_id": 15, "poly": [862.0, 160.0, 1571.0, 160.0, 1571.0, 192.0, 862.0, 192.0], "score": 0.98, "text": "the proposed implementation achieves the highest speed of"}, {"category_id": 15, "poly": [864.0, 195.0, 1566.0, 195.0, 1566.0, 227.0, 864.0, 227.0], "score": 0.99, "text": "operation measured by the number of disparity hypotheses"}, {"category_id": 15, "poly": [864.0, 227.0, 1568.0, 227.0, 1568.0, 259.0, 864.0, 259.0], "score": 0.99, "text": "evaluated per second, as shown in Table I1. It is also the second"}, {"category_id": 15, "poly": [862.0, 261.0, 1568.0, 261.0, 1568.0, 293.0, 862.0, 293.0], "score": 0.99, "text": "most accurate real-time method in terms of error rate, as"}, {"category_id": 15, "poly": [864.0, 296.0, 1564.0, 296.0, 1564.0, 325.0, 864.0, 325.0], "score": 1.0, "text": "measured using the Middlebury stereo evaluation benchmark."}, {"category_id": 15, "poly": [859.0, 323.0, 1568.0, 325.0, 1568.0, 358.0, 859.0, 355.0], "score": 0.98, "text": " It should be noted that it is difficult to establish an unbiased"}, {"category_id": 15, "poly": [862.0, 358.0, 1566.0, 358.0, 1566.0, 390.0, 862.0, 390.0], "score": 1.0, "text": "metric for speed comparisons, as the architecture, number of"}, {"category_id": 15, "poly": [866.0, 394.0, 1568.0, 394.0, 1568.0, 426.0, 866.0, 426.0], "score": 0.98, "text": "cores, and clock speed of graphics hardware used are not"}, {"category_id": 15, "poly": [862.0, 424.0, 1259.0, 429.0, 1259.0, 461.0, 861.0, 456.0], "score": 0.99, "text": "consistent across implementations."}, {"category_id": 15, "poly": [889.0, 1061.0, 1571.0, 1061.0, 1571.0, 1100.0, 889.0, 1100.0], "score": 1.0, "text": "While the majority of stereo matching algorithms focus"}, {"category_id": 15, "poly": [859.0, 1093.0, 1571.0, 1095.0, 1571.0, 1134.0, 859.0, 1132.0], "score": 0.99, "text": " on achieving high accuracy on still images, the volume of"}, {"category_id": 15, "poly": [862.0, 1130.0, 1564.0, 1130.0, 1564.0, 1162.0, 862.0, 1162.0], "score": 0.99, "text": "research aimed at recovery of temporally consistent disparity"}, {"category_id": 15, "poly": [862.0, 1162.0, 1568.0, 1162.0, 1568.0, 1201.0, 862.0, 1201.0], "score": 0.99, "text": "maps remains disproportionally small. This paper introduces"}, {"category_id": 15, "poly": [862.0, 1196.0, 1568.0, 1196.0, 1568.0, 1235.0, 862.0, 1235.0], "score": 0.98, "text": "an efficient temporal cost aggregation scheme that can easily"}, {"category_id": 15, "poly": [859.0, 1226.0, 1571.0, 1228.0, 1571.0, 1267.0, 859.0, 1265.0], "score": 0.99, "text": "be combined with conventional spatial cost aggregation to"}, {"category_id": 15, "poly": [864.0, 1265.0, 1568.0, 1265.0, 1568.0, 1297.0, 864.0, 1297.0], "score": 1.0, "text": "improve the accuracy of stereo matching when operating on"}, {"category_id": 15, "poly": [864.0, 1297.0, 1568.0, 1297.0, 1568.0, 1329.0, 864.0, 1329.0], "score": 0.99, "text": "video sequences. A synthetic video sequence, along with"}, {"category_id": 15, "poly": [864.0, 1331.0, 1568.0, 1331.0, 1568.0, 1364.0, 864.0, 1364.0], "score": 0.99, "text": "ground truth disparity data, was generated to evaluate the"}, {"category_id": 15, "poly": [862.0, 1361.0, 1571.0, 1361.0, 1571.0, 1400.0, 862.0, 1400.0], "score": 0.98, "text": "performance of the proposed method. It was shown that"}, {"category_id": 15, "poly": [864.0, 1398.0, 1571.0, 1398.0, 1571.0, 1430.0, 864.0, 1430.0], "score": 0.98, "text": "temporal aggregation is significantly more robust to noise than"}, {"category_id": 15, "poly": [862.0, 1430.0, 1497.0, 1430.0, 1497.0, 1462.0, 862.0, 1462.0], "score": 0.99, "text": "a method that only considers the current stereo frames."}, {"category_id": 15, "poly": [157.0, 1517.0, 838.0, 1517.0, 838.0, 1556.0, 157.0, 1556.0], "score": 0.99, "text": "The optimal value of the feedback coefficient is largely"}, {"category_id": 15, "poly": [134.0, 1554.0, 836.0, 1554.0, 836.0, 1584.0, 134.0, 1584.0], "score": 0.97, "text": "dependent on the noise being added to the image. Figure 4"}, {"category_id": 15, "poly": [132.0, 1655.0, 838.0, 1655.0, 838.0, 1684.0, 132.0, 1684.0], "score": 0.99, "text": "rely on the auxiliary cost when noise is high and it is more"}, {"category_id": 15, "poly": [132.0, 1684.0, 839.0, 1689.0, 838.0, 1721.0, 132.0, 1716.0], "score": 0.98, "text": "beneficial to rely on the current cost when noise is low. Figure"}, {"category_id": 15, "poly": [132.0, 1719.0, 839.0, 1723.0, 838.0, 1755.0, 132.0, 1751.0], "score": 1.0, "text": "5 illustrates the improvements that are achieved when applying"}, {"category_id": 15, "poly": [134.0, 1755.0, 836.0, 1755.0, 836.0, 1785.0, 134.0, 1785.0], "score": 0.98, "text": "temporal stereo matching to a particular pair of frames in the"}, {"category_id": 15, "poly": [134.0, 1788.0, 834.0, 1788.0, 834.0, 1820.0, 134.0, 1820.0], "score": 1.0, "text": "synthetic video sequence. Clearly, the noise in the disparity"}, {"category_id": 15, "poly": [134.0, 1822.0, 836.0, 1822.0, 836.0, 1854.0, 134.0, 1854.0], "score": 0.99, "text": "map is drastically reduced when temporal stereo matching is"}, {"category_id": 15, "poly": [132.0, 1856.0, 196.0, 1856.0, 196.0, 1886.0, 132.0, 1886.0], "score": 1.0, "text": "used."}, {"category_id": 15, "poly": [132.0, 1620.0, 165.0, 1620.0, 165.0, 1652.0, 132.0, 1652.0], "score": 0.99, "text": "to"}, {"category_id": 15, "poly": [220.0, 1620.0, 838.0, 1620.0, 838.0, 1652.0, 220.0, 1652.0], "score": 0.98, "text": ". As intuition would suggest, it is more beneficial to"}, {"category_id": 15, "poly": [127.0, 1584.0, 461.0, 1581.0, 461.0, 1620.0, 127.0, 1623.0], "score": 0.96, "text": " shows the optimal values of"}, {"category_id": 15, "poly": [483.0, 1584.0, 794.0, 1581.0, 794.0, 1620.0, 483.0, 1623.0], "score": 0.99, "text": "for noise ranging between"}, {"category_id": 15, "poly": [134.0, 160.0, 836.0, 160.0, 836.0, 192.0, 134.0, 192.0], "score": 0.99, "text": "over the most recent frames. By maintaining a reasonably"}, {"category_id": 15, "poly": [134.0, 229.0, 836.0, 229.0, 836.0, 261.0, 134.0, 261.0], "score": 0.98, "text": "edges, essentially reducing over-smoothing of a pixel's dis-"}, {"category_id": 15, "poly": [132.0, 261.0, 838.0, 261.0, 838.0, 293.0, 132.0, 293.0], "score": 0.99, "text": "parity when a pixel transitions from one depth to another in"}, {"category_id": 15, "poly": [130.0, 293.0, 354.0, 296.0, 353.0, 328.0, 129.0, 325.0], "score": 1.0, "text": "subsequent frames."}, {"category_id": 15, "poly": [134.0, 192.0, 300.0, 192.0, 300.0, 225.0, 134.0, 225.0], "score": 0.93, "text": "high value of"}, {"category_id": 15, "poly": [330.0, 192.0, 836.0, 192.0, 836.0, 225.0, 330.0, 225.0], "score": 0.99, "text": ", the auxiliary cost also preserves temporal"}, {"category_id": 15, "poly": [132.0, 1345.0, 836.0, 1348.0, 836.0, 1382.0, 132.0, 1380.0], "score": 1.0, "text": "Figure 5: A comparison of stereo matching without temporal"}, {"category_id": 15, "poly": [132.0, 1382.0, 834.0, 1382.0, 834.0, 1414.0, 132.0, 1414.0], "score": 0.98, "text": "cost aggregation (top\uff09 and with temporal cost aggregation"}, {"category_id": 15, "poly": [134.0, 1416.0, 836.0, 1416.0, 836.0, 1446.0, 134.0, 1446.0], "score": 0.98, "text": "(bottom) for a single frame in the synthetic video sequence"}, {"category_id": 15, "poly": [134.0, 1448.0, 337.0, 1446.0, 337.0, 1478.0, 134.0, 1480.0], "score": 0.98, "text": "where the noise is"}, {"category_id": 15, "poly": [392.0, 1448.0, 735.0, 1446.0, 735.0, 1478.0, 392.0, 1480.0], "score": 0.99, "text": "and the feedback coefficient is"}, {"category_id": 15, "poly": [896.0, 855.0, 1324.0, 857.0, 1323.0, 896.0, 896.0, 894.0], "score": 0.95, "text": "1I Millions of Disparity Estimates per Second."}, {"category_id": 15, "poly": [903.0, 912.0, 1550.0, 912.0, 1550.0, 944.0, 903.0, 944.0], "score": 0.99, "text": "3 As measured by the Middlebury stereo performance benchmark using"}, {"category_id": 15, "poly": [901.0, 887.0, 1002.0, 887.0, 1002.0, 919.0, 901.0, 919.0], "score": 0.99, "text": "2Assumes"}, {"category_id": 15, "poly": [1106.0, 887.0, 1404.0, 887.0, 1404.0, 919.0, 1106.0, 919.0], "score": 0.98, "text": "images with 32 disparity levels."}, {"category_id": 15, "poly": [915.0, 937.0, 1036.0, 937.0, 1036.0, 969.0, 915.0, 969.0], "score": 0.96, "text": "the avgerage"}, {"category_id": 15, "poly": [1060.0, 937.0, 1192.0, 937.0, 1192.0, 969.0, 1060.0, 969.0], "score": 0.96, "text": "of bad pixels."}, {"category_id": 15, "poly": [873.0, 1515.0, 1571.0, 1515.0, 1571.0, 1545.0, 873.0, 1545.0], "score": 0.97, "text": "[1] D. Scharstein and R. Szeliski, \u201cA taxonomy and evaluation of dense "}, {"category_id": 15, "poly": [915.0, 1542.0, 1573.0, 1542.0, 1573.0, 1572.0, 915.0, 1572.0], "score": 0.98, "text": "two-frame stereo correspondence algorithms\u201d\u2019 International Journal of"}, {"category_id": 15, "poly": [915.0, 1565.0, 1409.0, 1565.0, 1409.0, 1597.0, 915.0, 1597.0], "score": 0.98, "text": "Computer Vision, vol. 47, pp. 7-42, April-June 2002."}, {"category_id": 15, "poly": [871.0, 1588.0, 1568.0, 1590.0, 1568.0, 1623.0, 871.0, 1620.0], "score": 0.98, "text": "[2] D. Scharstein and R. Szeliski, \u201cHigh-accuracy stereo depth maps using"}, {"category_id": 15, "poly": [915.0, 1616.0, 1568.0, 1616.0, 1568.0, 1648.0, 915.0, 1648.0], "score": 0.97, "text": "structured light,\u201d in In IEEE Computer Society Conference on Computer"}, {"category_id": 15, "poly": [915.0, 1641.0, 1508.0, 1641.0, 1508.0, 1673.0, 915.0, 1673.0], "score": 0.98, "text": "Vision and Pattern Recognition, vol. 1, pp. 195-202, June 2003."}, {"category_id": 15, "poly": [873.0, 1666.0, 1568.0, 1666.0, 1568.0, 1696.0, 873.0, 1696.0], "score": 0.99, "text": "[3] J. Kowalczuk, E. Psota, and L. Perez, \u201cReal-time stereo matching on"}, {"category_id": 15, "poly": [912.0, 1689.0, 1571.0, 1689.0, 1571.0, 1721.0, 912.0, 1721.0], "score": 0.98, "text": " CUDA using an iterative refinement method for adaptive support-weight"}, {"category_id": 15, "poly": [915.0, 1714.0, 1571.0, 1714.0, 1571.0, 1746.0, 915.0, 1746.0], "score": 0.99, "text": "correspondences,\u201d Circuits and Systems for Video Technology, IEEE"}, {"category_id": 15, "poly": [908.0, 1737.0, 1374.0, 1735.0, 1374.0, 1774.0, 908.0, 1776.0], "score": 0.96, "text": "Transactions on, vol. 23, Ppp. 94 -104, Jan. 2013."}, {"category_id": 15, "poly": [873.0, 1765.0, 1568.0, 1765.0, 1568.0, 1797.0, 873.0, 1797.0], "score": 0.99, "text": "[4] K.-J. Yoon and I.-S. Kweon, Locally adaptive support-weight approach"}, {"category_id": 15, "poly": [912.0, 1790.0, 1571.0, 1790.0, 1571.0, 1822.0, 912.0, 1822.0], "score": 0.97, "text": "for visual correspondence search,' in CVPR'05: Proceedings of the 2005"}, {"category_id": 15, "poly": [915.0, 1815.0, 1571.0, 1815.0, 1571.0, 1847.0, 915.0, 1847.0], "score": 0.96, "text": "IEEE Computer Society Conference on ComputerVision andPattern"}, {"category_id": 15, "poly": [915.0, 1840.0, 1568.0, 1840.0, 1568.0, 1872.0, 915.0, 1872.0], "score": 0.97, "text": "Recognition (CVPR'05) - Volume 2, (Washington, DC, USA), Pp. 924-"}, {"category_id": 15, "poly": [912.0, 1863.0, 1247.0, 1863.0, 1247.0, 1895.0, 912.0, 1895.0], "score": 0.98, "text": "931, IEEE Computer Society, 2005."}, {"category_id": 15, "poly": [873.0, 1891.0, 1568.0, 1891.0, 1568.0, 1923.0, 873.0, 1923.0], "score": 0.97, "text": "[5] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, \u201cHigh-quality real-"}, {"category_id": 15, "poly": [912.0, 1916.0, 1566.0, 1916.0, 1566.0, 1946.0, 912.0, 1946.0], "score": 0.99, "text": "time stereo using adaptive cost aggregation and dynamic programming,\""}, {"category_id": 15, "poly": [910.0, 1936.0, 1568.0, 1939.0, 1568.0, 1971.0, 910.0, 1969.0], "score": 0.94, "text": "in 3DPVT'06:Proceedings of the Third International Symposium"}, {"category_id": 15, "poly": [915.0, 1964.0, 1568.0, 1964.0, 1568.0, 1996.0, 915.0, 1996.0], "score": 0.98, "text": "on 3D Data Processing, Visualization, and Transmission (3DPVT'06),"}, {"category_id": 15, "poly": [915.0, 1989.0, 1564.0, 1989.0, 1564.0, 2021.0, 915.0, 2021.0], "score": 1.0, "text": "(Washington, DC, USA), Pp. 798-805, IEEE Computer Society, 2006."}, {"category_id": 15, "poly": [1134.0, 1471.0, 1296.0, 1471.0, 1296.0, 1510.0, 1134.0, 1510.0], "score": 1.0, "text": "REFERENCES"}, {"category_id": 15, "poly": [159.0, 1888.0, 836.0, 1888.0, 836.0, 1920.0, 159.0, 1920.0], "score": 0.99, "text": "The algorithm was implement using NVIDIA's Compute"}, {"category_id": 15, "poly": [134.0, 1920.0, 834.0, 1920.0, 834.0, 1950.0, 134.0, 1950.0], "score": 0.98, "text": "Unified Device Architecture (CUDA). The details of the im-"}, {"category_id": 15, "poly": [129.0, 1948.0, 841.0, 1950.0, 841.0, 1989.0, 129.0, 1987.0], "score": 0.98, "text": " plementation are similar to those given in [3]. When compared "}, {"category_id": 15, "poly": [132.0, 1989.0, 836.0, 1989.0, 836.0, 2021.0, 132.0, 2021.0], "score": 0.99, "text": "to other existing real-time stereo matching implementations,"}, {"category_id": 15, "poly": [1111.0, 1022.0, 1317.0, 1022.0, 1317.0, 1061.0, 1111.0, 1061.0], "score": 1.0, "text": "V. CONCLUSION"}, {"category_id": 15, "poly": [864.0, 484.0, 1564.0, 484.0, 1564.0, 516.0, 864.0, 516.0], "score": 0.99, "text": "Table II: A comparison of speed and accuracy for the imple-"}, {"category_id": 15, "poly": [864.0, 518.0, 1564.0, 518.0, 1564.0, 550.0, 864.0, 550.0], "score": 0.99, "text": "mentations of many leading real-time stereo matching meth-"}, {"category_id": 15, "poly": [862.0, 550.0, 917.0, 550.0, 917.0, 584.0, 862.0, 584.0], "score": 0.96, "text": "ods."}, {"category_id": 15, "poly": [864.0, 484.0, 1564.0, 484.0, 1564.0, 516.0, 864.0, 516.0], "score": 0.99, "text": "Table II: A comparison of speed and accuracy for the imple-"}, {"category_id": 15, "poly": [864.0, 518.0, 1564.0, 518.0, 1564.0, 550.0, 864.0, 550.0], "score": 0.99, "text": "mentations of many leading real-time stereo matching meth-"}, {"category_id": 15, "poly": [862.0, 550.0, 917.0, 550.0, 917.0, 584.0, 862.0, 584.0], "score": 0.96, "text": "ods."}], "page_info": {"page_no": 4, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 1, "poly": [134.58497619628906, 157.681884765625, 841.3460693359375, 157.681884765625, 841.3460693359375, 1666.27001953125, 134.58497619628906, 1666.27001953125], "score": 0.9999936819076538}, {"category_id": 15, "poly": [143.0, 163.0, 838.0, 163.0, 838.0, 192.0, 143.0, 192.0], "score": 0.97, "text": "[6] W. Yu, T. Chen, F. Franchetti, and J. C. Hoe, \u201cHigh performance stereo"}, {"category_id": 15, "poly": [182.0, 188.0, 838.0, 188.0, 838.0, 218.0, 182.0, 218.0], "score": 0.98, "text": "vision designed for massively data parallel platforms,\u2019 Circuits and"}, {"category_id": 15, "poly": [182.0, 213.0, 841.0, 213.0, 841.0, 245.0, 182.0, 245.0], "score": 0.98, "text": "Systems for Video Technology, IEEE Transactions on, vol. 20, pp. 1509"}, {"category_id": 15, "poly": [182.0, 238.0, 411.0, 238.0, 411.0, 268.0, 182.0, 268.0], "score": 0.98, "text": "-1519, November 2010."}, {"category_id": 15, "poly": [143.0, 264.0, 838.0, 264.0, 838.0, 293.0, 143.0, 293.0], "score": 0.99, "text": "[7] S. Mattoccia, M. Viti, and F. Ries, \u201cNear real-time fast bilateral stereo"}, {"category_id": 15, "poly": [182.0, 289.0, 838.0, 289.0, 838.0, 319.0, 182.0, 319.0], "score": 0.96, "text": "on the GPU in Computer Vision and Pattern Recognition Workshops"}, {"category_id": 15, "poly": [178.0, 307.0, 841.0, 309.0, 841.0, 348.0, 178.0, 346.0], "score": 0.95, "text": "(CVPRW), 2011 IEEE Computer Society Conference on,Ppp. 136 -143,"}, {"category_id": 15, "poly": [185.0, 339.0, 289.0, 339.0, 289.0, 364.0, 185.0, 364.0], "score": 0.98, "text": "June 2011."}, {"category_id": 15, "poly": [141.0, 362.0, 838.0, 362.0, 838.0, 392.0, 141.0, 392.0], "score": 0.98, "text": "[8] K. Zhang, J. Lu, Q. Yang, G. Lafruit, R. Lauwereins, and L. Van Gool,"}, {"category_id": 15, "poly": [182.0, 387.0, 838.0, 387.0, 838.0, 419.0, 182.0, 419.0], "score": 0.98, "text": "\"Real-time and accurate stereo: A scalable approach with bitwise fast"}, {"category_id": 15, "poly": [185.0, 412.0, 838.0, 412.0, 838.0, 445.0, 185.0, 445.0], "score": 0.97, "text": "voting on CUDA,\u201d Circuits and Systems for Video Technology, IEEE"}, {"category_id": 15, "poly": [182.0, 438.0, 656.0, 438.0, 656.0, 468.0, 182.0, 468.0], "score": 0.99, "text": "Transactions on, vol. 21, pp. 867 -878, July 2011."}, {"category_id": 15, "poly": [141.0, 463.0, 838.0, 463.0, 838.0, 493.0, 141.0, 493.0], "score": 0.96, "text": "[9] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, \u201cFast cost-"}, {"category_id": 15, "poly": [182.0, 488.0, 838.0, 488.0, 838.0, 518.0, 182.0, 518.0], "score": 0.98, "text": "volume filtering for visual correspondence and beyond,\" in Computer"}, {"category_id": 15, "poly": [180.0, 509.0, 841.0, 511.0, 841.0, 543.0, 180.0, 541.0], "score": 0.95, "text": "Vision and Pattern Recognition (CVPR), 20ll IEEE Conference on,"}, {"category_id": 15, "poly": [180.0, 536.0, 448.0, 534.0, 448.0, 566.0, 180.0, 568.0], "score": 0.99, "text": "Pp. 3017 -3024, June 2011."}, {"category_id": 15, "poly": [134.0, 561.0, 838.0, 561.0, 838.0, 591.0, 134.0, 591.0], "score": 0.99, "text": "[10] A. Hosni, C. Rhemann, M. Bleyer, and M. Gelautz, \u201cTemporally con-"}, {"category_id": 15, "poly": [180.0, 587.0, 836.0, 587.0, 836.0, 616.0, 180.0, 616.0], "score": 0.99, "text": " sistent disparity and optical flow via efficient spatio-temporal filtering,\""}, {"category_id": 15, "poly": [182.0, 612.0, 838.0, 612.0, 838.0, 642.0, 182.0, 642.0], "score": 0.97, "text": "in Advances in Image and Video Technology (Y.-S. Ho, ed.), vol. 7087"}, {"category_id": 15, "poly": [180.0, 632.0, 845.0, 632.0, 845.0, 671.0, 180.0, 671.0], "score": 0.88, "text": "of Lectureotes inComputer Science,pp.16517,Springererlin /"}, {"category_id": 15, "poly": [182.0, 660.0, 353.0, 660.0, 353.0, 692.0, 182.0, 692.0], "score": 1.0, "text": "Heidelberg, 2012."}, {"category_id": 15, "poly": [134.0, 685.0, 838.0, 685.0, 838.0, 717.0, 134.0, 717.0], "score": 0.98, "text": "[11] C. Tomasi and R. Manduchi, \u201cBilateral filtering for gray and color"}, {"category_id": 15, "poly": [182.0, 710.0, 838.0, 710.0, 838.0, 742.0, 182.0, 742.0], "score": 0.98, "text": "images,\u201d in Computer Vision, 1998. Sixth International Conference on,"}, {"category_id": 15, "poly": [180.0, 736.0, 411.0, 731.0, 411.0, 763.0, 181.0, 768.0], "score": 0.93, "text": "pPp. 839 -846, jan 1998."}, {"category_id": 15, "poly": [132.0, 761.0, 838.0, 761.0, 838.0, 791.0, 132.0, 791.0], "score": 0.97, "text": "[12] K. He, J. Sun, and X. Tang, \u201cGuided image filtering,\u201d\u2019 in Computer"}, {"category_id": 15, "poly": [180.0, 784.0, 838.0, 786.0, 838.0, 818.0, 180.0, 816.0], "score": 0.98, "text": "Vision - ECCV 2010, vol. 6311 of Lecture Notes in Computer Science,"}, {"category_id": 15, "poly": [180.0, 811.0, 607.0, 807.0, 608.0, 839.0, 180.0, 843.0], "score": 0.98, "text": "pp. 1-14, Springer Berlin / Heidelberg, 2010."}, {"category_id": 15, "poly": [129.0, 832.0, 839.0, 837.0, 838.0, 869.0, 129.0, 864.0], "score": 0.98, "text": "[13] L. Zhang, B. Curless, and S. M. Seitz, \u201cSpacetime stereo: Shape"}, {"category_id": 15, "poly": [182.0, 862.0, 836.0, 862.0, 836.0, 891.0, 182.0, 891.0], "score": 0.98, "text": "recovery for dynamic scenes,\u201d in IEEE Computer Society Conference"}, {"category_id": 15, "poly": [182.0, 885.0, 834.0, 885.0, 834.0, 917.0, 182.0, 917.0], "score": 0.97, "text": "on Computer Vision and Pattern Recognition, pp. 367-374, June 2003."}, {"category_id": 15, "poly": [132.0, 910.0, 838.0, 910.0, 838.0, 940.0, 132.0, 940.0], "score": 0.98, "text": "[14] J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, \u201cSpacetime"}, {"category_id": 15, "poly": [182.0, 935.0, 838.0, 935.0, 838.0, 965.0, 182.0, 965.0], "score": 0.97, "text": "stereo: a unifying framework for depth from triangulation,\u201d\u2019 Pattern"}, {"category_id": 15, "poly": [182.0, 960.0, 838.0, 960.0, 838.0, 990.0, 182.0, 990.0], "score": 0.98, "text": "Analysis and Machine Intelligence, IEEE Transactions on,vol. 27,"}, {"category_id": 15, "poly": [180.0, 983.0, 462.0, 983.0, 462.0, 1015.0, 180.0, 1015.0], "score": 0.97, "text": "Pp. 296 -302, February 2005."}, {"category_id": 15, "poly": [132.0, 1011.0, 838.0, 1011.0, 838.0, 1040.0, 132.0, 1040.0], "score": 0.99, "text": "[15] E. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs, \u201cTemporally"}, {"category_id": 15, "poly": [182.0, 1036.0, 836.0, 1036.0, 836.0, 1066.0, 182.0, 1066.0], "score": 0.99, "text": "consistent reconstruction from multiple video streams using enhanced"}, {"category_id": 15, "poly": [178.0, 1054.0, 843.0, 1056.0, 843.0, 1095.0, 178.0, 1093.0], "score": 0.95, "text": "belief propagation in Computer Vision, 2007.ICCV 2007. IEEE1lth"}, {"category_id": 15, "poly": [180.0, 1082.0, 644.0, 1082.0, 644.0, 1121.0, 180.0, 1121.0], "score": 0.97, "text": "International Conference on, pp. 1 -8, oct. 2007."}, {"category_id": 15, "poly": [134.0, 1109.0, 838.0, 1109.0, 838.0, 1141.0, 134.0, 1141.0], "score": 0.97, "text": "[16] M. Bleyer, M. Gelautz, C. Rother, and C. Rhemann, \u201c\"A stereo approach"}, {"category_id": 15, "poly": [180.0, 1134.0, 838.0, 1134.0, 838.0, 1166.0, 180.0, 1166.0], "score": 0.99, "text": "that handles the mating problem via image warping\" in Computer"}, {"category_id": 15, "poly": [182.0, 1157.0, 838.0, 1157.0, 838.0, 1189.0, 182.0, 1189.0], "score": 0.98, "text": "Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference"}, {"category_id": 15, "poly": [180.0, 1183.0, 459.0, 1175.0, 460.0, 1212.0, 181.0, 1219.0], "score": 0.98, "text": "on, pp. 501 -508, June 2009."}, {"category_id": 15, "poly": [129.0, 1205.0, 838.0, 1208.0, 838.0, 1240.0, 129.0, 1237.0], "score": 0.98, "text": " [17] M. Sizintsev and R. Wildes, \u201cSpatiotemporal stereo via spatiotemporal"}, {"category_id": 15, "poly": [182.0, 1235.0, 838.0, 1235.0, 838.0, 1265.0, 182.0, 1265.0], "score": 0.97, "text": "quadric element (stequel) matching,\u201d in Computer Vision and Pattern"}, {"category_id": 15, "poly": [185.0, 1258.0, 841.0, 1258.0, 841.0, 1290.0, 185.0, 1290.0], "score": 0.98, "text": "Recognition, 2009. CVPR 2009. IEEE Conference on, Pp. 493 -500,"}, {"category_id": 15, "poly": [185.0, 1286.0, 286.0, 1286.0, 286.0, 1311.0, 185.0, 1311.0], "score": 0.99, "text": "june 2009."}, {"category_id": 15, "poly": [132.0, 1309.0, 838.0, 1309.0, 838.0, 1338.0, 132.0, 1338.0], "score": 0.97, "text": "[18] M. Sizintsev and R. Wildes, \u201cSpatiotemporal stereo and scene flow via"}, {"category_id": 15, "poly": [182.0, 1334.0, 841.0, 1334.0, 841.0, 1364.0, 182.0, 1364.0], "score": 0.97, "text": "stequel matching,\u201d\u2019Pattern Analysis and Machine Intelligence, IEEE"}, {"category_id": 15, "poly": [182.0, 1359.0, 684.0, 1359.0, 684.0, 1391.0, 182.0, 1391.0], "score": 1.0, "text": "Transactions on, vol. 34, pp. 1206 -1219, june 2012."}, {"category_id": 15, "poly": [132.0, 1382.0, 834.0, 1382.0, 834.0, 1412.0, 132.0, 1412.0], "score": 0.98, "text": "[19] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. A. Dodgson,"}, {"category_id": 15, "poly": [185.0, 1409.0, 838.0, 1409.0, 838.0, 1441.0, 185.0, 1441.0], "score": 0.98, "text": "\"Real-time spatiotemporal stereo matching using the dual-cross-bilateral"}, {"category_id": 15, "poly": [182.0, 1432.0, 838.0, 1432.0, 838.0, 1464.0, 182.0, 1464.0], "score": 0.95, "text": "grid,\" in Proceedings of the European Conference on Computer Vision"}, {"category_id": 15, "poly": [182.0, 1458.0, 838.0, 1458.0, 838.0, 1490.0, 182.0, 1490.0], "score": 0.98, "text": "(ECCV), Lecture Notes in Computer Science, pp. 510-523, September"}, {"category_id": 15, "poly": [182.0, 1477.0, 243.0, 1483.0, 241.0, 1511.0, 179.0, 1505.0], "score": 1.0, "text": "2010."}, {"category_id": 15, "poly": [134.0, 1508.0, 836.0, 1508.0, 836.0, 1538.0, 134.0, 1538.0], "score": 0.98, "text": "[20] S. Paris and F. Durand, \u201cA fast approximation of the bilateral filter using"}, {"category_id": 15, "poly": [182.0, 1533.0, 836.0, 1533.0, 836.0, 1565.0, 182.0, 1565.0], "score": 0.98, "text": "a signal processing approach,\u201d Int. J. Comput. Vision, vol. 81, pp. 24-52,"}, {"category_id": 15, "poly": [185.0, 1561.0, 282.0, 1561.0, 282.0, 1586.0, 185.0, 1586.0], "score": 0.98, "text": "Jan. 2009."}, {"category_id": 15, "poly": [134.0, 1584.0, 836.0, 1584.0, 836.0, 1613.0, 134.0, 1613.0], "score": 0.98, "text": "[21] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nist\u00e9r, \u201cReal-"}, {"category_id": 15, "poly": [182.0, 1609.0, 838.0, 1609.0, 838.0, 1641.0, 182.0, 1641.0], "score": 0.98, "text": "time global stereo matching using hierarchical belief propagation.\u201d in"}, {"category_id": 15, "poly": [182.0, 1634.0, 698.0, 1634.0, 698.0, 1666.0, 182.0, 1666.0], "score": 1.0, "text": "British Machine Vision Conference, pp. 989-998, 2006."}], "page_info": {"page_no": 5, "height": 2200, "width": 1700}}] [{"layout_dets":[{"category_id":1,"poly":[862.5365600585938,1486.6256103515625,1569.357666015625,1486.6256103515625,1569.357666015625,1852.38623046875,862.5365600585938,1852.38623046875],"score":0.9999908208847046},{"category_id":0,"poly":[375.13604736328125,1609.805419921875,594.1871337890625,1609.805419921875,594.1871337890625,1642.5137939453125,375.13604736328125,1642.5137939453125],"score":0.9999880790710449},{"category_id":1,"poly":[130.0938262939453,523.328857421875,836.4835815429688,523.328857421875,836.4835815429688,861.5789184570312,130.0938262939453,861.5789184570312],"score":0.9999874830245972},{"category_id":0,"poly":[278.4141845703125,155.8585968017578,1419.3870849609375,155.8585968017578,1419.3870849609375,315.50396728515625,278.4141845703125,315.50396728515625],"score":0.9999853372573853},{"category_id":1,"poly":[131.29368591308594,922.8018188476562,838.4244384765625,922.8018188476562,838.4244384765625,1323.72021484375,131.29368591308594,1323.72021484375],"score":0.999984622001648},{"category_id":1,"poly":[862.38427734375,1187.7646484375,1568.11328125,1187.7646484375,1568.11328125,1486.1197509765625,862.38427734375,1486.1197509765625],"score":0.9999804496765137},{"category_id":1,"poly":[130.87384033203125,1651.791015625,839.4205322265625,1651.791015625,839.4205322265625,2020.19775390625,130.87384033203125,2020.19775390625],"score":0.9999734163284302},{"category_id":1,"poly":[132.02276611328125,1323.85302734375,838.2510375976562,1323.85302734375,838.2510375976562,1589.8836669921875,132.02276611328125,1589.8836669921875],"score":0.999958872795105},{"category_id":0,"poly":[374.39312744140625,882.8050537109375,593.989013671875,882.8050537109375,593.989013671875,912.400146484375,374.39312744140625,912.400146484375],"score":0.9999555349349976},{"category_id":1,"poly":[861.1803588867188,524.5841674804688,1567.7874755859375,524.5841674804688,1567.7874755859375,656.8233642578125,861.1803588867188,656.8233642578125],"score":0.9999452829360962},{"category_id":1,"poly":[861.088134765625,1852.827880859375,1569.492431640625,1852.827880859375,1569.492431640625,2019.2318115234375,861.088134765625,2019.2318115234375],"score":0.9999315142631531},{"category_id":3,"poly":[883.976806640625,677.044677734375,1548.9390869140625,677.044677734375,1548.9390869140625,971.9251098632812,883.976806640625,971.9251098632812],"score":0.9998946189880371},{"category_id":2,"poly":[634.717041015625,2100.599365234375,1064.1500244140625,2100.599365234375,1064.1500244140625,2124.908203125,634.717041015625,2124.908203125],"score":0.9992867708206177},{"category_id":4,"poly":[859.9264526367188,995.7284545898438,1569.2523193359375,995.7284545898438,1569.2523193359375,1127.760986328125,859.9264526367188,1127.760986328125],"score":0.9782063364982605},{"category_id":1,"poly":[440.2348937988281,354.70635986328125,1252.7706298828125,354.70635986328125,1252.7706298828125,439.553955078125,440.2348937988281,439.553955078125],"score":0.9727952480316162},{"category_id":1,"poly":[611.07958984375,435.7955017089844,1082.9930419921875,435.7955017089844,1082.9930419921875,461.6663513183594,611.07958984375,461.6663513183594],"score":0.429502010345459},{"category_id":13,"poly":[1195,1062,1226,1062,1226,1096,1195,1096],"score":0.88,"latex":"d_{p}"},{"category_id":13,"poly":[1304,1030,1327,1030,1327,1061,1304,1061],"score":0.65,"latex":"\\bar{\\bf p}"},{"category_id":15,"poly":[891,1487,1567,1487,1567,1521,891,1521],"score":1,"text":""},{"category_id":15,"poly":[864,1523,1569,1523,1569,1555,864,1555],"score":1,"text":""},{"category_id":15,"poly":[865,1556,1567,1556,1567,1586,865,1586],"score":1,"text":""},{"category_id":15,"poly":[864,1589,1568,1589,1568,1619,864,1619],"score":1,"text":""},{"category_id":15,"poly":[864,1621,1565,1621,1565,1654,864,1654],"score":1,"text":""},{"category_id":15,"poly":[864,1656,1564,1656,1564,1686,864,1686],"score":1,"text":""},{"category_id":15,"poly":[864,1690,1569,1690,1569,1720,864,1720],"score":1,"text":""},{"category_id":15,"poly":[864,1724,1567,1724,1567,1752,864,1752],"score":1,"text":""},{"category_id":15,"poly":[861,1753,1569,1753,1569,1788,861,1788],"score":1,"text":""},{"category_id":15,"poly":[865,1786,1566,1786,1566,1821,865,1821],"score":1,"text":""},{"category_id":15,"poly":[866,1824,1371,1824,1371,1854,866,1854],"score":1,"text":""},{"category_id":15,"poly":[373,1610,595,1610,595,1641,373,1641],"score":1,"text":""},{"category_id":15,"poly":[161,529,835,529,835,557,161,557],"score":1,"text":""},{"category_id":15,"poly":[135,557,836,557,836,584,135,584],"score":1,"text":""},{"category_id":15,"poly":[133,585,835,585,835,613,133,613],"score":1,"text":""},{"category_id":15,"poly":[133,612,835,612,835,641,133,641],"score":1,"text":""},{"category_id":15,"poly":[133,639,836,639,836,668,133,668],"score":1,"text":""},{"category_id":15,"poly":[131,667,838,667,838,697,131,697],"score":1,"text":""},{"category_id":15,"poly":[133,696,836,696,836,722,133,722],"score":1,"text":""},{"category_id":15,"poly":[133,723,837,723,837,751,133,751],"score":1,"text":""},{"category_id":15,"poly":[133,752,836,752,836,779,133,779],"score":1,"text":""},{"category_id":15,"poly":[132,779,838,779,838,805,132,805],"score":1,"text":""},{"category_id":15,"poly":[133,806,836,806,836,834,133,834],"score":1,"text":""},{"category_id":15,"poly":[134,835,619,835,619,862,134,862],"score":1,"text":""},{"category_id":15,"poly":[339,166,1358,166,1358,232,339,232],"score":1,"text":""},{"category_id":15,"poly":[285,242,1412,242,1412,318,285,318],"score":1,"text":""},{"category_id":15,"poly":[162,929,836,929,836,959,162,959],"score":1,"text":""},{"category_id":15,"poly":[134,962,834,962,834,992,134,992],"score":1,"text":""},{"category_id":15,"poly":[133,991,836,991,836,1029,133,1029],"score":1,"text":""},{"category_id":15,"poly":[135,1029,835,1029,835,1058,135,1058],"score":1,"text":""},{"category_id":15,"poly":[133,1061,837,1061,837,1093,133,1093],"score":1,"text":""},{"category_id":15,"poly":[132,1094,836,1094,836,1125,132,1125],"score":1,"text":""},{"category_id":15,"poly":[133,1128,836,1128,836,1159,133,1159],"score":1,"text":""},{"category_id":15,"poly":[133,1162,835,1162,835,1192,133,1192],"score":1,"text":""},{"category_id":15,"poly":[133,1195,838,1195,838,1225,133,1225],"score":1,"text":""},{"category_id":15,"poly":[132,1227,837,1227,837,1260,132,1260],"score":1,"text":""},{"category_id":15,"poly":[134,1258,837,1258,837,1292,134,1292],"score":1,"text":""},{"category_id":15,"poly":[134,1293,760,1293,760,1326,134,1326],"score":1,"text":""},{"category_id":15,"poly":[891,1189,1570,1189,1570,1224,891,1224],"score":1,"text":""},{"category_id":15,"poly":[863,1223,1567,1223,1567,1257,863,1257],"score":1,"text":""},{"category_id":15,"poly":[863,1255,1568,1255,1568,1291,863,1291],"score":1,"text":""},{"category_id":15,"poly":[864,1290,1570,1290,1570,1325,864,1325],"score":1,"text":""},{"category_id":15,"poly":[863,1323,1567,1323,1567,1355,863,1355],"score":1,"text":""},{"category_id":15,"poly":[863,1357,1568,1357,1568,1389,863,1389],"score":1,"text":""},{"category_id":15,"poly":[864,1392,1567,1392,1567,1421,864,1421],"score":1,"text":""},{"category_id":15,"poly":[864,1424,1568,1424,1568,1455,864,1455],"score":1,"text":""},{"category_id":15,"poly":[862,1455,1420,1455,1420,1489,862,1489],"score":1,"text":""},{"category_id":15,"poly":[162,1656,835,1656,835,1688,162,1688],"score":1,"text":""},{"category_id":15,"poly":[134,1689,837,1689,837,1721,134,1721],"score":1,"text":""},{"category_id":15,"poly":[134,1721,838,1721,838,1754,134,1754],"score":1,"text":""},{"category_id":15,"poly":[137,1757,834,1757,834,1785,137,1785],"score":1,"text":""},{"category_id":15,"poly":[134,1789,837,1789,837,1819,134,1819],"score":1,"text":""},{"category_id":15,"poly":[133,1822,836,1822,836,1855,133,1855],"score":1,"text":""},{"category_id":15,"poly":[134,1854,836,1854,836,1886,134,1886],"score":1,"text":""},{"category_id":15,"poly":[135,1890,835,1890,835,1918,135,1918],"score":1,"text":""},{"category_id":15,"poly":[135,1920,835,1920,835,1953,135,1953],"score":1,"text":""},{"category_id":15,"poly":[134,1955,837,1955,837,1985,134,1985],"score":1,"text":""},{"category_id":15,"poly":[136,1991,834,1991,834,2016,136,2016],"score":1,"text":""},{"category_id":15,"poly":[162,1326,835,1326,835,1358,162,1358],"score":1,"text":""},{"category_id":15,"poly":[133,1359,836,1359,836,1395,133,1395],"score":1,"text":""},{"category_id":15,"poly":[133,1395,835,1395,835,1424,133,1424],"score":1,"text":""},{"category_id":15,"poly":[132,1424,837,1424,837,1460,132,1460],"score":1,"text":""},{"category_id":15,"poly":[134,1459,837,1459,837,1490,134,1490],"score":1,"text":""},{"category_id":15,"poly":[134,1492,835,1492,835,1525,134,1525],"score":1,"text":""},{"category_id":15,"poly":[133,1528,838,1528,838,1558,133,1558],"score":1,"text":""},{"category_id":15,"poly":[133,1560,553,1560,553,1590,133,1590],"score":1,"text":""},{"category_id":15,"poly":[371,883,596,883,596,915,371,915],"score":1,"text":""},{"category_id":15,"poly":[866,527,1567,527,1567,559,866,559],"score":1,"text":""},{"category_id":15,"poly":[862,561,1567,561,1567,593,862,593],"score":1,"text":""},{"category_id":15,"poly":[862,592,1566,592,1566,626,862,626],"score":1,"text":""},{"category_id":15,"poly":[864,626,984,626,984,656,864,656],"score":1,"text":""},{"category_id":15,"poly":[893,1855,1566,1855,1566,1888,893,1888],"score":1,"text":""},{"category_id":15,"poly":[864,1890,1566,1890,1566,1918,864,1918],"score":1,"text":""},{"category_id":15,"poly":[865,1921,1567,1921,1567,1953,865,1953],"score":1,"text":""},{"category_id":15,"poly":[865,1953,1568,1953,1568,1988,865,1988],"score":1,"text":""},{"category_id":15,"poly":[866,1989,1567,1989,1567,2021,866,2021],"score":1,"text":""},{"category_id":15,"poly":[638,2102,1063,2102,1063,2127,638,2127],"score":1,"text":""},{"category_id":15,"poly":[864,995,1568,995,1568,1034,864,1034],"score":1,"text":""},{"category_id":15,"poly":[864,1030,1303,1030,1303,1065,864,1065],"score":1,"text":""},{"category_id":15,"poly":[1328,1030,1567,1030,1567,1065,1328,1065],"score":1,"text":""},{"category_id":15,"poly":[865,1065,1194,1065,1194,1097,865,1097],"score":1,"text":""},{"category_id":15,"poly":[1227,1065,1566,1065,1566,1097,1227,1097],"score":1,"text":""},{"category_id":15,"poly":[865,1097,1291,1097,1291,1129,865,1129],"score":1,"text":""},{"category_id":15,"poly":[509,358,1192,358,1192,391,509,391],"score":1,"text":""},{"category_id":15,"poly":[445,394,1245,394,1245,426,445,426],"score":1,"text":""},{"category_id":15,"poly":[616,436,1080,436,1080,463,616,463],"score":1,"text":""}],"page_info":{"page_no":0,"height":2200,"width":1700}},{"layout_dets":[{"category_id":8,"poly":[968.1688232421875,1513.3743896484375,1459.2733154296875,1513.3743896484375,1459.2733154296875,1670.746337890625,968.1688232421875,1670.746337890625],"score":0.9999958872795105},{"category_id":1,"poly":[865.7265014648438,421.62957763671875,1567.3912353515625,421.62957763671875,1567.3912353515625,787.9102783203125,865.7265014648438,787.9102783203125],"score":0.9999935030937195},{"category_id":1,"poly":[864.8787231445312,158.1634063720703,1566.29443359375,158.1634063720703,1566.29443359375,355.4730224609375,864.8787231445312,355.4730224609375],"score":0.9999899864196777},{"category_id":9,"poly":[1531.28662109375,1575.48779296875,1563.3642578125,1575.48779296875,1563.3642578125,1606.94140625,1531.28662109375,1606.94140625],"score":0.99998939037323},{"category_id":9,"poly":[1532.0537109375,1839.1907958984375,1563.5245361328125,1839.1907958984375,1563.5245361328125,1870.21142578125,1532.0537109375,1870.21142578125],"score":0.9999882578849792},{"category_id":1,"poly":[132.2044677734375,158.10128784179688,836.2056884765625,158.10128784179688,836.2056884765625,556.8394775390625,132.2044677734375,556.8394775390625],"score":0.9999880790710449},{"category_id":1,"poly":[133.3421630859375,1620.408935546875,834.8189086914062,1620.408935546875,834.8189086914062,2018.436279296875,133.3421630859375,2018.436279296875],"score":0.999987006187439},{"category_id":1,"poly":[864.8934326171875,853.2994995117188,1564.7685546875,853.2994995117188,1564.7685546875,1082.1588134765625,864.8934326171875,1082.1588134765625],"score":0.9999837875366211},{"category_id":1,"poly":[866.321533203125,1684.1400146484375,1564.9150390625,1684.1400146484375,1564.9150390625,1814.8349609375,866.321533203125,1814.8349609375],"score":0.9999825358390808},{"category_id":1,"poly":[134.1085205078125,955.0784301757812,835.7005615234375,955.0784301757812,835.7005615234375,1618.213623046875,134.1085205078125,1618.213623046875],"score":0.9999785423278809},{"category_id":1,"poly":[133.05685424804688,557.9677734375,836.5953979492188,557.9677734375,836.5953979492188,955.5980224609375,133.05685424804688,955.5980224609375],"score":0.999978244304657},{"category_id":1,"poly":[865.6548461914062,1920.167236328125,1565.2188720703125,1920.167236328125,1565.2188720703125,2018.0869140625,865.6548461914062,2018.0869140625],"score":0.9999703168869019},{"category_id":1,"poly":[865.6419067382812,1302.3402099609375,1565.474853515625,1302.3402099609375,1565.474853515625,1499.6136474609375,865.6419067382812,1499.6136474609375],"score":0.9999701976776123},{"category_id":8,"poly":[1005.023681640625,1823.8765869140625,1420.0087890625,1823.8765869140625,1420.0087890625,1906.513916015625,1005.023681640625,1906.513916015625],"score":0.9999603033065796},{"category_id":1,"poly":[865.9749755859375,1167.9549560546875,1565.6162109375,1167.9549560546875,1565.6162109375,1298.2060546875,865.9749755859375,1298.2060546875],"score":0.9999580383300781},{"category_id":9,"poly":[1532.1307373046875,1099.5582275390625,1563.8817138671875,1099.5582275390625,1563.8817138671875,1131.6802978515625,1532.1307373046875,1131.6802978515625],"score":0.9999563097953796},{"category_id":8,"poly":[973.92431640625,1076.1942138671875,1457.8084716796875,1076.1942138671875,1457.8084716796875,1155.179443359375,973.92431640625,1155.179443359375],"score":0.9998143911361694},{"category_id":0,"poly":[1133.8037109375,377.9938659667969,1297.05615234375,377.9938659667969,1297.05615234375,409.77374267578125,1133.8037109375,409.77374267578125],"score":0.9996984004974365},{"category_id":0,"poly":[866.098388671875,810.8038330078125,1303.4818115234375,810.8038330078125,1303.4818115234375,841.358642578125,866.098388671875,841.358642578125],"score":0.9994078874588013},{"category_id":14,"poly":[974,1076,1454,1076,1454,1155,974,1155],"score":0.94,"latex":"w(p,q)=\\exp\\bigg(\\!-\\!\\frac{\\Delta_{g}(p,q)}{\\gamma_{g}}-\\frac{\\Delta_{c}(p,q)}{\\gamma_{c}}\\!\\bigg),"},{"category_id":14,"poly":[1006,1825,1423,1825,1423,1907,1006,1907],"score":0.94,"latex":"\\delta(q,\\bar{q})=\\sum_{c=\\{r,g,b\\}}\\operatorname*{min}(|q_{c}-\\bar{q}_{c}|,\\tau)."},{"category_id":14,"poly":[963,1510,1464,1510,1464,1671,963,1671],"score":0.93,"latex":"C(p,\\bar{p})=\\frac{\\displaystyle\\sum_{q\\in\\Omega_{p},\\bar{q}\\in\\Omega_{\\bar{p}}}w(p,q)w(\\bar{p},\\bar{q})\\delta(q,\\bar{q})}{\\displaystyle\\sum_{q\\in\\Omega_{p},\\bar{q}\\in\\Omega_{\\bar{p}}}w(p,q)w(\\bar{p},\\bar{q})}\\,,"},{"category_id":13,"poly":[1335,1166,1432,1166,1432,1200,1335,1200],"score":0.93,"latex":"\\Delta_{c}(p,q)"},{"category_id":13,"poly":[939,1166,1039,1166,1039,1201,939,1201],"score":0.93,"latex":"\\Delta_{g}(p,q)"},{"category_id":13,"poly":[1289,1683,1365,1683,1365,1717,1289,1717],"score":0.93,"latex":"\\delta(q,\\bar{q})"},{"category_id":13,"poly":[1362,1367,1441,1367,1441,1401,1362,1401],"score":0.92,"latex":"\\bar{p}\\in S_{p}"},{"category_id":13,"poly":[864,1019,951,1019,951,1053,864,1053],"score":0.92,"latex":"q\\in\\Omega_{p}"},{"category_id":13,"poly":[1351,953,1388,953,1388,987,1351,987],"score":0.9,"latex":"\\Omega_{p}"},{"category_id":13,"poly":[913,1467,949,1467,949,1501,913,1501],"score":0.89,"latex":"\\Omega_{\\bar{p}}"},{"category_id":13,"poly":[1531,1367,1565,1367,1565,1401,1531,1401],"score":0.89,"latex":"S_{p}"},{"category_id":13,"poly":[1528,1434,1565,1434,1565,1468,1528,1468],"score":0.89,"latex":"\\Omega_{p}"},{"category_id":13,"poly":[1485,1205,1516,1205,1516,1234,1485,1234],"score":0.88,"latex":"\\gamma_{g}"},{"category_id":13,"poly":[1159,1206,1178,1206,1178,1233,1159,1233],"score":0.82,"latex":"p"},{"category_id":13,"poly":[863,1238,893,1238,893,1266,863,1266],"score":0.82,"latex":"\\gamma_{c}"},{"category_id":13,"poly":[1177,1436,1196,1436,1196,1465,1177,1465],"score":0.8,"latex":"\\bar{p}"},{"category_id":13,"poly":[1371,1024,1391,1024,1391,1051,1371,1051],"score":0.8,"latex":"p"},{"category_id":13,"poly":[1540,1406,1558,1406,1558,1432,1540,1432],"score":0.8,"latex":"p"},{"category_id":13,"poly":[1447,1024,1465,1024,1465,1051,1447,1051],"score":0.79,"latex":"q"},{"category_id":13,"poly":[1101,1437,1121,1437,1121,1465,1101,1465],"score":0.79,"latex":"p"},{"category_id":13,"poly":[1389,1307,1407,1307,1407,1332,1389,1332],"score":0.79,"latex":"p"},{"category_id":13,"poly":[1029,1372,1048,1372,1048,1399,1029,1399],"score":0.78,"latex":"p"},{"category_id":13,"poly":[1230,1206,1247,1206,1247,1233,1230,1233],"score":0.78,"latex":"q"},{"category_id":13,"poly":[916,1752,934,1752,934,1782,916,1782],"score":0.76,"latex":"\\bar{q}"},{"category_id":13,"poly":[1407,1925,1425,1925,1425,1946,1407,1946],"score":0.75,"latex":"\\tau"},{"category_id":13,"poly":[1548,1722,1565,1722,1565,1749,1548,1749],"score":0.75,"latex":"q"},{"category_id":13,"poly":[1050,992,1068,992,1068,1018,1050,1018],"score":0.75,"latex":"p"},{"category_id":15,"poly":[892,423,1568,423,1568,458,892,458],"score":1,"text":""},{"category_id":15,"poly":[865,460,1565,460,1565,490,865,490],"score":1,"text":""},{"category_id":15,"poly":[867,492,1567,492,1567,522,867,522],"score":1,"text":""},{"category_id":15,"poly":[862,525,1567,525,1567,557,862,557],"score":1,"text":""},{"category_id":15,"poly":[864,558,1568,558,1568,591,864,591],"score":1,"text":""},{"category_id":15,"poly":[863,591,1567,591,1567,627,863,627],"score":1,"text":""},{"category_id":15,"poly":[864,626,1568,626,1568,654,864,654],"score":1,"text":""},{"category_id":15,"poly":[866,659,1568,659,1568,689,866,689],"score":1,"text":""},{"category_id":15,"poly":[865,693,1567,693,1567,721,865,721],"score":1,"text":""},{"category_id":15,"poly":[865,724,1569,724,1569,754,865,754],"score":1,"text":""},{"category_id":15,"poly":[865,758,1255,758,1255,788,865,788],"score":1,"text":""},{"category_id":15,"poly":[866,164,1566,164,1566,193,866,193],"score":1,"text":""},{"category_id":15,"poly":[865,195,1566,195,1566,226,865,226],"score":1,"text":""},{"category_id":15,"poly":[863,228,1567,228,1567,263,863,263],"score":1,"text":""},{"category_id":15,"poly":[863,261,1565,261,1565,296,863,296],"score":1,"text":""},{"category_id":15,"poly":[864,296,1568,296,1568,326,864,326],"score":1,"text":""},{"category_id":15,"poly":[865,327,1159,327,1159,360,865,360],"score":1,"text":""},{"category_id":15,"poly":[132,163,838,163,838,192,132,192],"score":1,"text":""},{"category_id":15,"poly":[134,196,837,196,837,226,134,226],"score":1,"text":""},{"category_id":15,"poly":[133,229,835,229,835,262,133,262],"score":1,"text":""},{"category_id":15,"poly":[132,262,836,262,836,292,132,292],"score":1,"text":""},{"category_id":15,"poly":[134,294,839,294,839,327,134,327],"score":1,"text":""},{"category_id":15,"poly":[135,330,837,330,837,357,135,357],"score":1,"text":""},{"category_id":15,"poly":[135,362,836,362,836,392,135,392],"score":1,"text":""},{"category_id":15,"poly":[136,396,835,396,835,423,136,423],"score":1,"text":""},{"category_id":15,"poly":[133,427,836,427,836,460,133,460],"score":1,"text":""},{"category_id":15,"poly":[133,460,837,460,837,493,133,493],"score":1,"text":""},{"category_id":15,"poly":[134,494,837,494,837,524,134,524],"score":1,"text":""},{"category_id":15,"poly":[132,528,800,528,800,561,132,561],"score":1,"text":""},{"category_id":15,"poly":[161,1622,835,1622,835,1655,161,1655],"score":1,"text":""},{"category_id":15,"poly":[132,1655,837,1655,837,1690,132,1690],"score":1,"text":""},{"category_id":15,"poly":[133,1689,837,1689,837,1722,133,1722],"score":1,"text":""},{"category_id":15,"poly":[135,1724,837,1724,837,1754,135,1754],"score":1,"text":""},{"category_id":15,"poly":[134,1755,838,1755,838,1789,134,1789],"score":1,"text":""},{"category_id":15,"poly":[133,1787,837,1787,837,1822,133,1822],"score":1,"text":""},{"category_id":15,"poly":[134,1823,836,1823,836,1852,134,1852],"score":1,"text":""},{"category_id":15,"poly":[136,1857,837,1857,837,1887,136,1887],"score":1,"text":""},{"category_id":15,"poly":[134,1888,836,1888,836,1921,134,1921],"score":1,"text":""},{"category_id":15,"poly":[133,1921,835,1921,835,1954,133,1954],"score":1,"text":""},{"category_id":15,"poly":[136,1956,836,1956,836,1983,136,1983],"score":1,"text":""},{"category_id":15,"poly":[134,1988,837,1988,837,2021,134,2021],"score":1,"text":""},{"category_id":15,"poly":[892,853,1567,853,1567,888,892,888],"score":1,"text":""},{"category_id":15,"poly":[865,887,1568,887,1568,922,865,922],"score":1,"text":""},{"category_id":15,"poly":[865,919,1566,919,1566,955,865,955],"score":1,"text":""},{"category_id":15,"poly":[865,954,1350,954,1350,989,865,989],"score":1,"text":""},{"category_id":15,"poly":[1389,954,1567,954,1567,989,1389,989],"score":1,"text":""},{"category_id":15,"poly":[863,989,1049,989,1049,1021,863,1021],"score":1,"text":""},{"category_id":15,"poly":[1069,989,1566,989,1566,1021,1069,1021],"score":1,"text":""},{"category_id":15,"poly":[862,1022,863,1022,863,1055,862,1055],"score":1,"text":""},{"category_id":15,"poly":[952,1022,1370,1022,1370,1055,952,1055],"score":1,"text":""},{"category_id":15,"poly":[1392,1022,1446,1022,1446,1055,1392,1055],"score":1,"text":""},{"category_id":15,"poly":[1466,1022,1566,1022,1566,1055,1466,1055],"score":1,"text":""},{"category_id":15,"poly":[866,1054,898,1054,898,1087,866,1087],"score":1,"text":""},{"category_id":15,"poly":[865,1685,1288,1685,1288,1717,865,1717],"score":1,"text":""},{"category_id":15,"poly":[1366,1685,1565,1685,1565,1717,1366,1717],"score":1,"text":""},{"category_id":15,"poly":[864,1718,1547,1718,1547,1751,864,1751],"score":1,"text":""},{"category_id":15,"poly":[1566,1718,1567,1718,1567,1751,1566,1751],"score":1,"text":""},{"category_id":15,"poly":[866,1753,915,1753,915,1782,866,1782],"score":1,"text":""},{"category_id":15,"poly":[935,1753,1565,1753,1565,1782,935,1782],"score":1,"text":""},{"category_id":15,"poly":[864,1788,1293,1788,1293,1817,864,1817],"score":1,"text":""},{"category_id":15,"poly":[162,960,834,960,834,987,162,987],"score":1,"text":""},{"category_id":15,"poly":[135,991,834,991,834,1024,135,1024],"score":1,"text":""},{"category_id":15,"poly":[134,1026,835,1026,835,1057,134,1057],"score":1,"text":""},{"category_id":15,"poly":[134,1059,836,1059,836,1090,134,1090],"score":1,"text":""},{"category_id":15,"poly":[133,1093,835,1093,835,1124,133,1124],"score":1,"text":""},{"category_id":15,"poly":[135,1126,835,1126,835,1153,135,1153],"score":1,"text":""},{"category_id":15,"poly":[133,1157,838,1157,838,1188,133,1188],"score":1,"text":""},{"category_id":15,"poly":[134,1192,836,1192,836,1223,134,1223],"score":1,"text":""},{"category_id":15,"poly":[133,1223,835,1223,835,1257,133,1257],"score":1,"text":""},{"category_id":15,"poly":[135,1257,834,1257,834,1287,135,1287],"score":1,"text":""},{"category_id":15,"poly":[135,1291,835,1291,835,1322,135,1322],"score":1,"text":""},{"category_id":15,"poly":[135,1325,835,1325,835,1356,135,1356],"score":1,"text":""},{"category_id":15,"poly":[134,1357,838,1357,838,1391,134,1391],"score":1,"text":""},{"category_id":15,"poly":[135,1392,835,1392,835,1420,135,1420],"score":1,"text":""},{"category_id":15,"poly":[133,1423,835,1423,835,1455,133,1455],"score":1,"text":""},{"category_id":15,"poly":[133,1455,834,1455,834,1487,133,1487],"score":1,"text":""},{"category_id":15,"poly":[133,1491,836,1491,836,1522,133,1522],"score":1,"text":""},{"category_id":15,"poly":[134,1523,837,1523,837,1557,134,1557],"score":1,"text":""},{"category_id":15,"poly":[134,1556,834,1556,834,1588,134,1588],"score":1,"text":""},{"category_id":15,"poly":[133,1588,700,1588,700,1621,133,1621],"score":1,"text":""},{"category_id":15,"poly":[162,561,838,561,838,592,162,592],"score":1,"text":""},{"category_id":15,"poly":[134,594,838,594,838,624,134,624],"score":1,"text":""},{"category_id":15,"poly":[134,628,836,628,836,658,134,658],"score":1,"text":""},{"category_id":15,"poly":[134,659,834,659,834,691,134,691],"score":1,"text":""},{"category_id":15,"poly":[134,694,838,694,838,724,134,724],"score":1,"text":""},{"category_id":15,"poly":[134,727,835,727,835,756,134,756],"score":1,"text":""},{"category_id":15,"poly":[133,760,836,760,836,790,133,790],"score":1,"text":""},{"category_id":15,"poly":[134,794,837,794,837,823,134,823],"score":1,"text":""},{"category_id":15,"poly":[135,826,837,826,837,856,135,856],"score":1,"text":""},{"category_id":15,"poly":[134,858,836,858,836,891,134,891],"score":1,"text":""},{"category_id":15,"poly":[134,894,834,894,834,921,134,921],"score":1,"text":""},{"category_id":15,"poly":[133,925,547,925,547,957,133,957],"score":1,"text":""},{"category_id":15,"poly":[864,1919,1406,1919,1406,1955,864,1955],"score":1,"text":""},{"category_id":15,"poly":[1426,1919,1563,1919,1563,1955,1426,1955],"score":1,"text":""},{"category_id":15,"poly":[865,1952,1565,1952,1565,1987,865,1987],"score":1,"text":""},{"category_id":15,"poly":[864,1985,1567,1985,1567,2024,864,2024],"score":1,"text":""},{"category_id":15,"poly":[893,1301,1388,1301,1388,1335,893,1335],"score":1,"text":""},{"category_id":15,"poly":[1408,1301,1565,1301,1565,1335,1408,1335],"score":1,"text":""},{"category_id":15,"poly":[865,1337,1566,1337,1566,1369,865,1369],"score":1,"text":""},{"category_id":15,"poly":[862,1366,1028,1366,1028,1405,862,1405],"score":1,"text":""},{"category_id":15,"poly":[1049,1366,1361,1366,1361,1405,1049,1405],"score":1,"text":""},{"category_id":15,"poly":[1442,1366,1530,1366,1530,1405,1442,1405],"score":1,"text":""},{"category_id":15,"poly":[1566,1366,1566,1366,1566,1405,1566,1405],"score":1,"text":""},{"category_id":15,"poly":[863,1401,1539,1401,1539,1436,863,1436],"score":1,"text":""},{"category_id":15,"poly":[1559,1401,1565,1401,1565,1436,1559,1436],"score":1,"text":""},{"category_id":15,"poly":[862,1431,1100,1431,1100,1471,862,1471],"score":1,"text":""},{"category_id":15,"poly":[1122,1431,1176,1431,1176,1471,1122,1471],"score":1,"text":""},{"category_id":15,"poly":[1197,1431,1527,1431,1527,1471,1197,1471],"score":1,"text":""},{"category_id":15,"poly":[866,1471,912,1471,912,1503,866,1503],"score":1,"text":""},{"category_id":15,"poly":[950,1471,1471,1471,1471,1503,950,1503],"score":1,"text":""},{"category_id":15,"poly":[865,1166,938,1166,938,1204,865,1204],"score":1,"text":""},{"category_id":15,"poly":[1040,1166,1334,1166,1334,1204,1040,1204],"score":1,"text":""},{"category_id":15,"poly":[1433,1166,1567,1166,1567,1204,1433,1204],"score":1,"text":""},{"category_id":15,"poly":[864,1203,1158,1203,1158,1239,864,1239],"score":1,"text":""},{"category_id":15,"poly":[1179,1203,1229,1203,1229,1239,1179,1239],"score":1,"text":""},{"category_id":15,"poly":[1248,1203,1484,1203,1484,1239,1248,1239],"score":1,"text":""},{"category_id":15,"poly":[1517,1203,1567,1203,1567,1239,1517,1239],"score":1,"text":""},{"category_id":15,"poly":[894,1237,1568,1237,1568,1270,894,1270],"score":1,"text":""},{"category_id":15,"poly":[864,1270,1193,1270,1193,1302,864,1302],"score":1,"text":""},{"category_id":15,"poly":[1131,381,1300,381,1300,411,1131,411],"score":1,"text":""},{"category_id":15,"poly":[862,810,1305,810,1305,847,862,847],"score":1,"text":""}],"page_info":{"page_no":1,"height":2200,"width":1700}},{"layout_dets":[{"category_id":1,"poly":[865.62158203125,855.387939453125,1567.909912109375,855.387939453125,1567.909912109375,1419.8907470703125,865.62158203125,1419.8907470703125],"score":0.9999920725822449},{"category_id":1,"poly":[133.22589111328125,157.53897094726562,836.847412109375,157.53897094726562,836.847412109375,390.4913024902344,133.22589111328125,390.4913024902344],"score":0.9999920725822449},{"category_id":1,"poly":[864.4922485351562,200.4864501953125,1565.703125,200.4864501953125,1565.703125,366.17913818359375,864.4922485351562,366.17913818359375],"score":0.9999903440475464},{"category_id":9,"poly":[1530.2113037109375,548.1371459960938,1565.2470703125,548.1371459960938,1565.2470703125,579.302978515625,1530.2113037109375,579.302978515625],"score":0.9999895095825195},{"category_id":1,"poly":[864.262451171875,1419.922607421875,1568.54638671875,1419.922607421875,1568.54638671875,2021.3343505859375,864.262451171875,2021.3343505859375],"score":0.9999861717224121},{"category_id":9,"poly":[800.5233764648438,1551.26513671875,833.8314208984375,1551.26513671875,833.8314208984375,1582.2572021484375,800.5233764648438,1582.2572021484375],"score":0.9999847412109375},{"category_id":9,"poly":[1530.5628662109375,386.4223327636719,1565.33251953125,386.4223327636719,1565.33251953125,417.39862060546875,1530.5628662109375,417.39862060546875],"score":0.9999842643737793},{"category_id":1,"poly":[133.55337524414062,1083.7138671875,836.2483520507812,1083.7138671875,836.2483520507812,1314.156005859375,133.55337524414062,1314.156005859375],"score":0.9999834895133972},{"category_id":1,"poly":[134.19406127929688,1369.8790283203125,835.7562866210938,1369.8790283203125,835.7562866210938,1533.925048828125,134.19406127929688,1533.925048828125],"score":0.9999833106994629},{"category_id":8,"poly":[145.2665557861328,714.859130859375,828.1447143554688,714.859130859375,828.1447143554688,790.4703979492188,145.2665557861328,790.4703979492188],"score":0.999983012676239},{"category_id":1,"poly":[133.4851531982422,796.4535522460938,836.5848999023438,796.4535522460938,836.5848999023438,995.5222778320312,133.4851531982422,995.5222778320312],"score":0.9999814033508301},{"category_id":1,"poly":[863.7748413085938,597.98779296875,1566.551513671875,597.98779296875,1566.551513671875,797.1552734375,863.7748413085938,797.1552734375],"score":0.9999789595603943},{"category_id":1,"poly":[133.85084533691406,444.86785888671875,835.747802734375,444.86785888671875,835.747802734375,708.8450317382812,133.85084533691406,708.8450317382812],"score":0.9999788999557495},{"category_id":9,"poly":[801.137939453125,1023.3792114257812,833.5880737304688,1023.3792114257812,833.5880737304688,1055.752197265625,801.137939453125,1055.752197265625],"score":0.9999707937240601},{"category_id":8,"poly":[149.37112426757812,1841.37109375,803.680419921875,1841.37109375,803.680419921875,1989.151611328125,149.37112426757812,1989.151611328125],"score":0.9999672770500183},{"category_id":1,"poly":[865.775146484375,463.9938659667969,1563.5001220703125,463.9938659667969,1563.5001220703125,527.5928955078125,865.775146484375,527.5928955078125],"score":0.999967098236084},{"category_id":1,"poly":[133.99685668945312,1614.05908203125,836.1497192382812,1614.05908203125,836.1497192382812,1815.2291259765625,133.99685668945312,1815.2291259765625],"score":0.9999525547027588},{"category_id":8,"poly":[949.450927734375,371.08831787109375,1485.4744873046875,371.08831787109375,1485.4744873046875,450.77783203125,949.450927734375,450.77783203125],"score":0.9999483823776245},{"category_id":8,"poly":[281.1448669433594,1002.1107177734375,688.68701171875,1002.1107177734375,688.68701171875,1076.0518798828125,281.1448669433594,1076.0518798828125],"score":0.9998287558555603},{"category_id":0,"poly":[134.5569610595703,405.0261535644531,477.6263122558594,405.0261535644531,477.6263122558594,437.36474609375,134.5569610595703,437.36474609375],"score":0.9997165203094482},{"category_id":8,"poly":[1028.802001953125,543.2924194335938,1399.876708984375,543.2924194335938,1399.876708984375,584.5335083007812,1028.802001953125,584.5335083007812],"score":0.9996472597122192},{"category_id":0,"poly":[134.864990234375,1329.3621826171875,715.3360595703125,1329.3621826171875,715.3360595703125,1361.1461181640625,134.864990234375,1361.1461181640625],"score":0.9992499351501465},{"category_id":0,"poly":[1135.712158203125,813.497314453125,1294.5224609375,813.497314453125,1294.5224609375,844.8975830078125,1135.712158203125,844.8975830078125],"score":0.9986440539360046},{"category_id":8,"poly":[340.39654541015625,1546.9722900390625,627.0247192382812,1546.9722900390625,627.0247192382812,1603.982177734375,340.39654541015625,1603.982177734375],"score":0.9947470426559448},{"category_id":1,"poly":[865.5308837890625,160.10531616210938,1251.76611328125,160.10531616210938,1251.76611328125,189.97052001953125,865.5308837890625,189.97052001953125],"score":0.9947458505630493},{"category_id":9,"poly":[800.291748046875,738.486083984375,834.7160034179688,738.486083984375,834.7160034179688,769.446533203125,800.291748046875,769.446533203125],"score":0.9944049715995789},{"category_id":9,"poly":[799.2753295898438,1987.968017578125,835.062744140625,1987.968017578125,835.062744140625,2017.0728759765625,799.2753295898438,2017.0728759765625],"score":0.9877938032150269},{"category_id":13,"poly":[550,577,648,577,648,612,550,612],"score":0.95,"latex":"C_{a}(p,\\bar{p})"},{"category_id":13,"poly":[183,1780,304,1780,304,1813,183,1813],"score":0.95,"latex":"p^{\\prime}=m(\\bar{p})"},{"category_id":14,"poly":[279,1000,687,1000,687,1078,279,1078],"score":0.95,"latex":"w_{t}(p,p_{t-1})=\\exp{\\left(-\\frac{\\Delta_{c}(p,p_{t-1})}{\\gamma_{t}}\\right)},"},{"category_id":14,"poly":[147,1843,820,1843,820,1992,147,1992],"score":0.94,"latex":"F_{p}=\\left\\{\\frac{\\displaystyle{\\operatorname*{min}_{\\bar{p}\\in S_{p}\\backslash m(p)}p}-\\operatorname*{min}_{\\bar{p}\\in S_{p}}C(p,\\bar{p})}{\\displaystyle{\\operatorname*{min}_{\\bar{p}\\in S_{p}\\backslash m(p)}p}},\\right.\\ \\left|d_{p}-d_{p^{\\prime}}\\right|\\leq1\\ ."},{"category_id":14,"poly":[340,1546,628,1546,628,1608,340,1608],"score":0.93,"latex":"m(p)=\\underset{\\bar{p}\\in S_{p}}{\\mathrm{argmin}}\\,C(p,\\bar{p})\\,."},{"category_id":13,"poly":[321,830,443,830,443,864,321,864],"score":0.93,"latex":"w_{t}(p,p_{t-1})"},{"category_id":13,"poly":[581,1713,694,1713,694,1747,581,1747],"score":0.93,"latex":"\\bar{p}=m(p)"},{"category_id":14,"poly":[947,373,1478,373,1478,454,947,454],"score":0.93,"latex":"\\Lambda^{i}(p,\\bar{p})=\\alpha\\times\\sum_{q\\in\\Omega_{p}}w(p,q)F_{q}^{i-1}\\left|D_{q}^{i-1}-d_{p}\\right|\\,,"},{"category_id":13,"poly":[426,445,512,445,512,479,426,479],"score":0.93,"latex":"C(p,\\bar{p})"},{"category_id":13,"poly":[337,356,414,356,414,391,337,391],"score":0.93,"latex":"O(\\omega^{2})"},{"category_id":13,"poly":[1341,730,1565,730,1565,765,1341,765],"score":0.92,"latex":"C_{a}(p,\\bar{p})\\leftarrow C(p,\\bar{p})"},{"category_id":13,"poly":[629,1436,691,1436,691,1470,629,1470],"score":0.92,"latex":"m(p)"},{"category_id":13,"poly":[277,1469,361,1469,361,1504,277,1504],"score":0.92,"latex":"\\bar{p}\\in S_{p}"},{"category_id":14,"poly":[1030,541,1398,541,1398,582,1030,582],"score":0.92,"latex":"C^{i}(p,\\bar{p})=C^{0}(p,\\bar{p})+\\Lambda^{i}(p,\\bar{p})\\,,"},{"category_id":13,"poly":[453,356,518,356,518,391,453,391],"score":0.91,"latex":"O(\\omega)"},{"category_id":14,"poly":[146,714,787,714,787,791,146,791],"score":0.91,"latex":"C(p,\\bar{p})\\leftarrow\\frac{(1-\\lambda)\\cdot C(p,\\bar{p})+\\lambda\\cdot w_{t}(p,p_{t-1})\\cdot C_{a}(p,\\bar{p})}{(1-\\lambda)+\\lambda\\cdot w_{t}(p,p_{t-1})},"},{"category_id":13,"poly":[1095,231,1134,231,1134,270,1095,270],"score":0.9,"latex":"D_{p}^{i}"},{"category_id":13,"poly":[1313,1752,1447,1752,1447,1783,1313,1783],"score":0.89,"latex":"640~\\times~480"},{"category_id":13,"poly":[593,1782,627,1782,627,1815,593,1815],"score":0.89,"latex":"F_{p}"},{"category_id":13,"poly":[133,326,209,326,209,355,133,355],"score":0.88,"latex":"\\omega\\times\\omega"},{"category_id":13,"poly":[208,1089,236,1089,236,1116,208,1116],"score":0.85,"latex":"\\gamma_{t}"},{"category_id":13,"poly":[1466,769,1484,769,1484,797,1466,797],"score":0.83,"latex":"\\bar{p}"},{"category_id":13,"poly":[133,935,177,935,177,963,133,963],"score":0.83,"latex":"p_{t-1}"},{"category_id":13,"poly":[608,1753,627,1753,627,1779,608,1779],"score":0.81,"latex":"p"},{"category_id":13,"poly":[1018,770,1037,770,1037,796,1018,796],"score":0.81,"latex":"p"},{"category_id":13,"poly":[491,799,511,799,511,825,491,825],"score":0.81,"latex":"\\lambda"},{"category_id":13,"poly":[1086,470,1107,470,1107,491,1086,491],"score":0.8,"latex":"\\alpha"},{"category_id":13,"poly":[466,901,485,901,485,929,466,929],"score":0.8,"latex":"p"},{"category_id":13,"poly":[208,484,227,484,227,511,208,511],"score":0.79,"latex":"p"},{"category_id":13,"poly":[462,1443,480,1443,480,1468,462,1468],"score":0.77,"latex":"p"},{"category_id":13,"poly":[266,514,288,514,288,544,266,544],"score":0.77,"latex":"\\bar{p}"},{"category_id":13,"poly":[816,1716,836,1716,836,1746,816,1746],"score":0.73,"latex":"\\bar{p}"},{"category_id":13,"poly":[132,405,154,405,154,432,132,432],"score":0.27,"latex":"B"},{"category_id":13,"poly":[862,160,887,160,887,187,862,187],"score":0.26,"latex":"D"},{"category_id":15,"poly":[893,858,1566,858,1566,890,893,890],"score":1,"text":""},{"category_id":15,"poly":[863,894,1566,894,1566,923,863,923],"score":1,"text":""},{"category_id":15,"poly":[865,927,1567,927,1567,955,865,955],"score":1,"text":""},{"category_id":15,"poly":[864,959,1566,959,1566,990,864,990],"score":1,"text":""},{"category_id":15,"poly":[864,993,1567,993,1567,1023,864,1023],"score":1,"text":""},{"category_id":15,"poly":[865,1026,1567,1026,1567,1057,865,1057],"score":1,"text":""},{"category_id":15,"poly":[864,1059,1565,1059,1565,1090,864,1090],"score":1,"text":""},{"category_id":15,"poly":[862,1091,1568,1091,1568,1123,862,1123],"score":1,"text":""},{"category_id":15,"poly":[866,1126,1565,1126,1565,1156,866,1156],"score":1,"text":""},{"category_id":15,"poly":[864,1158,1565,1158,1565,1191,864,1191],"score":1,"text":""},{"category_id":15,"poly":[865,1192,1567,1192,1567,1223,865,1223],"score":1,"text":""},{"category_id":15,"poly":[864,1224,1566,1224,1566,1257,864,1257],"score":1,"text":""},{"category_id":15,"poly":[864,1256,1567,1256,1567,1291,864,1291],"score":1,"text":""},{"category_id":15,"poly":[866,1291,1566,1291,1566,1322,866,1322],"score":1,"text":""},{"category_id":15,"poly":[865,1326,1565,1326,1565,1356,865,1356],"score":1,"text":""},{"category_id":15,"poly":[862,1357,1568,1357,1568,1390,862,1390],"score":1,"text":""},{"category_id":15,"poly":[864,1390,1088,1390,1088,1424,864,1424],"score":1,"text":""},{"category_id":15,"poly":[133,160,835,160,835,195,133,195],"score":1,"text":""},{"category_id":15,"poly":[133,194,837,194,837,227,133,227],"score":1,"text":""},{"category_id":15,"poly":[132,228,837,228,837,263,132,263],"score":1,"text":""},{"category_id":15,"poly":[132,260,836,260,836,294,132,294],"score":1,"text":""},{"category_id":15,"poly":[132,293,837,293,837,329,132,329],"score":1,"text":""},{"category_id":15,"poly":[210,328,837,328,837,360,210,360],"score":1,"text":""},{"category_id":15,"poly":[134,361,336,361,336,393,134,393],"score":1,"text":""},{"category_id":15,"poly":[415,361,452,361,452,393,415,393],"score":1,"text":""},{"category_id":15,"poly":[519,361,526,361,526,393,519,393],"score":1,"text":""},{"category_id":15,"poly":[894,202,1564,202,1564,234,894,234],"score":1,"text":""},{"category_id":15,"poly":[866,233,1094,233,1094,269,866,269],"score":1,"text":""},{"category_id":15,"poly":[1135,233,1568,233,1568,269,1135,269],"score":1,"text":""},{"category_id":15,"poly":[866,269,1563,269,1563,302,866,302],"score":1,"text":""},{"category_id":15,"poly":[863,301,1564,301,1564,336,863,336],"score":1,"text":""},{"category_id":15,"poly":[862,334,994,334,994,372,862,372],"score":1,"text":""},{"category_id":15,"poly":[889,1420,1569,1420,1569,1457,889,1457],"score":1,"text":""},{"category_id":15,"poly":[865,1458,1567,1458,1567,1487,865,1487],"score":1,"text":""},{"category_id":15,"poly":[864,1492,1567,1492,1567,1522,864,1522],"score":1,"text":""},{"category_id":15,"poly":[867,1526,1566,1526,1566,1553,867,1553],"score":1,"text":""},{"category_id":15,"poly":[866,1558,1564,1558,1564,1586,866,1586],"score":1,"text":""},{"category_id":15,"poly":[864,1591,1566,1591,1566,1619,864,1619],"score":1,"text":""},{"category_id":15,"poly":[863,1621,1566,1621,1566,1654,863,1654],"score":1,"text":""},{"category_id":15,"poly":[865,1657,1567,1657,1567,1688,865,1688],"score":1,"text":""},{"category_id":15,"poly":[864,1689,1568,1689,1568,1723,864,1723],"score":1,"text":""},{"category_id":15,"poly":[867,1723,1568,1723,1568,1754,867,1754],"score":1,"text":""},{"category_id":15,"poly":[864,1754,1312,1754,1312,1788,864,1788],"score":1,"text":""},{"category_id":15,"poly":[1448,1754,1569,1754,1569,1788,1448,1788],"score":1,"text":""},{"category_id":15,"poly":[864,1789,1569,1789,1569,1820,864,1820],"score":1,"text":""},{"category_id":15,"poly":[864,1822,1567,1822,1567,1856,864,1856],"score":1,"text":""},{"category_id":15,"poly":[866,1856,1568,1856,1568,1887,866,1887],"score":1,"text":""},{"category_id":15,"poly":[864,1889,1567,1889,1567,1919,864,1919],"score":1,"text":""},{"category_id":15,"poly":[866,1920,1568,1920,1568,1954,866,1954],"score":1,"text":""},{"category_id":15,"poly":[865,1953,1567,1953,1567,1985,865,1985],"score":1,"text":""},{"category_id":15,"poly":[868,1989,1567,1989,1567,2020,868,2020],"score":1,"text":""},{"category_id":15,"poly":[136,1087,207,1087,207,1119,136,1119],"score":1,"text":""},{"category_id":15,"poly":[237,1087,833,1087,833,1119,237,1119],"score":1,"text":""},{"category_id":15,"poly":[133,1120,835,1120,835,1151,133,1151],"score":1,"text":""},{"category_id":15,"poly":[132,1151,837,1151,837,1185,132,1185],"score":1,"text":""},{"category_id":15,"poly":[133,1185,838,1185,838,1218,133,1218],"score":1,"text":""},{"category_id":15,"poly":[137,1221,836,1221,836,1250,137,1250],"score":1,"text":""},{"category_id":15,"poly":[133,1252,837,1252,837,1284,133,1284],"score":1,"text":""},{"category_id":15,"poly":[133,1285,403,1285,403,1317,133,1317],"score":1,"text":""},{"category_id":15,"poly":[161,1372,836,1372,836,1406,161,1406],"score":1,"text":""},{"category_id":15,"poly":[134,1405,834,1405,834,1438,134,1438],"score":1,"text":""},{"category_id":15,"poly":[133,1439,461,1439,461,1470,133,1470],"score":1,"text":""},{"category_id":15,"poly":[481,1439,628,1439,628,1470,481,1470],"score":1,"text":""},{"category_id":15,"poly":[692,1439,834,1439,834,1470,692,1470],"score":1,"text":""},{"category_id":15,"poly":[135,1473,276,1473,276,1505,135,1505],"score":1,"text":""},{"category_id":15,"poly":[362,1473,835,1473,835,1505,362,1505],"score":1,"text":""},{"category_id":15,"poly":[134,1507,374,1507,374,1537,134,1537],"score":1,"text":""},{"category_id":15,"poly":[136,800,490,800,490,829,136,829],"score":1,"text":""},{"category_id":15,"poly":[512,800,836,800,836,829,512,829],"score":1,"text":""},{"category_id":15,"poly":[133,832,320,832,320,867,133,867],"score":1,"text":""},{"category_id":15,"poly":[444,832,836,832,836,867,444,867],"score":1,"text":""},{"category_id":15,"poly":[133,865,838,865,838,901,133,901],"score":1,"text":""},{"category_id":15,"poly":[133,901,465,901,465,930,133,930],"score":1,"text":""},{"category_id":15,"poly":[486,901,835,901,835,930,486,930],"score":1,"text":""},{"category_id":15,"poly":[130,933,132,933,132,967,130,967],"score":1,"text":""},{"category_id":15,"poly":[178,933,837,933,837,967,178,967],"score":1,"text":""},{"category_id":15,"poly":[131,965,264,965,264,1001,131,1001],"score":1,"text":""},{"category_id":15,"poly":[866,602,1565,602,1565,631,866,631],"score":1,"text":""},{"category_id":15,"poly":[865,633,1568,633,1568,669,865,669],"score":1,"text":""},{"category_id":15,"poly":[864,666,1566,666,1566,701,864,701],"score":1,"text":""},{"category_id":15,"poly":[864,700,1568,700,1568,731,864,731],"score":1,"text":""},{"category_id":15,"poly":[863,733,1340,733,1340,767,863,767],"score":1,"text":""},{"category_id":15,"poly":[863,767,1017,767,1017,801,863,801],"score":1,"text":""},{"category_id":15,"poly":[1038,767,1465,767,1465,801,1038,801],"score":1,"text":""},{"category_id":15,"poly":[1485,767,1493,767,1493,801,1485,801],"score":1,"text":""},{"category_id":15,"poly":[162,447,425,447,425,482,162,482],"score":1,"text":""},{"category_id":15,"poly":[513,447,836,447,836,482,513,482],"score":1,"text":""},{"category_id":15,"poly":[135,484,207,484,207,513,135,513],"score":1,"text":""},{"category_id":15,"poly":[228,484,834,484,834,513,228,513],"score":1,"text":""},{"category_id":15,"poly":[134,515,265,515,265,547,134,547],"score":1,"text":""},{"category_id":15,"poly":[289,515,836,515,836,547,289,547],"score":1,"text":""},{"category_id":15,"poly":[134,549,836,549,836,578,134,578],"score":1,"text":""},{"category_id":15,"poly":[135,581,549,581,549,612,135,612],"score":1,"text":""},{"category_id":15,"poly":[649,581,838,581,838,612,649,612],"score":1,"text":""},{"category_id":15,"poly":[136,616,834,616,834,645,136,645],"score":1,"text":""},{"category_id":15,"poly":[133,646,835,646,835,680,133,680],"score":1,"text":""},{"category_id":15,"poly":[134,680,670,680,670,713,134,713],"score":1,"text":""},{"category_id":15,"poly":[866,465,1085,465,1085,499,866,499],"score":1,"text":""},{"category_id":15,"poly":[1108,465,1562,465,1562,499,1108,499],"score":1,"text":""},{"category_id":15,"poly":[867,500,1428,500,1428,531,867,531],"score":1,"text":""},{"category_id":15,"poly":[159,1615,836,1615,836,1650,159,1650],"score":1,"text":""},{"category_id":15,"poly":[135,1652,838,1652,838,1681,135,1681],"score":1,"text":""},{"category_id":15,"poly":[134,1683,839,1683,839,1716,134,1716],"score":1,"text":""},{"category_id":15,"poly":[131,1716,580,1716,580,1750,131,1750],"score":1,"text":""},{"category_id":15,"poly":[695,1716,815,1716,815,1750,695,1750],"score":1,"text":""},{"category_id":15,"poly":[837,1716,837,1716,837,1750,837,1750],"score":1,"text":""},{"category_id":15,"poly":[132,1748,607,1748,607,1785,132,1785],"score":1,"text":""},{"category_id":15,"poly":[628,1748,836,1748,836,1785,628,1785],"score":1,"text":""},{"category_id":15,"poly":[134,1782,182,1782,182,1817,134,1817],"score":1,"text":""},{"category_id":15,"poly":[305,1782,592,1782,592,1817,305,1817],"score":1,"text":""},{"category_id":15,"poly":[628,1782,810,1782,810,1817,628,1817],"score":1,"text":""},{"category_id":15,"poly":[155,404,477,404,477,442,155,442],"score":1,"text":""},{"category_id":15,"poly":[138,1330,716,1330,716,1366,138,1366],"score":1,"text":""},{"category_id":15,"poly":[1132,814,1298,814,1298,847,1132,847],"score":1,"text":""},{"category_id":15,"poly":[888,160,1250,160,1250,193,888,193],"score":1,"text":""}],"page_info":{"page_no":2,"height":2200,"width":1700}},{"layout_dets":[{"category_id":1,"poly":[133.2380828857422,1522.2489013671875,836.1322631835938,1522.2489013671875,836.1322631835938,1885.257080078125,133.2380828857422,1885.257080078125],"score":0.9999951124191284},{"category_id":4,"poly":[861.9458618164062,864.1607055664062,1567.0277099609375,864.1607055664062,1567.0277099609375,1032.004150390625,861.9458618164062,1032.004150390625],"score":0.9999912977218628},{"category_id":3,"poly":[874.5701904296875,154.02452087402344,1495.532958984375,154.02452087402344,1495.532958984375,849.2171630859375,874.5701904296875,849.2171630859375],"score":0.9999904632568359},{"category_id":4,"poly":[863.0010986328125,1752.031005859375,1565.427001953125,1752.031005859375,1565.427001953125,1850.8660888671875,863.0010986328125,1850.8660888671875],"score":0.9999890327453613},{"category_id":1,"poly":[133.61553955078125,160.01754760742188,837.108642578125,160.01754760742188,837.108642578125,257.69354248046875,133.61553955078125,257.69354248046875],"score":0.999984622001648},{"category_id":4,"poly":[132.43441772460938,1355.7642822265625,836.6817626953125,1355.7642822265625,836.6817626953125,1488.745849609375,132.43441772460938,1488.745849609375],"score":0.9999836683273315},{"category_id":3,"poly":[141.9892120361328,280.3852844238281,812.9765625,280.3852844238281,812.9765625,1345.0997314453125,141.9892120361328,1345.0997314453125],"score":0.9999815225601196},{"category_id":1,"poly":[133.11953735351562,1886.8203125,835.4058227539062,1886.8203125,835.4058227539062,2018.5140380859375,133.11953735351562,2018.5140380859375],"score":0.9999706745147705},{"category_id":3,"poly":[874.9677124023438,1161.6328125,1525.4285888671875,1161.6328125,1525.4285888671875,1733.285888671875,874.9677124023438,1733.285888671875],"score":0.9999067783355713},{"category_id":1,"poly":[863.7095336914062,1920.5084228515625,1567.07080078125,1920.5084228515625,1567.07080078125,2018.963134765625,863.7095336914062,2018.963134765625],"score":0.9997776746749878},{"category_id":4,"poly":[863.47607421875,1066.640869140625,1561.8057861328125,1066.640869140625,1561.8057861328125,1132.744384765625,863.47607421875,1132.744384765625],"score":0.6925872564315796},{"category_id":1,"poly":[863.744140625,1067.1168212890625,1561.669921875,1067.1168212890625,1561.669921875,1132.9259033203125,863.744140625,1132.9259033203125],"score":0.4146493673324585},{"category_id":13,"poly":[1295,896,1483,896,1483,931,1295,931],"score":0.93,"latex":"\\{\\pm0,\\pm20,\\pm40\\}"},{"category_id":13,"poly":[481,1919,534,1919,534,1949,481,1949],"score":0.87,"latex":"\\pm20"},{"category_id":13,"poly":[591,1919,644,1919,644,1949,591,1949],"score":0.87,"latex":"\\pm40"},{"category_id":13,"poly":[1227,1436,1253,1436,1253,1459,1227,1459],"score":0.86,"latex":"\\gamma_{c}"},{"category_id":13,"poly":[1295,1436,1323,1436,1323,1461,1295,1461],"score":0.85,"latex":"\\gamma_{g}"},{"category_id":13,"poly":[133,1588,186,1588,186,1618,133,1618],"score":0.85,"latex":"\\pm20"},{"category_id":13,"poly":[249,1587,302,1587,302,1618,249,1618],"score":0.84,"latex":"\\pm40"},{"category_id":13,"poly":[787,1555,828,1555,828,1585,787,1585],"score":0.82,"latex":"\\pm0"},{"category_id":13,"poly":[532,1421,572,1421,572,1452,532,1452],"score":0.81,"latex":"3^{\\mathrm{rd}}"},{"category_id":13,"poly":[230,1389,266,1389,266,1419,230,1419],"score":0.8,"latex":"\\mathrm{{[1^{st}}}"},{"category_id":13,"poly":[655,1986,675,1986,675,2013,655,2013],"score":0.78,"latex":"\\lambda"},{"category_id":13,"poly":[200,1455,240,1455,240,1486,200,1486],"score":0.75,"latex":"\\mathrm{{4^{th}}}"},{"category_id":13,"poly":[954,1255,980,1255,980,1275,954,1275],"score":0.75,"latex":"\\gamma_{c}"},{"category_id":13,"poly":[954,1281,980,1281,980,1302,954,1302],"score":0.74,"latex":"\\gamma_{g}"},{"category_id":13,"poly":[959,1227,976,1227,976,1245,959,1245],"score":0.74,"latex":"\\tau"},{"category_id":13,"poly":[960,1352,976,1352,976,1372,960,1372],"score":0.72,"latex":"k"},{"category_id":13,"poly":[410,1986,430,1986,430,2013,410,2013],"score":0.7,"latex":"\\lambda"},{"category_id":13,"poly":[955,1331,979,1331,979,1351,955,1351],"score":0.7,"latex":"\\gamma_{t}"},{"category_id":13,"poly":[1489,1752,1510,1752,1510,1778,1489,1778],"score":0.69,"latex":"\\lambda"},{"category_id":13,"poly":[1176,965,1195,965,1195,992,1176,992],"score":0.69,"latex":"\\lambda"},{"category_id":13,"poly":[246,1421,289,1421,289,1452,246,1452],"score":0.69,"latex":"2^{\\mathrm{nd}}"},{"category_id":13,"poly":[958,1302,977,1302,977,1323,958,1323],"score":0.63,"latex":"\\lambda"},{"category_id":13,"poly":[959,1380,977,1380,977,1397,959,1397],"score":0.58,"latex":"_\\alpha"},{"category_id":13,"poly":[436,1621,455,1621,455,1648,436,1648],"score":0.58,"latex":"\\lambda"},{"category_id":13,"poly":[959,1204,977,1204,977,1219,959,1219],"score":0.42,"latex":"\\omega"},{"category_id":13,"poly":[870,1592,890,1592,890,1617,870,1617],"score":0.31,"latex":"\\lambda"},{"category_id":15,"poly":[161,1524,833,1524,833,1555,161,1555],"score":1,"text":""},{"category_id":15,"poly":[131,1557,786,1557,786,1588,131,1588],"score":1,"text":""},{"category_id":15,"poly":[829,1557,833,1557,833,1588,829,1588],"score":1,"text":""},{"category_id":15,"poly":[187,1591,248,1591,248,1623,187,1623],"score":1,"text":""},{"category_id":15,"poly":[303,1591,837,1591,837,1623,303,1623],"score":1,"text":""},{"category_id":15,"poly":[133,1622,435,1622,435,1656,133,1656],"score":1,"text":""},{"category_id":15,"poly":[456,1622,837,1622,837,1656,456,1656],"score":1,"text":""},{"category_id":15,"poly":[134,1658,836,1658,836,1690,134,1690],"score":1,"text":""},{"category_id":15,"poly":[134,1692,834,1692,834,1721,134,1721],"score":1,"text":""},{"category_id":15,"poly":[133,1724,835,1724,835,1752,133,1752],"score":1,"text":""},{"category_id":15,"poly":[133,1757,836,1757,836,1786,133,1786],"score":1,"text":""},{"category_id":15,"poly":[132,1788,836,1788,836,1822,132,1822],"score":1,"text":""},{"category_id":15,"poly":[133,1822,836,1822,836,1855,133,1855],"score":1,"text":""},{"category_id":15,"poly":[133,1858,320,1858,320,1888,133,1888],"score":1,"text":""},{"category_id":15,"poly":[864,867,1567,867,1567,900,864,900],"score":1,"text":""},{"category_id":15,"poly":[864,900,1294,900,1294,932,864,932],"score":1,"text":""},{"category_id":15,"poly":[1484,900,1565,900,1565,932,1484,932],"score":1,"text":""},{"category_id":15,"poly":[863,934,1567,934,1567,967,863,967],"score":1,"text":""},{"category_id":15,"poly":[863,966,1175,966,1175,1000,863,1000],"score":1,"text":""},{"category_id":15,"poly":[1196,966,1565,966,1565,1000,1196,1000],"score":1,"text":""},{"category_id":15,"poly":[864,999,1491,999,1491,1035,864,1035],"score":1,"text":""},{"category_id":15,"poly":[865,1754,1488,1754,1488,1783,865,1783],"score":1,"text":""},{"category_id":15,"poly":[1511,1754,1566,1754,1566,1783,1511,1783],"score":1,"text":""},{"category_id":15,"poly":[864,1788,1564,1788,1564,1817,864,1817],"score":1,"text":""},{"category_id":15,"poly":[865,1819,1429,1819,1429,1853,865,1853],"score":1,"text":""},{"category_id":15,"poly":[135,159,832,159,832,194,135,194],"score":1,"text":""},{"category_id":15,"poly":[135,195,836,195,836,227,135,227],"score":1,"text":""},{"category_id":15,"poly":[135,227,347,227,347,263,135,263],"score":1,"text":""},{"category_id":15,"poly":[135,1359,836,1359,836,1391,135,1391],"score":1,"text":""},{"category_id":15,"poly":[133,1390,229,1390,229,1427,133,1427],"score":1,"text":""},{"category_id":15,"poly":[267,1390,837,1390,837,1427,267,1427],"score":1,"text":""},{"category_id":15,"poly":[133,1423,245,1423,245,1458,133,1458],"score":1,"text":""},{"category_id":15,"poly":[290,1423,531,1423,531,1458,290,1458],"score":1,"text":""},{"category_id":15,"poly":[573,1423,834,1423,834,1458,573,1458],"score":1,"text":""},{"category_id":15,"poly":[132,1456,199,1456,199,1492,132,1492],"score":1,"text":""},{"category_id":15,"poly":[241,1456,310,1456,310,1492,241,1492],"score":1,"text":""},{"category_id":15,"poly":[161,1888,834,1888,834,1922,161,1922],"score":1,"text":""},{"category_id":15,"poly":[132,1921,480,1921,480,1952,132,1952],"score":1,"text":""},{"category_id":15,"poly":[535,1921,590,1921,590,1952,535,1952],"score":1,"text":""},{"category_id":15,"poly":[645,1921,833,1921,833,1952,645,1952],"score":1,"text":""},{"category_id":15,"poly":[133,1951,835,1951,835,1988,133,1988],"score":1,"text":""},{"category_id":15,"poly":[133,1987,409,1987,409,2020,133,2020],"score":1,"text":""},{"category_id":15,"poly":[431,1987,654,1987,654,2020,431,2020],"score":1,"text":""},{"category_id":15,"poly":[676,1987,837,1987,837,2020,676,2020],"score":1,"text":""},{"category_id":15,"poly":[863,1921,1566,1921,1566,1955,863,1955],"score":1,"text":""},{"category_id":15,"poly":[863,1955,1565,1955,1565,1986,863,1986],"score":1,"text":""},{"category_id":15,"poly":[861,1988,1568,1988,1568,2021,861,2021],"score":1,"text":""},{"category_id":15,"poly":[865,1068,1558,1068,1558,1100,865,1100],"score":1,"text":""},{"category_id":15,"poly":[863,1099,1094,1099,1094,1137,863,1137],"score":1,"text":""},{"category_id":15,"poly":[864,1067,1559,1067,1559,1102,864,1102],"score":1,"text":""},{"category_id":15,"poly":[863,1099,1094,1099,1094,1137,863,1137],"score":1,"text":""}],"page_info":{"page_no":3,"height":2200,"width":1700}},{"layout_dets":[{"category_id":1,"poly":[864.871337890625,1061.6590576171875,1571.0252685546875,1061.6590576171875,1571.0252685546875,1460.282470703125,864.871337890625,1460.282470703125],"score":0.9999932050704956},{"category_id":1,"poly":[131.24400329589844,1520.90234375,837.9581298828125,1520.90234375,837.9581298828125,1882.6856689453125,131.24400329589844,1882.6856689453125],"score":0.9999930262565613},{"category_id":1,"poly":[863.7288208007812,157.5385284423828,1569.3896484375,157.5385284423828,1569.3896484375,456.0347900390625,863.7288208007812,456.0347900390625],"score":0.9999920725822449},{"category_id":1,"poly":[871.8152465820312,1513.001953125,1571.4056396484375,1513.001953125,1571.4056396484375,2021.031982421875,871.8152465820312,2021.031982421875],"score":0.9999905824661255},{"category_id":7,"poly":[893.027587890625,864.08837890625,1549.4176025390625,864.08837890625,1549.4176025390625,963.4273681640625,893.027587890625,963.4273681640625],"score":0.9999890327453613},{"category_id":0,"poly":[1137.8173828125,1477.2347412109375,1292.7652587890625,1477.2347412109375,1292.7652587890625,1503.3974609375,1137.8173828125,1503.3974609375],"score":0.9999808073043823},{"category_id":3,"poly":[165.4239044189453,354.6653747558594,805.229248046875,354.6653747558594,805.229248046875,1320.15234375,165.4239044189453,1320.15234375],"score":0.9999797344207764},{"category_id":5,"poly":[881.7678833007812,615.662109375,1549.8577880859375,615.662109375,1549.8577880859375,859.138427734375,881.7678833007812,859.138427734375],"score":0.9999761581420898},{"category_id":1,"poly":[132.82102966308594,159.23143005371094,837.5576171875,159.23143005371094,837.5576171875,323.20166015625,132.82102966308594,323.20166015625],"score":0.9999710917472839},{"category_id":0,"poly":[1115.3104248046875,1021.5819091796875,1316.40966796875,1021.5819091796875,1316.40966796875,1051.821533203125,1115.3104248046875,1051.821533203125],"score":0.9999030828475952},{"category_id":1,"poly":[132.45388793945312,1885.7120361328125,836.7922973632812,1885.7120361328125,836.7922973632812,2018.396728515625,132.45388793945312,2018.396728515625],"score":0.9999006986618042},{"category_id":4,"poly":[132.42440795898438,1347.6021728515625,838.28173828125,1347.6021728515625,838.28173828125,1478.394775390625,132.42440795898438,1478.394775390625],"score":0.9995896220207214},{"category_id":1,"poly":[864.6732177734375,481.1195068359375,1562.9296875,481.1195068359375,1562.9296875,577.5771484375,864.6732177734375,577.5771484375],"score":0.997081458568573},{"category_id":13,"poly":[736,1445,827,1445,827,1475,736,1475],"score":0.9,"latex":"\\lambda=0.8"},{"category_id":13,"poly":[1003,887,1105,887,1105,911,1003,911],"score":0.89,"latex":"320\\times240"},{"category_id":13,"poly":[338,1446,391,1446,391,1475,338,1475],"score":0.87,"latex":"\\pm30"},{"category_id":13,"poly":[165,1619,219,1619,219,1649,165,1649],"score":0.85,"latex":"\\pm40"},{"category_id":13,"poly":[301,196,329,196,329,224,301,224],"score":0.84,"latex":"\\gamma_{t}"},{"category_id":13,"poly":[795,1586,836,1586,836,1616,795,1616],"score":0.84,"latex":"\\pm0"},{"category_id":13,"poly":[1037,939,1059,939,1059,960,1037,960],"score":0.83,"latex":"\\%"},{"category_id":13,"poly":[462,1586,482,1586,482,1613,462,1613],"score":0.78,"latex":"\\lambda"},{"category_id":15,"poly":[894,1065,1568,1065,1568,1096,894,1096],"score":1,"text":""},{"category_id":15,"poly":[864,1099,1570,1099,1570,1129,864,1129],"score":1,"text":""},{"category_id":15,"poly":[863,1131,1564,1131,1564,1163,863,1163],"score":1,"text":""},{"category_id":15,"poly":[864,1167,1567,1167,1567,1195,864,1195],"score":1,"text":""},{"category_id":15,"poly":[863,1198,1566,1198,1566,1231,863,1231],"score":1,"text":""},{"category_id":15,"poly":[862,1229,1569,1229,1569,1265,862,1265],"score":1,"text":""},{"category_id":15,"poly":[865,1263,1567,1263,1567,1297,865,1297],"score":1,"text":""},{"category_id":15,"poly":[865,1297,1569,1297,1569,1330,865,1330],"score":1,"text":""},{"category_id":15,"poly":[864,1332,1566,1332,1566,1362,864,1362],"score":1,"text":""},{"category_id":15,"poly":[865,1365,1569,1365,1569,1395,865,1395],"score":1,"text":""},{"category_id":15,"poly":[864,1399,1567,1399,1567,1427,864,1427],"score":1,"text":""},{"category_id":15,"poly":[864,1432,1496,1432,1496,1459,864,1459],"score":1,"text":""},{"category_id":15,"poly":[162,1521,834,1521,834,1555,162,1555],"score":1,"text":""},{"category_id":15,"poly":[135,1556,838,1556,838,1588,135,1588],"score":1,"text":""},{"category_id":15,"poly":[132,1588,461,1588,461,1623,132,1623],"score":1,"text":""},{"category_id":15,"poly":[483,1588,794,1588,794,1623,483,1623],"score":1,"text":""},{"category_id":15,"poly":[837,1588,839,1588,839,1623,837,1623],"score":1,"text":""},{"category_id":15,"poly":[132,1622,164,1622,164,1654,132,1654],"score":1,"text":""},{"category_id":15,"poly":[220,1622,838,1622,838,1654,220,1654],"score":1,"text":""},{"category_id":15,"poly":[134,1657,836,1657,836,1686,134,1686],"score":1,"text":""},{"category_id":15,"poly":[133,1689,836,1689,836,1721,133,1721],"score":1,"text":""},{"category_id":15,"poly":[131,1720,836,1720,836,1755,131,1755],"score":1,"text":""},{"category_id":15,"poly":[132,1755,837,1755,837,1787,132,1787],"score":1,"text":""},{"category_id":15,"poly":[133,1789,835,1789,835,1821,133,1821],"score":1,"text":""},{"category_id":15,"poly":[132,1823,837,1823,837,1854,132,1854],"score":1,"text":""},{"category_id":15,"poly":[134,1857,196,1857,196,1885,134,1885],"score":1,"text":""},{"category_id":15,"poly":[864,161,1569,161,1569,192,864,192],"score":1,"text":""},{"category_id":15,"poly":[864,195,1568,195,1568,225,864,225],"score":1,"text":""},{"category_id":15,"poly":[865,229,1567,229,1567,258,865,258],"score":1,"text":""},{"category_id":15,"poly":[863,261,1569,261,1569,293,863,293],"score":1,"text":""},{"category_id":15,"poly":[863,295,1567,295,1567,324,863,324],"score":1,"text":""},{"category_id":15,"poly":[864,329,1568,329,1568,355,864,355],"score":1,"text":""},{"category_id":15,"poly":[865,362,1569,362,1569,391,865,391],"score":1,"text":""},{"category_id":15,"poly":[864,395,1570,395,1570,427,864,427],"score":1,"text":""},{"category_id":15,"poly":[865,429,1259,429,1259,458,865,458],"score":1,"text":""},{"category_id":15,"poly":[876,1519,1565,1519,1565,1544,876,1544],"score":1,"text":""},{"category_id":15,"poly":[916,1544,1569,1544,1569,1569,916,1569],"score":1,"text":""},{"category_id":15,"poly":[916,1569,1404,1569,1404,1594,916,1594],"score":1,"text":""},{"category_id":15,"poly":[874,1591,1568,1591,1568,1622,874,1622],"score":1,"text":""},{"category_id":15,"poly":[915,1618,1566,1618,1566,1645,915,1645],"score":1,"text":""},{"category_id":15,"poly":[915,1641,1506,1641,1506,1670,915,1670],"score":1,"text":""},{"category_id":15,"poly":[876,1669,1567,1669,1567,1694,876,1694],"score":1,"text":""},{"category_id":15,"poly":[915,1693,1566,1693,1566,1720,915,1720],"score":1,"text":""},{"category_id":15,"poly":[916,1719,1567,1719,1567,1744,916,1744],"score":1,"text":""},{"category_id":15,"poly":[914,1741,1371,1741,1371,1771,914,1771],"score":1,"text":""},{"category_id":15,"poly":[875,1767,1566,1767,1566,1795,875,1795],"score":1,"text":""},{"category_id":15,"poly":[915,1793,1567,1793,1567,1818,915,1818],"score":1,"text":""},{"category_id":15,"poly":[915,1817,1567,1817,1567,1844,915,1844],"score":1,"text":""},{"category_id":15,"poly":[915,1842,1567,1842,1567,1870,915,1870],"score":1,"text":""},{"category_id":15,"poly":[914,1867,1247,1867,1247,1893,914,1893],"score":1,"text":""},{"category_id":15,"poly":[876,1892,1567,1892,1567,1920,876,1920],"score":1,"text":""},{"category_id":15,"poly":[914,1918,1564,1918,1564,1946,914,1946],"score":1,"text":""},{"category_id":15,"poly":[912,1941,1568,1941,1568,1970,912,1970],"score":1,"text":""},{"category_id":15,"poly":[915,1967,1568,1967,1568,1995,915,1995],"score":1,"text":""},{"category_id":15,"poly":[915,1991,1561,1991,1561,2020,915,2020],"score":1,"text":""},{"category_id":15,"poly":[898,859,1320,859,1320,894,898,894],"score":1,"text":""},{"category_id":15,"poly":[897,882,1002,882,1002,920,897,920],"score":1,"text":""},{"category_id":15,"poly":[1106,882,1404,882,1404,920,1106,920],"score":1,"text":""},{"category_id":15,"poly":[897,907,1550,907,1550,946,897,946],"score":1,"text":""},{"category_id":15,"poly":[916,939,1036,939,1036,965,916,965],"score":1,"text":""},{"category_id":15,"poly":[1060,939,1191,939,1191,965,1060,965],"score":1,"text":""},{"category_id":15,"poly":[1136,1477,1295,1477,1295,1503,1136,1503],"score":1,"text":""},{"category_id":15,"poly":[134,162,833,162,833,194,134,194],"score":1,"text":""},{"category_id":15,"poly":[133,191,300,191,300,229,133,229],"score":1,"text":""},{"category_id":15,"poly":[330,191,837,191,837,229,330,229],"score":1,"text":""},{"category_id":15,"poly":[134,228,835,228,835,263,134,263],"score":1,"text":""},{"category_id":15,"poly":[132,262,837,262,837,294,132,294],"score":1,"text":""},{"category_id":15,"poly":[134,293,355,293,355,329,134,329],"score":1,"text":""},{"category_id":15,"poly":[1113,1020,1320,1020,1320,1057,1113,1057],"score":1,"text":""},{"category_id":15,"poly":[161,1887,834,1887,834,1921,161,1921],"score":1,"text":""},{"category_id":15,"poly":[133,1919,833,1919,833,1954,133,1954],"score":1,"text":""},{"category_id":15,"poly":[133,1954,835,1954,835,1987,133,1987],"score":1,"text":""},{"category_id":15,"poly":[132,1988,835,1988,835,2022,132,2022],"score":1,"text":""},{"category_id":15,"poly":[134,1350,835,1350,835,1382,134,1382],"score":1,"text":""},{"category_id":15,"poly":[132,1380,835,1380,835,1418,132,1418],"score":1,"text":""},{"category_id":15,"poly":[133,1415,836,1415,836,1449,133,1449],"score":1,"text":""},{"category_id":15,"poly":[137,1451,337,1451,337,1476,137,1476],"score":1,"text":""},{"category_id":15,"poly":[392,1451,735,1451,735,1476,392,1476],"score":1,"text":""},{"category_id":15,"poly":[828,1451,834,1451,834,1476,828,1476],"score":1,"text":""},{"category_id":15,"poly":[865,482,1560,482,1560,517,865,517],"score":1,"text":""},{"category_id":15,"poly":[863,518,1561,518,1561,548,863,548],"score":1,"text":""},{"category_id":15,"poly":[864,550,914,550,914,579,864,579],"score":1,"text":""}],"page_info":{"page_no":4,"height":2200,"width":1700}},{"layout_dets":[{"category_id":1,"poly":[133.59251403808594,158.80909729003906,843.0554809570312,158.80909729003906,843.0554809570312,1662.9813232421875,133.59251403808594,1662.9813232421875],"score":0.9999763369560242},{"category_id":15,"poly":[142,161,837,161,837,193,142,193],"score":1,"text":""},{"category_id":15,"poly":[184,188,839,188,839,220,184,220],"score":1,"text":""},{"category_id":15,"poly":[181,212,841,212,841,248,181,248],"score":1,"text":""},{"category_id":15,"poly":[184,238,409,238,409,265,184,265],"score":1,"text":""},{"category_id":15,"poly":[142,263,837,263,837,295,142,295],"score":1,"text":""},{"category_id":15,"poly":[179,285,839,285,839,324,179,324],"score":1,"text":""},{"category_id":15,"poly":[181,310,837,310,837,349,181,349],"score":1,"text":""},{"category_id":15,"poly":[184,340,287,340,287,367,184,367],"score":1,"text":""},{"category_id":15,"poly":[140,360,841,360,841,397,140,397],"score":1,"text":""},{"category_id":15,"poly":[183,385,839,385,839,420,183,420],"score":1,"text":""},{"category_id":15,"poly":[183,410,841,410,841,447,183,447],"score":1,"text":""},{"category_id":15,"poly":[181,435,655,435,655,472,181,472],"score":1,"text":""},{"category_id":15,"poly":[142,462,837,462,837,494,142,494],"score":1,"text":""},{"category_id":15,"poly":[181,484,839,484,839,522,181,522],"score":1,"text":""},{"category_id":15,"poly":[181,507,841,507,841,547,181,547],"score":1,"text":""},{"category_id":15,"poly":[179,536,444,536,444,567,179,567],"score":1,"text":""},{"category_id":15,"poly":[129,557,839,557,839,596,129,596],"score":1,"text":""},{"category_id":15,"poly":[179,584,837,584,837,623,179,623],"score":1,"text":""},{"category_id":15,"poly":[183,613,839,613,839,644,183,644],"score":1,"text":""},{"category_id":15,"poly":[181,634,842,634,842,671,181,671],"score":1,"text":""},{"category_id":15,"poly":[183,661,353,661,353,693,183,693],"score":1,"text":""},{"category_id":15,"poly":[130,684,841,684,841,721,130,721],"score":1,"text":""},{"category_id":15,"poly":[181,709,839,709,839,746,181,746],"score":1,"text":""},{"category_id":15,"poly":[177,735,410,735,410,768,177,768],"score":1,"text":""},{"category_id":15,"poly":[130,760,841,760,841,796,130,796],"score":1,"text":""},{"category_id":15,"poly":[181,781,842,781,842,822,181,822],"score":1,"text":""},{"category_id":15,"poly":[177,810,609,810,609,843,177,843],"score":1,"text":""},{"category_id":15,"poly":[129,831,841,831,841,872,129,872],"score":1,"text":""},{"category_id":15,"poly":[183,862,837,862,837,893,183,893],"score":1,"text":""},{"category_id":15,"poly":[181,883,839,883,839,920,181,920],"score":1,"text":""},{"category_id":15,"poly":[132,910,839,910,839,942,132,942],"score":1,"text":""},{"category_id":15,"poly":[183,935,837,935,837,967,183,967],"score":1,"text":""},{"category_id":15,"poly":[183,960,841,960,841,992,183,992],"score":1,"text":""},{"category_id":15,"poly":[179,984,462,984,462,1017,179,1017],"score":1,"text":""},{"category_id":15,"poly":[132,1010,837,1010,837,1042,132,1042],"score":1,"text":""},{"category_id":15,"poly":[181,1032,841,1032,841,1070,181,1070],"score":1,"text":""},{"category_id":15,"poly":[181,1059,841,1059,841,1095,181,1095],"score":1,"text":""},{"category_id":15,"poly":[181,1084,643,1084,643,1121,181,1121],"score":1,"text":""},{"category_id":15,"poly":[130,1109,841,1109,841,1146,130,1146],"score":1,"text":""},{"category_id":15,"poly":[181,1134,841,1134,841,1171,181,1171],"score":1,"text":""},{"category_id":15,"poly":[183,1157,841,1157,841,1194,183,1194],"score":1,"text":""},{"category_id":15,"poly":[177,1183,459,1183,459,1216,177,1216],"score":1,"text":""},{"category_id":15,"poly":[130,1207,837,1207,837,1243,130,1243],"score":1,"text":""},{"category_id":15,"poly":[183,1232,839,1232,839,1269,183,1269],"score":1,"text":""},{"category_id":15,"poly":[179,1254,839,1254,839,1296,179,1296],"score":1,"text":""},{"category_id":15,"poly":[180,1286,286,1286,286,1312,180,1312],"score":1,"text":""},{"category_id":15,"poly":[132,1309,839,1309,839,1341,132,1341],"score":1,"text":""},{"category_id":15,"poly":[183,1334,839,1334,839,1366,183,1366],"score":1,"text":""},{"category_id":15,"poly":[181,1358,679,1358,679,1395,181,1395],"score":1,"text":""},{"category_id":15,"poly":[132,1385,834,1385,834,1416,132,1416],"score":1,"text":""},{"category_id":15,"poly":[184,1410,837,1410,837,1441,184,1441],"score":1,"text":""},{"category_id":15,"poly":[184,1435,837,1435,837,1466,184,1466],"score":1,"text":""},{"category_id":15,"poly":[179,1455,839,1455,839,1495,179,1495],"score":1,"text":""},{"category_id":15,"poly":[183,1485,242,1485,242,1513,183,1513],"score":1,"text":""},{"category_id":15,"poly":[132,1506,841,1506,841,1543,132,1543],"score":1,"text":""},{"category_id":15,"poly":[179,1533,839,1533,839,1570,179,1570],"score":1,"text":""},{"category_id":15,"poly":[181,1558,285,1558,285,1590,181,1590],"score":1,"text":""},{"category_id":15,"poly":[134,1583,837,1583,837,1615,134,1615],"score":1,"text":""},{"category_id":15,"poly":[183,1607,842,1607,842,1643,183,1643],"score":1,"text":""},{"category_id":15,"poly":[181,1632,699,1632,699,1669,181,1669],"score":1,"text":""}],"page_info":{"page_no":5,"height":2200,"width":1700}}]
\ No newline at end of file \ No newline at end of file
...@@ -69,6 +69,7 @@ def pdf_parse_main( ...@@ -69,6 +69,7 @@ def pdf_parse_main(
:param parse_method: 解析方法, 共 auto、ocr、txt 三种,默认 auto,如果效果不好,可以尝试 ocr :param parse_method: 解析方法, 共 auto、ocr、txt 三种,默认 auto,如果效果不好,可以尝试 ocr
:param model_json_path: 已经存在的模型数据文件,如果为空则使用内置模型,pdf 和 model_json 务必对应 :param model_json_path: 已经存在的模型数据文件,如果为空则使用内置模型,pdf 和 model_json 务必对应
:param is_json_md_dump: 是否将解析后的数据写入到 .json 和 .md 文件中,默认 True,会将不同阶段的数据写入到不同的 .json 文件中(共3个.json文件),md内容会保存到 .md 文件中 :param is_json_md_dump: 是否将解析后的数据写入到 .json 和 .md 文件中,默认 True,会将不同阶段的数据写入到不同的 .json 文件中(共3个.json文件),md内容会保存到 .md 文件中
:param is_draw_visualization_bbox: 是否绘制可视化边界框,默认 True,会生成布局框和 span 框的图像
:param output_dir: 输出结果的目录地址,会生成一个以 pdf 文件名命名的文件夹并保存所有结果 :param output_dir: 输出结果的目录地址,会生成一个以 pdf 文件名命名的文件夹并保存所有结果
""" """
try: try:
...@@ -97,12 +98,9 @@ def pdf_parse_main( ...@@ -97,12 +98,9 @@ def pdf_parse_main(
model_json = [] model_json = []
# 执行解析步骤 # 执行解析步骤
# image_writer = DiskReaderWriter(output_image_path)
image_writer, md_writer = FileBasedDataWriter(output_image_path), FileBasedDataWriter(output_path) image_writer, md_writer = FileBasedDataWriter(output_image_path), FileBasedDataWriter(output_path)
# 选择解析方式 # 选择解析方式
# jso_useful_key = {"_pdf_type": "", "model_list": model_json}
# pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
if parse_method == 'auto': if parse_method == 'auto':
jso_useful_key = {'_pdf_type': '', 'model_list': model_json} jso_useful_key = {'_pdf_type': '', 'model_list': model_json}
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer) pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
...@@ -141,5 +139,5 @@ def pdf_parse_main( ...@@ -141,5 +139,5 @@ def pdf_parse_main(
# 测试 # 测试
if __name__ == '__main__': if __name__ == '__main__':
pdf_path = r'D:\project\20240617magicpdf\Magic-PDF\demo\demo1.pdf' file_path = r'D:\project\20240617magicpdf\Magic-PDF\demo\demo1.pdf'
pdf_parse_main(pdf_path) pdf_parse_main(file_path)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment