"src/my_utils/vscode:/vscode.git/clone" did not exist on "76b9024b282206200ee82b441dbe08c2d9299f2f"
Unverified Commit da048cbf authored by Sidney233's avatar Sidney233 Committed by GitHub
Browse files

Merge branch 'opendatalab:dev' into dev

parents 5685b22b 8a7fec50
This diff is collapsed.
This diff is collapsed.
# Frequently Asked Questions
If your question is not listed, you can also use [DeepWiki](https://deepwiki.com/opendatalab/MinerU) to communicate with the AI assistant, which can solve most common problems.
If you still cannot resolve the issue, you can join the community through [Discord](https://discord.gg/Tdedn9GTXq) or [WeChat](http://mineru.space/s/V85Yl) to communicate with other users and developers.
## 1. Encountered the error `ImportError: libGL.so.1: cannot open shared object file: No such file or directory` in Ubuntu 22.04 on WSL2
The `libgl` library is missing in Ubuntu 22.04 on WSL2. You can install the `libgl` library with the following command to resolve the issue:
```bash
sudo apt-get install libgl1-mesa-glx
```
Reference: https://github.com/opendatalab/MinerU/issues/388
## 2. Error when installing MinerU on CentOS 7 or Ubuntu 18: `ERROR: Failed building wheel for simsimd`
The new version of albumentations (1.4.21) introduces a dependency on simsimd. Since the pre-built package of simsimd for Linux requires a glibc version greater than or equal to 2.28, this causes installation issues on some Linux distributions released before 2019. You can resolve this issue by using the following command:
```
conda create -n mineru python=3.11 -y
conda activate mineru
pip install -U "mineru[pipeline_old_linux]"
```
Reference: https://github.com/opendatalab/MinerU/issues/1004
## 3. Missing text information in parsing results when installing and using on Linux systems.
MinerU uses `pypdfium2` instead of `pymupdf` as the PDF page rendering engine in versions >=2.0 to resolve AGPLv3 license issues. On some Linux distributions, due to missing CJK fonts, some text may be lost during the process of rendering PDFs to images.
To solve this problem, you can install the noto font package with the following commands, which are effective on Ubuntu/Debian systems:
```bash
sudo apt update
sudo apt install fonts-noto-core
sudo apt install fonts-noto-cjk
fc-cache -fv
```
You can also directly use our [Docker deployment](../quick_start/docker_deployment.md) method to build the image, which includes the above font packages by default.
Reference: https://github.com/opendatalab/MinerU/issues/2915
<script type="module" src="https://gradio.s3-us-west-2.amazonaws.com/5.35.0/gradio.js"></script>
<gradio-app src="https://opendatalab-mineru.hf.space"></gradio-app>
# Frequently Asked Questions
If your question is not listed, you can also use [DeepWiki](https://deepwiki.com/opendatalab/MinerU) to communicate with the AI assistant, which can solve most common problems.
If you still cannot resolve the issue, you can join the community through [Discord](https://discord.gg/Tdedn9GTXq) or [WeChat](http://mineru.space/s/V85Yl) to communicate with other users and developers.
??? question "Encountered the error `ImportError: libGL.so.1: cannot open shared object file: No such file or directory` in Ubuntu 22.04 on WSL2"
The `libgl` library is missing in Ubuntu 22.04 on WSL2. You can install the `libgl` library with the following command to resolve the issue:
```bash
sudo apt-get install libgl1-mesa-glx
```
Reference: [#388](https://github.com/opendatalab/MinerU/issues/388)
??? question "Error when installing MinerU on CentOS 7 or Ubuntu 18: `ERROR: Failed building wheel for simsimd`"
The new version of albumentations (1.4.21) introduces a dependency on simsimd. Since the pre-built package of simsimd for Linux requires a glibc version greater than or equal to 2.28, this causes installation issues on some Linux distributions released before 2019. You can resolve this issue by using the following command:
```
conda create -n mineru python=3.11 -y
conda activate mineru
pip install -U "mineru[pipeline_old_linux]"
```
Reference: [#1004](https://github.com/opendatalab/MinerU/issues/1004)
??? question "Missing text information in parsing results when installing and using on Linux systems."
MinerU uses `pypdfium2` instead of `pymupdf` as the PDF page rendering engine in versions >=2.0 to resolve AGPLv3 license issues. On some Linux distributions, due to missing CJK fonts, some text may be lost during the process of rendering PDFs to images.
To solve this problem, you can install the noto font package with the following commands, which are effective on Ubuntu/Debian systems:
```bash
sudo apt update
sudo apt install fonts-noto-core
sudo apt install fonts-noto-cjk
fc-cache -fv
```
You can also directly use our [Docker deployment](../quick_start/docker_deployment.md) method to build the image, which includes the above font packages by default.
Reference: [#2915](https://github.com/opendatalab/MinerU/issues/2915)
<div align="center" xmlns="http://www.w3.org/1999/html"> <div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo --> <!-- logo -->
<p align="center"> <p align="center">
<img src="../images/MinerU-logo.png" width="300px" style="vertical-align:middle;"> <img src="https://opendatalab.github.io/MinerU/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
</p> </p>
</div>
<!-- icon --> <!-- icon -->
...@@ -14,14 +15,14 @@ ...@@ -14,14 +15,14 @@
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mineru)](https://pypi.org/project/mineru/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mineru)](https://pypi.org/project/mineru/)
[![Downloads](https://static.pepy.tech/badge/mineru)](https://pepy.tech/project/mineru) [![Downloads](https://static.pepy.tech/badge/mineru)](https://pepy.tech/project/mineru)
[![Downloads](https://static.pepy.tech/badge/mineru/month)](https://pepy.tech/project/mineru) [![Downloads](https://static.pepy.tech/badge/mineru/month)](https://pepy.tech/project/mineru)
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github) [![OpenDataLab](https://img.shields.io/badge/webapp_on_mineru.net-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU) [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
[![arXiv](https://img.shields.io/badge/arXiv-2409.18839-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2409.18839) [![arXiv](https://img.shields.io/badge/arXiv-2409.18839-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2409.18839)
[![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/opendatalab/MinerU) [![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/opendatalab/MinerU)
<div align="center">
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a> <a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
<!-- hot link --> <!-- hot link -->
......
...@@ -5,12 +5,12 @@ MinerU provides a convenient Docker deployment method, which helps quickly set u ...@@ -5,12 +5,12 @@ MinerU provides a convenient Docker deployment method, which helps quickly set u
## Build Docker Image using Dockerfile: ## Build Docker Image using Dockerfile:
```bash ```bash
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/china/Dockerfile wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/global/Dockerfile
docker build -t mineru-sglang:latest -f Dockerfile . docker build -t mineru-sglang:latest -f Dockerfile .
``` ```
> [!TIP] > [!TIP]
> The [Dockerfile](https://github.com/opendatalab/MinerU/blob/master/docker/china/Dockerfile) uses `lmsysorg/sglang:v0.4.8.post1-cu126` as the base image by default, supporting Turing/Ampere/Ada Lovelace/Hopper platforms. > The [Dockerfile](https://github.com/opendatalab/MinerU/blob/master/docker/global/Dockerfile) uses `lmsysorg/sglang:v0.4.8.post1-cu126` as the base image by default, supporting Turing/Ampere/Ada Lovelace/Hopper platforms.
> If you are using the newer `Blackwell` platform, please modify the base image to `lmsysorg/sglang:v0.4.8.post1-cu128-b200` before executing the build operation. > If you are using the newer `Blackwell` platform, please modify the base image to `lmsysorg/sglang:v0.4.8.post1-cu128-b200` before executing the build operation.
## Docker Description ## Docker Description
...@@ -19,6 +19,7 @@ MinerU's Docker uses `lmsysorg/sglang` as the base image, so it includes the `sg ...@@ -19,6 +19,7 @@ MinerU's Docker uses `lmsysorg/sglang` as the base image, so it includes the `sg
> [!NOTE] > [!NOTE]
> Requirements for using `sglang` to accelerate VLM model inference: > Requirements for using `sglang` to accelerate VLM model inference:
>
> - Device must have Turing architecture or later graphics cards with 8GB+ available VRAM. > - Device must have Turing architecture or later graphics cards with 8GB+ available VRAM.
> - The host machine's graphics driver should support CUDA 12.6 or higher; `Blackwell` platform should support CUDA 12.8 or higher. You can check the driver version using the `nvidia-smi` command. > - The host machine's graphics driver should support CUDA 12.6 or higher; `Blackwell` platform should support CUDA 12.8 or higher. You can check the driver version using the `nvidia-smi` command.
> - Docker container must have access to the host machine's graphics devices. > - Docker container must have access to the host machine's graphics devices.
...@@ -41,28 +42,41 @@ You can also directly start MinerU services by replacing `/bin/bash` with servic ...@@ -41,28 +42,41 @@ You can also directly start MinerU services by replacing `/bin/bash` with servic
## Start Services Directly with Docker Compose ## Start Services Directly with Docker Compose
We provide a `compose.yml` file that you can use to quickly start MinerU services. We provide a [compose.yaml](https://github.com/opendatalab/MinerU/blob/master/docker/compose.yaml) file that you can use to quickly start MinerU services.
```bash ```bash
# Download compose.yaml file # Download compose.yaml file
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/compose.yaml wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/compose.yaml
``` ```
>[!NOTE]
>
>- The `compose.yaml` file contains configurations for multiple services of MinerU, you can choose to start specific services as needed.
>- Different services might have additional parameter configurations, which you can view and edit in the `compose.yaml` file.
>- Due to the pre-allocation of GPU memory by the `sglang` inference acceleration framework, you may not be able to run multiple `sglang` services simultaneously on the same machine. Therefore, ensure that other services that might use GPU memory have been stopped before starting the `vlm-sglang-server` service or using the `vlm-sglang-engine` backend.
- Start `sglang-server` service and connect to `sglang-server` via `vlm-sglang-client` backend: - Start `sglang-server` service and connect to `sglang-server` via `vlm-sglang-client` backend:
```bash ```bash
docker compose -f compose.yaml --profile mineru-sglang-server up -d docker compose -f compose.yaml --profile mineru-sglang-server up -d
# In another terminal, connect to sglang server via sglang client (only requires CPU and network, no sglang environment needed)
mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://<server_ip>:30000
``` ```
>[!TIP]
>In another terminal, connect to sglang server via sglang client (only requires CPU and network, no sglang environment needed)
> ```bash
> mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://<server_ip>:30000
> ```
- Start API service: - Start API service:
```bash ```bash
docker compose -f compose.yaml --profile mineru-api up -d docker compose -f compose.yaml --profile mineru-api up -d
``` ```
Access `http://<server_ip>:8000/docs` in your browser to view the API documentation. >[!TIP]
>Access `http://<server_ip>:8000/docs` in your browser to view the API documentation.
- Start Gradio WebUI service: - Start Gradio WebUI service:
```bash ```bash
docker compose -f compose.yaml --profile mineru-gradio up -d docker compose -f compose.yaml --profile mineru-gradio up -d
``` ```
Access `http://<server_ip>:7860` in your browser to use the Gradio WebUI or access `http://<server_ip>:7860/?view=api` to use the Gradio API. >[!TIP]
>
>- Access `http://<server_ip>:7860` in your browser to use the Gradio WebUI.
>- Access `http://<server_ip>:7860/?view=api` to use the Gradio API.
...@@ -4,12 +4,16 @@ If you encounter any installation issues, please check the [FAQ](../FAQ/index.md ...@@ -4,12 +4,16 @@ If you encounter any installation issues, please check the [FAQ](../FAQ/index.md
## Online Experience ## Online Experience
- Official online demo: The official online version has the same functionality as the client, with a beautiful interface and rich features, requires login to use ### Official online web application
- [![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github) The official online version has the same functionality as the client, with a beautiful interface and rich features, requires login to use
- Gradio-based online demo: A WebUI developed based on Gradio, with a simple interface and only core parsing functionality, no login required - [![OpenDataLab](https://img.shields.io/badge/webapp_on_mineru.net-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
- [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
- [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU) ### Gradio-based online demo
A WebUI developed based on Gradio, with a simple interface and only core parsing functionality, no login required
- [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
- [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
## Local Deployment ## Local Deployment
...@@ -22,7 +26,7 @@ If you encounter any installation issues, please check the [FAQ](../FAQ/index.md ...@@ -22,7 +26,7 @@ If you encounter any installation issues, please check the [FAQ](../FAQ/index.md
> >
> In non-mainstream environments, due to the diversity of hardware and software configurations, as well as compatibility issues with third-party dependencies, we cannot guarantee 100% usability of the project. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first, as most issues have corresponding solutions in the FAQ. Additionally, we encourage community feedback on issues so that we can gradually expand our support range. > In non-mainstream environments, due to the diversity of hardware and software configurations, as well as compatibility issues with third-party dependencies, we cannot guarantee 100% usability of the project. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first, as most issues have corresponding solutions in the FAQ. Additionally, we encourage community feedback on issues so that we can gradually expand our support range.
<table> <table border="1">
<tr> <tr>
<td>Parsing Backend</td> <td>Parsing Backend</td>
<td>pipeline</td> <td>pipeline</td>
...@@ -86,3 +90,7 @@ MinerU provides a convenient Docker deployment method, which helps quickly set u ...@@ -86,3 +90,7 @@ MinerU provides a convenient Docker deployment method, which helps quickly set u
You can get the [Docker Deployment Instructions](./docker_deployment.md) in the documentation. You can get the [Docker Deployment Instructions](./docker_deployment.md) in the documentation.
--- ---
### Using MinerU
You can use MinerU for PDF parsing through various methods such as command line, API, and WebUI. For detailed instructions, please refer to the [Usage Guide](../usage/index.md).
\ No newline at end of file
# Overview # MinerU Output Files Documentation
After executing the `mineru` command, in addition to outputting files related to markdown, several other files unrelated to markdown will also be generated. These files will be introduced one by one. ## Overview
## some_pdf_layout.pdf After executing the `mineru` command, in addition to the main markdown file output, multiple auxiliary files are generated for debugging, quality inspection, and further processing. These files include:
Each page's layout consists of one or more bounding boxes. The number in the top-right corner of each box indicates the reading order. Additionally, different content blocks are highlighted with distinct background colors within the layout.pdf. - **Visual debugging files**: Help users intuitively understand the document parsing process and results
![layout example](../images/layout_example.png) - **Structured data files**: Contain detailed parsing data for secondary development
## some_pdf_spans.pdf(Applicable only to the pipeline backend) The following sections provide detailed descriptions of each file's purpose and format.
All spans on the page are drawn with different colored line frames according to the span type. This file can be used for quality control, allowing for quick identification of issues such as missing text or unrecognized inline formulas. ## Visual Debugging Files
![spans example](../images/spans_example.png) ### Layout Analysis File (layout.pdf)
## some_pdf_model.json(Applicable only to the pipeline backend) **File naming format**: `{original_filename}_layout.pdf`
### Structure Definition **Functionality**:
- Visualizes layout analysis results for each page
- Numbers in the top-right corner of each detection box indicate reading order
- Different background colors distinguish different types of content blocks
**Use cases**:
- Check if layout analysis is correct
- Verify if reading order is reasonable
- Debug layout-related issues
![layout page example](../images/layout_example.png)
### Text Spans File (spans.pdf)
> [!NOTE]
> Only applicable to pipeline backend
**File naming format**: `{original_filename}_spans.pdf`
**Functionality**:
- Uses different colored line boxes to annotate page content based on span type
- Used for quality inspection and issue troubleshooting
**Use cases**:
- Quickly troubleshoot text loss issues
- Check inline formula recognition
- Verify text segmentation accuracy
![span page example](../images/spans_example.png)
## Structured Data Files
### Model Inference Results (model.json)
> [!NOTE]
> Only applicable to pipeline backend
**File naming format**: `{original_filename}_model.json`
#### Data Structure Definition
```python ```python
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from enum import IntEnum from enum import IntEnum
class CategoryType(IntEnum): class CategoryType(IntEnum):
"""Content category enumeration"""
title = 0 # Title title = 0 # Title
plain_text = 1 # Text plain_text = 1 # Text
abandon = 2 # Includes headers, footers, page numbers, and page annotations abandon = 2 # Including headers, footers, page numbers, and page annotations
figure = 3 # Image figure = 3 # Image
figure_caption = 4 # Image description figure_caption = 4 # Image caption
table = 5 # Table table = 5 # Table
table_caption = 6 # Table description table_caption = 6 # Table caption
table_footnote = 7 # Table footnote table_footnote = 7 # Table footnote
isolate_formula = 8 # Block formula isolate_formula = 8 # Interline formula
formula_caption = 9 # Formula label formula_caption = 9 # Interline formula number
embedding = 13 # Inline formula embedding = 13 # Inline formula
isolated = 14 # Block formula isolated = 14 # Interline formula
text = 15 # OCR recognition result text = 15 # OCR recognition result
class PageInfo(BaseModel): class PageInfo(BaseModel):
page_no: int = Field(description="Page number, the first page is 0", ge=0) """Page information"""
page_no: int = Field(description="Page number, first page is 0", ge=0)
height: int = Field(description="Page height", gt=0) height: int = Field(description="Page height", gt=0)
width: int = Field(description="Page width", ge=0) width: int = Field(description="Page width", ge=0)
class ObjectInferenceResult(BaseModel): class ObjectInferenceResult(BaseModel):
"""Object recognition result"""
category_id: CategoryType = Field(description="Category", ge=0) category_id: CategoryType = Field(description="Category", ge=0)
poly: list[float] = Field(description="Quadrilateral coordinates, representing the coordinates of the top-left, top-right, bottom-right, and bottom-left points respectively") poly: list[float] = Field(description="Quadrilateral coordinates, format: [x0,y0,x1,y1,x2,y2,x3,y3]")
score: float = Field(description="Confidence of the inference result") score: float = Field(description="Confidence score of inference result")
latex: str | None = Field(description="LaTeX parsing result", default=None) latex: str | None = Field(description="LaTeX parsing result", default=None)
html: str | None = Field(description="HTML parsing result", default=None) html: str | None = Field(description="HTML parsing result", default=None)
class PageInferenceResults(BaseModel): class PageInferenceResults(BaseModel):
layout_dets: list[ObjectInferenceResult] = Field(description="Page recognition results", ge=0) """Page inference results"""
layout_dets: list[ObjectInferenceResult] = Field(description="Page recognition results")
page_info: PageInfo = Field(description="Page metadata") page_info: PageInfo = Field(description="Page metadata")
# Complete inference results
# The inference results of all pages, ordered by page number, are stored in a list as the inference results of MinerU
inference_result: list[PageInferenceResults] = [] inference_result: list[PageInferenceResults] = []
``` ```
The format of the poly coordinates is \[x0, y0, x1, y1, x2, y2, x3, y3\], representing the coordinates of the top-left, top-right, bottom-right, and bottom-left points respectively. #### Coordinate System Description
![Poly Coordinate Diagram](../images/poly.png)
`poly` coordinate format: `[x0, y0, x1, y1, x2, y2, x3, y3]`
- Represents coordinates of top-left, top-right, bottom-right, bottom-left points respectively
- Coordinate origin is at the top-left corner of the page
![poly coordinate diagram](../images/poly.png)
### example #### Sample Data
```json ```json
[ [
...@@ -116,142 +165,127 @@ The format of the poly coordinates is \[x0, y0, x1, y1, x2, y2, x3, y3\], repres ...@@ -116,142 +165,127 @@ The format of the poly coordinates is \[x0, y0, x1, y1, x2, y2, x3, y3\], repres
] ]
``` ```
## some_pdf_model_output.txt (Applicable only to the VLM backend) ### VLM Output Results (model_output.txt)
This file contains the output of the VLM model, with each page's output separated by `----`. > [!NOTE]
Each page's output consists of text blocks starting with `<|box_start|>` and ending with `<|md_end|>`. > Only applicable to VLM backend
The meaning of each field is as follows:
- `<|box_start|>x0 y0 x1 y1<|box_end|>`
x0 y0 x1 y1 represent the coordinates of a quadrilateral, indicating the top-left and bottom-right points. The values are based on a normalized page size of 1000x1000.
- `<|ref_start|>type<|ref_end|>`
`type` indicates the block type. Possible values are:
```json
{
"text": "Text",
"title": "Title",
"image": "Image",
"image_caption": "Image Caption",
"image_footnote": "Image Footnote",
"table": "Table",
"table_caption": "Table Caption",
"table_footnote": "Table Footnote",
"equation": "Interline Equation"
}
```
- `<|md_start|>Markdown content<|md_end|>`
This field contains the Markdown content of the block. If `type` is `text`, the end of the text may contain the `<|txt_contd|>` tag, indicating that this block can be connected with the following `text` block(s).
If `type` is `table`, the content is in `otsl` format and needs to be converted into HTML for rendering in Markdown.
## some_pdf_middle.json **File naming format**: `{original_filename}_model_output.txt`
| Field Name | Description | #### File Format Description
|:---------------| :------------------------------------------------------------------------------------------------------------- |
| pdf_info | list, each element is a dict representing the parsing result of each PDF page, see the table below for details |
| \_backend | pipeline \| vlm, used to indicate the mode used in this intermediate parsing state |
| \_version_name | string, indicates the version of mineru used in this parsing |
<br> - Uses `----` to separate output results for each page
- Each page contains multiple text blocks starting with `<|box_start|>` and ending with `<|md_end|>`
**pdf_info** #### Field Meanings
Field structure description | Tag | Format | Description |
|-----|--------|-------------|
| Bounding box | `<\|box_start\|>x0 y0 x1 y1<\|box_end\|>` | Quadrilateral coordinates (top-left, bottom-right points), coordinate values after scaling page to 1000×1000 |
| Type tag | `<\|ref_start\|>type<\|ref_end\|>` | Content block type identifier |
| Content | `<\|md_start\|>markdown content<\|md_end\|>` | Markdown content of the block |
| Field Name | Description | #### Supported Content Types
| :------------------ | :----------------------------------------------------------------------------------------------------------------- |
| preproc_blocks | Intermediate result after PDF preprocessing, not yet segmented |
| layout_bboxes | Layout segmentation results, containing layout direction (vertical, horizontal), and bbox, sorted by reading order |
| page_idx | Page number, starting from 0 |
| page_size | Page width and height |
| \_layout_tree | Layout tree structure |
| images | list, each element is a dict representing an img_block |
| tables | list, each element is a dict representing a table_block |
| interline_equations | list, each element is a dict representing an interline_equation_block |
| discarded_blocks | List, block information returned by the model that needs to be dropped |
| para_blocks | Result after segmenting preproc_blocks |
In the above table, `para_blocks` is an array of dicts, each dict representing a block structure. A block can support up to one level of nesting. ```json
{
<br> "text": "Text",
"title": "Title",
**block** "image": "Image",
"image_caption": "Image caption",
The outer block is referred to as a first-level block, and the fields in the first-level block include: "image_footnote": "Image footnote",
"table": "Table",
| Field Name | Description | "table_caption": "Table caption",
| :--------- | :------------------------------------------------------------- | "table_footnote": "Table footnote",
| type | Block type (table\|image) | "equation": "Interline formula"
| bbox | Block bounding box coordinates | }
| blocks | list, each element is a dict representing a second-level block | ```
<br>
There are only two types of first-level blocks: "table" and "image". All other blocks are second-level blocks.
The fields in a second-level block include: #### Special Tags
| Field Name | Description | - `<|txt_contd|>`: Appears at the end of text, indicating that this text block can be connected with subsequent text blocks
| :--------- | :---------------------------------------------------------------------------------------------------------- | - Table content uses `otsl` format and needs to be converted to HTML for rendering in Markdown
| type | Block type |
| bbox | Block bounding box coordinates |
| lines | list, each element is a dict representing a line, used to describe the composition of a line of information |
Detailed explanation of second-level block types ### Intermediate Processing Results (middle.json)
| type | Description | **File naming format**: `{original_filename}_middle.json`
| :----------------- | :--------------------- |
| image_body | Main body of the image |
| image_caption | Image description text |
| image_footnote | Image footnote |
| table_body | Main body of the table |
| table_caption | Table description text |
| table_footnote | Table footnote |
| text | Text block |
| title | Title block |
| index | Index block |
| list | List block |
| interline_equation | Block formula |
<br> #### Top-level Structure
**line** | Field Name | Type | Description |
|------------|------|-------------|
| `pdf_info` | `list[dict]` | Array of parsing results for each page |
| `_backend` | `string` | Parsing mode: `pipeline` or `vlm` |
| `_version_name` | `string` | MinerU version number |
The field format of a line is as follows: #### Page Information Structure (pdf_info)
| Field Name | Description | | Field Name | Description |
| :--------- | :------------------------------------------------------------------------------------------------------ | |------------|-------------|
| bbox | Bounding box coordinates of the line | | `preproc_blocks` | Unsegmented intermediate results after PDF preprocessing |
| spans | list, each element is a dict representing a span, used to describe the composition of the smallest unit | | `layout_bboxes` | Layout segmentation results, including layout direction and bounding boxes, sorted by reading order |
| `page_idx` | Page number, starting from 0 |
| `page_size` | Page width and height `[width, height]` |
| `_layout_tree` | Layout tree structure |
| `images` | Image block information list |
| `tables` | Table block information list |
| `interline_equations` | Interline formula block information list |
| `discarded_blocks` | Block information to be discarded |
| `para_blocks` | Content block results after segmentation |
#### Block Structure Hierarchy
<br> ```
Level 1 blocks (table | image)
└── Level 2 blocks
└── Lines
└── Spans
```
**span** #### Level 1 Block Fields
| Field Name | Description | | Field Name | Description |
| :------------------ | :------------------------------------------------------------------------------------------------------- | |------------|-------------|
| bbox | Bounding box coordinates of the span | | `type` | Block type: `table` or `image` |
| type | Type of the span | | `bbox` | Rectangular box coordinates of the block `[x0, y0, x1, y1]` |
| content \| img_path | Text spans use content, chart spans use img_path to store the actual text or screenshot path information | | `blocks` | List of contained level 2 blocks |
The types of spans are as follows:
| type | Description |
| :----------------- | :------------- |
| image | Image |
| table | Table |
| text | Text |
| inline_equation | Inline formula |
| interline_equation | Block formula |
**Summary**
A span is the smallest storage unit for all elements. #### Level 2 Block Fields
The elements stored within para_blocks are block information. | Field Name | Description |
|------------|-------------|
The block structure is as follows: | `type` | Block type (see table below) |
| `bbox` | Rectangular box coordinates of the block |
First-level block (if any) -> Second-level block -> Line -> Span | `lines` | List of contained line information |
### example #### Level 2 Block Types
| Type | Description |
|------|-------------|
| `image_body` | Image body |
| `image_caption` | Image caption text |
| `image_footnote` | Image footnote |
| `table_body` | Table body |
| `table_caption` | Table caption text |
| `table_footnote` | Table footnote |
| `text` | Text block |
| `title` | Title block |
| `index` | Index block |
| `list` | List block |
| `interline_equation` | Interline formula block |
#### Line and Span Structure
**Line fields**:
- `bbox`: Rectangular box coordinates of the line
- `spans`: List of contained spans
**Span fields**:
- `bbox`: Rectangular box coordinates of the span
- `type`: Span type (`image`, `table`, `text`, `inline_equation`, `interline_equation`)
- `content` | `img_path`: Text content or image path
#### Sample Data
```json ```json
{ {
...@@ -354,29 +388,37 @@ First-level block (if any) -> Second-level block -> Line -> Span ...@@ -354,29 +388,37 @@ First-level block (if any) -> Second-level block -> Line -> Span
} }
``` ```
### Content List (content_list.json)
## some_pdf_content_list.json **File naming format**: `{original_filename}_content_list.json`
This file is a JSON array where each element is a dict storing all readable content blocks in the document in reading order. #### Functionality
`content_list` can be viewed as a simplified version of `middle.json`. The content block types are mostly consistent with those in `middle.json`, but layout information is not included.
The content has the following types: This is a simplified version of `middle.json` that stores all readable content blocks in reading order as a flat structure, removing complex layout information for easier subsequent processing.
| type | desc | #### Content Types
|:---------|:--------------|
| image | Image |
| table | Table |
| text | Text / Title |
| equation | Block formula |
Please note that both `title` and text blocks in `content_list` are uniformly represented using the text type. The `text_level` field is used to distinguish the hierarchy of text blocks: | Type | Description |
- A block without the `text_level` field or with `text_level=0` represents body text. |------|-------------|
- A block with `text_level=1` represents a level-1 heading. | `image` | Image |
- A block with `text_level=2` represents a level-2 heading, and so on. | `table` | Table |
| `text` | Text/Title |
| `equation` | Interline formula |
Each content contains the `page_idx` field, indicating the page number (starting from 0) where the content block resides. #### Text Level Identification
### example Text levels are distinguished through the `text_level` field:
- No `text_level` or `text_level: 0`: Body text
- `text_level: 1`: Level 1 heading
- `text_level: 2`: Level 2 heading
- And so on...
#### Common Fields
All content blocks include a `page_idx` field indicating the page number (starting from 0).
#### Sample Data
```json ```json
[ [
...@@ -438,3 +480,12 @@ Each content contains the `page_idx` field, indicating the page number (starting ...@@ -438,3 +480,12 @@ Each content contains the `page_idx` field, indicating the page number (starting
} }
] ]
``` ```
## Summary
The above files constitute MinerU's complete output results. Users can choose appropriate files for subsequent processing based on their needs:
- **Model outputs**: Use raw outputs (model.json, model_output.txt)
- **Debugging and verification**: Use visualization files (layout.pdf, spans.pdf)
- **Content extraction**: Use simplified files (*.md, content_list.json)
- **Secondary development**: Use structured files (middle.json)
...@@ -5,19 +5,21 @@ ...@@ -5,19 +5,21 @@
### Memory Optimization Parameters ### Memory Optimization Parameters
> [!TIP] > [!TIP]
> SGLang acceleration mode currently supports running on Turing architecture graphics cards with a minimum of 8GB VRAM, but graphics cards with <24GB VRAM may encounter insufficient memory issues. You can optimize memory usage with the following parameters: > SGLang acceleration mode currently supports running on Turing architecture graphics cards with a minimum of 8GB VRAM, but graphics cards with <24GB VRAM may encounter insufficient memory issues. You can optimize memory usage with the following parameters:
>
> - If you encounter insufficient VRAM when using a single graphics card, you may need to reduce the KV cache size with `--mem-fraction-static 0.5`. If VRAM issues persist, try reducing it further to `0.4` or lower. > - If you encounter insufficient VRAM when using a single graphics card, you may need to reduce the KV cache size with `--mem-fraction-static 0.5`. If VRAM issues persist, try reducing it further to `0.4` or lower.
> - If you have two or more graphics cards, you can try using tensor parallelism (TP) mode to simply expand available VRAM: `--tp-size 2` > - If you have two or more graphics cards, you can try using tensor parallelism (TP) mode to simply expand available VRAM: `--tp-size 2`
### Performance Optimization Parameters ### Performance Optimization Parameters
> [!TIP] > [!TIP]
> If you can already use SGLang normally for accelerated VLM model inference but still want to further improve inference speed, you can try the following parameters: > If you can already use SGLang normally for accelerated VLM model inference but still want to further improve inference speed, you can try the following parameters:
>
> - If you have multiple graphics cards, you can use SGLang's multi-card parallel mode to increase throughput: `--dp-size 2` > - If you have multiple graphics cards, you can use SGLang's multi-card parallel mode to increase throughput: `--dp-size 2`
> - You can also enable `torch.compile` to accelerate inference speed by approximately 15%: `--enable-torch-compile` > - You can also enable `torch.compile` to accelerate inference speed by approximately 15%: `--enable-torch-compile`
### Parameter Passing Instructions ### Parameter Passing Instructions
> [!TIP] > [!TIP]
> - If you want to learn more about `sglang` parameter usage, please refer to the [SGLang official documentation](https://docs.sglang.ai/backend/server_arguments.html#common-launch-commands)
> - All officially supported SGLang parameters can be passed to MinerU through command line arguments, including the following commands: `mineru`, `mineru-sglang-server`, `mineru-gradio`, `mineru-api` > - All officially supported SGLang parameters can be passed to MinerU through command line arguments, including the following commands: `mineru`, `mineru-sglang-server`, `mineru-gradio`, `mineru-api`
> - If you want to learn more about `sglang` parameter usage, please refer to the [SGLang official documentation](https://docs.sglang.ai/backend/server_arguments.html#common-launch-commands)
## GPU Device Selection and Configuration ## GPU Device Selection and Configuration
...@@ -31,22 +33,29 @@ ...@@ -31,22 +33,29 @@
### Common Device Configuration Examples ### Common Device Configuration Examples
> [!TIP] > [!TIP]
> - Here are some common `CUDA_VISIBLE_DEVICES` setting examples: > Here are some common `CUDA_VISIBLE_DEVICES` setting examples:
> ```bash > ```bash
> CUDA_VISIBLE_DEVICES=1 Only device 1 will be seen > CUDA_VISIBLE_DEVICES=1 # Only device 1 will be seen
> CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1 will be visible > CUDA_VISIBLE_DEVICES=0,1 # Devices 0 and 1 will be visible
> CUDA_VISIBLE_DEVICES="0,1" Same as above, quotation marks are optional > CUDA_VISIBLE_DEVICES="0,1" # Same as above, quotation marks are optional
> CUDA_VISIBLE_DEVICES=0,2,3 Devices 0, 2, 3 will be visible; device 1 is masked > CUDA_VISIBLE_DEVICES=0,2,3 # Devices 0, 2, 3 will be visible; device 1 is masked
> CUDA_VISIBLE_DEVICES="" No GPU will be visible > CUDA_VISIBLE_DEVICES="" # No GPU will be visible
> ``` > ```
### Practical Application Scenarios ## Practical Application Scenarios
> [!TIP] > [!TIP]
> Here are some possible usage scenarios: > Here are some possible usage scenarios:
> - If you have multiple graphics cards and need to specify cards 0 and 1, using multi-card parallelism to start 'sglang-server', you can use the following command: >
> - If you have multiple graphics cards and need to specify cards 0 and 1, using multi-card parallelism to start `sglang-server`, you can use the following command:
> ```bash > ```bash
> CUDA_VISIBLE_DEVICES=0,1 mineru-sglang-server --port 30000 --dp-size 2 > CUDA_VISIBLE_DEVICES=0,1 mineru-sglang-server --port 30000 --dp-size 2
> ``` > ```
>
> - If you have multiple GPUs and need to specify GPU 0–3, and start the `sglang-server` using multi-GPU data parallelism and tensor parallelism, you can use the following command:
> ```bash
> CUDA_VISIBLE_DEVICES=0,1,2,3 mineru-sglang-server --port 30000 --dp-size 2 --tp-size 2
> ```
>
> - If you have multiple graphics cards and need to start two `fastapi` services on cards 0 and 1, listening on different ports respectively, you can use the following commands: > - If you have multiple graphics cards and need to start two `fastapi` services on cards 0 and 1, listening on different ports respectively, you can use the following commands:
> ```bash > ```bash
> # In terminal 1 > # In terminal 1
......
...@@ -63,6 +63,8 @@ Options: ...@@ -63,6 +63,8 @@ Options:
## Environment Variables Description ## Environment Variables Description
Some parameters of MinerU command line tools have equivalent environment variable configurations. Generally, environment variable configurations have higher priority than command line parameters and take effect across all command line tools. Some parameters of MinerU command line tools have equivalent environment variable configurations. Generally, environment variable configurations have higher priority than command line parameters and take effect across all command line tools.
Here are the environment variables and their descriptions:
- `MINERU_DEVICE_MODE`: Used to specify inference device, supports device types like `cpu/cuda/cuda:0/npu/mps`, only effective for `pipeline` backend. - `MINERU_DEVICE_MODE`: Used to specify inference device, supports device types like `cpu/cuda/cuda:0/npu/mps`, only effective for `pipeline` backend.
- `MINERU_VIRTUAL_VRAM_SIZE`: Used to specify maximum GPU VRAM usage per process (GB), only effective for `pipeline` backend. - `MINERU_VIRTUAL_VRAM_SIZE`: Used to specify maximum GPU VRAM usage per process (GB), only effective for `pipeline` backend.
- `MINERU_MODEL_SOURCE`: Used to specify model source, supports `huggingface/modelscope/local`, defaults to `huggingface`, can be switched to `modelscope` or local models through environment variables. - `MINERU_MODEL_SOURCE`: Used to specify model source, supports `huggingface/modelscope/local`, defaults to `huggingface`, can be switched to `modelscope` or local models through environment variables.
......
...@@ -15,14 +15,16 @@ MinerU has built-in command line tools that allow users to quickly use MinerU fo ...@@ -15,14 +15,16 @@ MinerU has built-in command line tools that allow users to quickly use MinerU fo
# Default parsing using pipeline backend # Default parsing using pipeline backend
mineru -p <input_path> -o <output_path> mineru -p <input_path> -o <output_path>
``` ```
- `<input_path>`: Local PDF/image file or directory > [!TIP]
- `<output_path>`: Output directory >- `<input_path>`: Local PDF/image file or directory
>- `<output_path>`: Output directory
>
> For more information about output files, please refer to [Output File Documentation](../output_files.md).
> [!NOTE] > [!NOTE]
> The command line tool will automatically attempt cuda/mps acceleration on Linux and macOS systems. Windows users who need cuda acceleration should visit the [PyTorch official website](https://pytorch.org/get-started/locally/) to select the appropriate command for their cuda version to install acceleration-enabled `torch` and `torchvision`. > The command line tool will automatically attempt cuda/mps acceleration on Linux and macOS systems.
> Windows users who need cuda acceleration should visit the [PyTorch official website](https://pytorch.org/get-started/locally/) to select the appropriate command for their cuda version to install acceleration-enabled `torch` and `torchvision`.
> [!TIP]
> For more information about output files, please refer to [Output File Documentation](./output_file.md).
```bash ```bash
# Or specify vlm backend for parsing # Or specify vlm backend for parsing
...@@ -42,7 +44,8 @@ If you need to adjust parsing options through custom parameters, you can also ch ...@@ -42,7 +44,8 @@ If you need to adjust parsing options through custom parameters, you can also ch
```bash ```bash
mineru-api --host 127.0.0.1 --port 8000 mineru-api --host 127.0.0.1 --port 8000
``` ```
Access http://127.0.0.1:8000/docs in your browser to view the API documentation. >[!TIP]
>Access `http://127.0.0.1:8000/docs` in your browser to view the API documentation.
- Start Gradio WebUI visual frontend: - Start Gradio WebUI visual frontend:
```bash ```bash
# Using pipeline/vlm-transformers/vlm-sglang-client backends # Using pipeline/vlm-transformers/vlm-sglang-client backends
...@@ -50,23 +53,32 @@ If you need to adjust parsing options through custom parameters, you can also ch ...@@ -50,23 +53,32 @@ If you need to adjust parsing options through custom parameters, you can also ch
# Or using vlm-sglang-engine/pipeline backends (requires sglang environment) # Or using vlm-sglang-engine/pipeline backends (requires sglang environment)
mineru-gradio --server-name 127.0.0.1 --server-port 7860 --enable-sglang-engine true mineru-gradio --server-name 127.0.0.1 --server-port 7860 --enable-sglang-engine true
``` ```
Access http://127.0.0.1:7860 in your browser to use Gradio WebUI or access http://127.0.0.1:7860/?view=api to use the Gradio API. >[!TIP]
>
>- Access `http://127.0.0.1:7860` in your browser to use the Gradio WebUI.
>- Access `http://127.0.0.1:7860/?view=api` to use the Gradio API.
- Using `sglang-client/server` method: - Using `sglang-client/server` method:
```bash ```bash
# Start sglang server (requires sglang environment) # Start sglang server (requires sglang environment)
mineru-sglang-server --port 30000 mineru-sglang-server --port 30000
# In another terminal, connect to sglang server via sglang client (only requires CPU and network, no sglang environment needed)
mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://127.0.0.1:30000
``` ```
>[!TIP]
>In another terminal, connect to sglang server via sglang client (only requires CPU and network, no sglang environment needed)
> ```bash
> mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://127.0.0.1:30000
> ```
> [!TIP] > [!TIP]
> All officially supported sglang parameters can be passed to MinerU through command line arguments, including the following commands: `mineru`, `mineru-sglang-server`, `mineru-gradio`, `mineru-api`. > All officially supported sglang parameters can be passed to MinerU through command line arguments, including the following commands: `mineru`, `mineru-sglang-server`, `mineru-gradio`, `mineru-api`.
> We have compiled some commonly used parameters and usage methods for `sglang`, which can be found in the documentation [Advanced Command Line Parameters](./advanced_cli_parameters.md). > We have compiled some commonly used parameters and usage methods for `sglang`, which can be found in the documentation [Advanced Command Line Parameters](./advanced_cli_parameters.md).
## Extending MinerU Functionality with Configuration Files ## Extending MinerU Functionality with Configuration Files
- MinerU is now ready to use out of the box, but also supports extending functionality through configuration files. You can create a `mineru.json` file in your user directory to add custom configurations. MinerU is now ready to use out of the box, but also supports extending functionality through configuration files. You can create a `mineru.json` file in your user directory to add custom configurations.
- The `mineru.json` file will be automatically generated when you use the built-in model download command `mineru-models-download`, or you can create it by copying the [configuration template file](https://github.com/opendatalab/MinerU/blob/master/mineru.template.json) to your user directory and renaming it to `mineru.json`. The `mineru.json` file will be automatically generated when you use the built-in model download command `mineru-models-download`, or you can create it by copying the [configuration template file](https://github.com/opendatalab/MinerU/blob/master/mineru.template.json) to your user directory and renaming it to `mineru.json`.
- Here are some available configuration options: Here are some available configuration options:
- `latex-delimiter-config`: Used to configure LaTeX formula delimiters, defaults to `$` symbol, can be modified to other symbols or strings as needed.
- `llm-aided-config`: Used to configure parameters for LLM-assisted title hierarchy, compatible with all LLM models supporting `openai protocol`, defaults to using Alibaba Cloud Bailian's `qwen2.5-32b-instruct` model. You need to configure your own API key and set `enable` to `true` to enable this feature. - `latex-delimiter-config`: Used to configure LaTeX formula delimiters, defaults to `$` symbol, can be modified to other symbols or strings as needed.
- `models-dir`: Used to specify local model storage directory, please specify model directories for `pipeline` and `vlm` backends separately. After specifying the directory, you can use local models by configuring the environment variable `export MINERU_MODEL_SOURCE=local`. - `llm-aided-config`: Used to configure parameters for LLM-assisted title hierarchy, compatible with all LLM models supporting `openai protocol`, defaults to using Alibaba Cloud Bailian's `qwen2.5-32b-instruct` model. You need to configure your own API key and set `enable` to `true` to enable this feature.
- `models-dir`: Used to specify local model storage directory, please specify model directories for `pipeline` and `vlm` backends separately. After specifying the directory, you can use local models by configuring the environment variable `export MINERU_MODEL_SOURCE=local`.
...@@ -38,6 +38,7 @@ mineru-models-download ...@@ -38,6 +38,7 @@ mineru-models-download
``` ```
>[!TIP] >[!TIP]
>- After download completion, the model path will be output in the current terminal window and automatically written to `mineru.json` in the user directory. >- After download completion, the model path will be output in the current terminal window and automatically written to `mineru.json` in the user directory.
>- You can also create it by copying the [configuration template file](https://github.com/opendatalab/MinerU/blob/master/mineru.template.json) to your user directory and renaming it to `mineru.json`.
>- After downloading models locally, you can freely move the model folder to other locations while updating the model path in `mineru.json`. >- After downloading models locally, you can freely move the model folder to other locations while updating the model path in `mineru.json`.
>- If you deploy the model folder to another server, please ensure you move the `mineru.json` file to the user directory of the new device and configure the model path correctly. >- If you deploy the model folder to another server, please ensure you move the `mineru.json` file to the user directory of the new device and configure the model path correctly.
>- If you need to update model files, you can run the `mineru-models-download` command again. Model updates do not support custom paths currently - if you haven't moved the local model folder, model files will be incrementally updated; if you have moved the model folder, model files will be re-downloaded to the default location and `mineru.json` will be updated. >- If you need to update model files, you can run the `mineru-models-download` command again. Model updates do not support custom paths currently - if you haven't moved the local model folder, model files will be incrementally updated; if you have moved the model folder, model files will be re-downloaded to the default location and `mineru.json` will be updated.
......
This diff is collapsed.
# 常见问题解答
如果未能列出您的问题,您也可以使用[DeepWiki](https://deepwiki.com/opendatalab/MinerU)与AI助手交流,这可以解决大部分常见问题。
如果您仍然无法解决问题,您可通过[Discord](https://discord.gg/Tdedn9GTXq)[WeChat](http://mineru.space/s/V85Yl)加入社区,与其他用户和开发者交流。
### 1. 在WSL2的Ubuntu22.04中遇到报错`ImportError: libGL.so.1: cannot open shared object file: No such file or directory`
WSL2的Ubuntu22.04中缺少`libgl`库,可通过以下命令安装`libgl`库解决:
```bash
sudo apt-get install libgl1-mesa-glx
```
参考:https://github.com/opendatalab/MinerU/issues/388
### 2. 在 CentOS 7 或 Ubuntu 18 系统安装MinerU时报错`ERROR: Failed building wheel for simsimd`
新版本albumentations(1.4.21)引入了依赖simsimd,由于simsimd在linux的预编译包要求glibc的版本大于等于2.28,导致部分2019年之前发布的Linux发行版无法正常安装,可通过如下命令安装:
```
conda create -n mineru python=3.11 -y
conda activate mineru
pip install -U "mineru[pipeline_old_linux]"
```
参考:https://github.com/opendatalab/MinerU/issues/1004
### 3. 在 Linux 系统安装并使用时,解析结果缺失部份文字信息。
MinerU在>=2.0的版本中使用`pypdfium2`代替`pymupdf`作为PDF页面的渲染引擎,以解决AGPLv3的许可证问题,在某些Linux发行版,由于缺少CJK字体,可能会在将PDF渲染成图片的过程中丢失部份文字。
为了解决这个问题,您可以通过以下命令安装noto字体包,这在Ubuntu/debian系统中有效:
```bash
sudo apt update
sudo apt install fonts-noto-core
sudo apt install fonts-noto-cjk
fc-cache -fv
```
也可以直接使用我们的[Docker部署](../quick_start/docker_deployment.md)方式构建镜像,镜像中默认包含以上字体包。
参考:https://github.com/opendatalab/MinerU/issues/2915
\ No newline at end of file
<iframe src="https://opendatalab-mineru.ms.show" frameborder="0" width="850" height="850"></iframe>
\ No newline at end of file
# 常见问题解答
如果未能列出您的问题,您也可以使用[DeepWiki](https://deepwiki.com/opendatalab/MinerU)与AI助手交流,这可以解决大部分常见问题。
如果您仍然无法解决问题,您可通过[Discord](https://discord.gg/Tdedn9GTXq)[WeChat](http://mineru.space/s/V85Yl)加入社区,与其他用户和开发者交流。
??? question "在WSL2的Ubuntu22.04中遇到报错`ImportError: libGL.so.1: cannot open shared object file: No such file or directory`"
WSL2的Ubuntu22.04中缺少`libgl`库,可通过以下命令安装`libgl`库解决:
```bash
sudo apt-get install libgl1-mesa-glx
```
参考:[#388](https://github.com/opendatalab/MinerU/issues/388)
??? question "在 CentOS 7 或 Ubuntu 18 系统安装MinerU时报错`ERROR: Failed building wheel for simsimd`"
新版本albumentations(1.4.21)引入了依赖simsimd,由于simsimd在linux的预编译包要求glibc的版本大于等于2.28,导致部分2019年之前发布的Linux发行版无法正常安装,可通过如下命令安装:
```
conda create -n mineru python=3.11 -y
conda activate mineru
pip install -U "mineru[pipeline_old_linux]"
```
参考:[#1004](https://github.com/opendatalab/MinerU/issues/1004)
??? question "在 Linux 系统安装并使用时,解析结果缺失部份文字信息。"
MinerU在>=2.0的版本中使用`pypdfium2`代替`pymupdf`作为PDF页面的渲染引擎,以解决AGPLv3的许可证问题,在某些Linux发行版,由于缺少CJK字体,可能会在将PDF渲染成图片的过程中丢失部份文字。
为了解决这个问题,您可以通过以下命令安装noto字体包,这在Ubuntu/debian系统中有效:
```bash
sudo apt update
sudo apt install fonts-noto-core
sudo apt install fonts-noto-cjk
fc-cache -fv
```
也可以直接使用我们的[Docker部署](../quick_start/docker_deployment.md)方式构建镜像,镜像中默认包含以上字体包。
参考:[#2915](https://github.com/opendatalab/MinerU/issues/2915)
\ No newline at end of file
<div align="center" xmlns="http://www.w3.org/1999/html"> <div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo --> <!-- logo -->
<p align="center"> <p align="center">
<img src="../images/MinerU-logo.png" width="300px" style="vertical-align:middle;"> <img src="https://opendatalab.github.io/MinerU/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
</p> </p>
</div> </div>
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mineru)](https://pypi.org/project/mineru/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mineru)](https://pypi.org/project/mineru/)
[![Downloads](https://static.pepy.tech/badge/mineru)](https://pepy.tech/project/mineru) [![Downloads](https://static.pepy.tech/badge/mineru)](https://pepy.tech/project/mineru)
[![Downloads](https://static.pepy.tech/badge/mineru/month)](https://pepy.tech/project/mineru) [![Downloads](https://static.pepy.tech/badge/mineru/month)](https://pepy.tech/project/mineru)
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github) [![OpenDataLab](https://img.shields.io/badge/webapp_on_mineru.net-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU) [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU) [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
......
...@@ -37,33 +37,45 @@ docker run --gpus all \ ...@@ -37,33 +37,45 @@ docker run --gpus all \
``` ```
执行该命令后,您将进入到Docker容器的交互式终端,并映射了一些端口用于可能会使用的服务,您可以直接在容器内运行MinerU相关命令来使用MinerU的功能。 执行该命令后,您将进入到Docker容器的交互式终端,并映射了一些端口用于可能会使用的服务,您可以直接在容器内运行MinerU相关命令来使用MinerU的功能。
您也可以直接通过替换`/bin/bash`为服务启动命令来启动MinerU服务,详细说明请参考[MinerU使用文档](../usage/index_back.md) 您也可以直接通过替换`/bin/bash`为服务启动命令来启动MinerU服务,详细说明请参考[MinerU使用文档](../usage/index.md)
## 通过 Docker Compose 直接启动服务 ## 通过 Docker Compose 直接启动服务
我们提供了`compose.yml`文件,您可以通过它来快速启动MinerU服务。 我们提供了[compose.yml](https://github.com/opendatalab/MinerU/blob/master/docker/compose.yaml)文件,您可以通过它来快速启动MinerU服务。
```bash ```bash
# 下载 compose.yaml 文件 # 下载 compose.yaml 文件
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/compose.yaml wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/compose.yaml
``` ```
>[!NOTE]
>
>- `compose.yaml`文件中包含了MinerU的多个服务配置,您可以根据需要选择启动特定的服务。
>- 不同的服务可能会有额外的参数配置,您可以在`compose.yaml`文件中查看并编辑。
>- 由于`sglang`推理加速框架预分配显存的特性,您可能无法在同一台机器上同时运行多个`sglang`服务,因此请确保在启动`vlm-sglang-server`服务或使用`vlm-sglang-engine`后端时,其他可能使用显存的服务已停止。
- 启动`sglang-server`服务,并通过`vlm-sglang-client`后端连接`sglang-server` - 启动`sglang-server`服务,并通过`vlm-sglang-client`后端连接`sglang-server`
```bash ```bash
docker compose -f compose.yaml --profile mineru-sglang-server up -d docker compose -f compose.yaml --profile mineru-sglang-server up -d
# 在另一个终端中通过sglang client连接sglang server(只需cpu与网络,不需要sglang环境)
mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://<server_ip>:30000
``` ```
>[!TIP]
>在另一个终端中通过sglang client连接sglang server(只需cpu与网络,不需要sglang环境)
> ```bash
> mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://<server_ip>:30000
> ```
- 启动 API 服务: - 启动 API 服务:
```bash ```bash
docker compose -f compose.yaml --profile mineru-api up -d docker compose -f compose.yaml --profile mineru-api up -d
``` ```
>[!TIP] >[!TIP]
>在浏览器中访问 `http://<server_ip>:8000/docs` 查看API文档。 >在浏览器中访问 `http://<server_ip>:8000/docs` 查看API文档。
- 启动 Gradio WebUI 服务: - 启动 Gradio WebUI 服务:
```bash ```bash
docker compose -f compose.yaml --profile mineru-gradio up -d docker compose -f compose.yaml --profile mineru-gradio up -d
``` ```
>[!TIP] >[!TIP]
>在浏览器中访问 `http://<server_ip>:7860` 使用 Gradio WebUI 或访问 `http://<server_ip>:7860/?view=api` 使用 Gradio API。 >
\ No newline at end of file >- 在浏览器中访问 `http://<server_ip>:7860` 使用 Gradio WebUI。
>- 访问 `http://<server_ip>:7860/?view=api` 使用 Gradio API。
\ No newline at end of file
...@@ -4,12 +4,16 @@ ...@@ -4,12 +4,16 @@
## 在线体验 ## 在线体验
- 官网在线demo:官网在线版功能与客户端一致,界面美观,功能丰富,需要登录使用 ### 官网在线应用
- [![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github) 官网在线版功能与客户端一致,界面美观,功能丰富,需要登录使用
- 基于Gradio的在线demo:基于gradio开发的webui,界面简洁,仅包含核心解析功能,免登录 - [![OpenDataLab](https://img.shields.io/badge/webapp_on_mineru.net-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
- [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
- [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU) ### 基于Gradio的在线demo
基于gradio开发的webui,界面简洁,仅包含核心解析功能,免登录
- [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
- [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
## 本地部署 ## 本地部署
...@@ -22,7 +26,7 @@ ...@@ -22,7 +26,7 @@
> >
> 在非主线环境中,由于硬件、软件配置的多样性,以及第三方依赖项的兼容性问题,我们无法100%保证项目的完全可用性。因此,对于希望在非推荐环境中使用本项目的用户,我们建议先仔细阅读文档以及FAQ,大多数问题已经在FAQ中有对应的解决方案,除此之外我们鼓励社区反馈问题,以便我们能够逐步扩大支持范围。 > 在非主线环境中,由于硬件、软件配置的多样性,以及第三方依赖项的兼容性问题,我们无法100%保证项目的完全可用性。因此,对于希望在非推荐环境中使用本项目的用户,我们建议先仔细阅读文档以及FAQ,大多数问题已经在FAQ中有对应的解决方案,除此之外我们鼓励社区反馈问题,以便我们能够逐步扩大支持范围。
<table> <table border="1">
<tr> <tr>
<td>解析后端</td> <td>解析后端</td>
<td>pipeline</td> <td>pipeline</td>
...@@ -86,3 +90,7 @@ MinerU提供了便捷的docker部署方式,这有助于快速搭建环境并 ...@@ -86,3 +90,7 @@ MinerU提供了便捷的docker部署方式,这有助于快速搭建环境并
您可以在文档中获取[Docker部署说明](./docker_deployment.md) 您可以在文档中获取[Docker部署说明](./docker_deployment.md)
--- ---
### 使用 MinerU
您可以通过命令行、API、WebUI等多种方式使用MinerU进行PDF解析,具体使用方法请参考[使用指南](../usage/index.md)
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment