Commit cf5c8f47 authored by myhloli's avatar myhloli
Browse files

docs: remove outdated documentation files

- Deleted .readthedocs.yaml files from multiple directories
- Removed outdated API and user guide documentation files
- Deleted command line usage examples
- Removed CUDA acceleration guide
parent cb57e84c
Api Usage
===========
PDF
----
Local File Example
^^^^^^^^^^^^^^^^^^
.. code:: python
import os
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod
# args
pdf_file_name = "abc.pdf" # replace with the real pdf path
name_without_suff = pdf_file_name.split(".")[0]
# prepare env
local_image_dir, local_md_dir = "output/images", "output"
image_dir = str(os.path.basename(local_image_dir))
os.makedirs(local_image_dir, exist_ok=True)
image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(
local_md_dir
)
# read bytes
reader1 = FileBasedDataReader("")
pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
# proc
## Create Dataset Instance
ds = PymuDocDataset(pdf_bytes)
## inference
if ds.classify() == SupportedPdfParseMethod.OCR:
infer_result = ds.apply(doc_analyze, ocr=True)
## pipeline
pipe_result = infer_result.pipe_ocr_mode(image_writer)
else:
infer_result = ds.apply(doc_analyze, ocr=False)
## pipeline
pipe_result = infer_result.pipe_txt_mode(image_writer)
### draw model result on each page
infer_result.draw_model(os.path.join(local_md_dir, f"{name_without_suff}_model.pdf"))
### get model inference result
model_inference_result = infer_result.get_infer_res()
### draw layout result on each page
pipe_result.draw_layout(os.path.join(local_md_dir, f"{name_without_suff}_layout.pdf"))
### draw spans result on each page
pipe_result.draw_span(os.path.join(local_md_dir, f"{name_without_suff}_spans.pdf"))
### get markdown content
md_content = pipe_result.get_markdown(image_dir)
### dump markdown
pipe_result.dump_md(md_writer, f"{name_without_suff}.md", image_dir)
### get content list content
content_list_content = pipe_result.get_content_list(image_dir)
### dump content list
pipe_result.dump_content_list(md_writer, f"{name_without_suff}_content_list.json", image_dir)
### get middle json
middle_json_content = pipe_result.get_middle_json()
### dump middle json
pipe_result.dump_middle_json(md_writer, f'{name_without_suff}_middle.json')
S3 File Example
^^^^^^^^^^^^^^^^
.. code:: python
import os
from magic_pdf.data.data_reader_writer import S3DataReader, S3DataWriter
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod
bucket_name = "{Your S3 Bucket Name}" # replace with real bucket name
ak = "{Your S3 access key}" # replace with real s3 access key
sk = "{Your S3 secret key}" # replace with real s3 secret key
endpoint_url = "{Your S3 endpoint_url}" # replace with real s3 endpoint_url
reader = S3DataReader('unittest/tmp/', bucket_name, ak, sk, endpoint_url) # replace `unittest/tmp` with the real s3 prefix
writer = S3DataWriter('unittest/tmp', bucket_name, ak, sk, endpoint_url)
image_writer = S3DataWriter('unittest/tmp/images', bucket_name, ak, sk, endpoint_url)
md_writer = S3DataWriter('unittest/tmp', bucket_name, ak, sk, endpoint_url)
local_image_dir, local_md_dir = "output/images", "output"
image_dir = str(os.path.basename(local_image_dir))
# args
pdf_file_name = (
f"s3://{bucket_name}/unittest/tmp/bug5-11.pdf" # replace with the real s3 path
)
# prepare env
local_dir = "output"
name_without_suff = os.path.basename(pdf_file_name).split(".")[0]
# read bytes
pdf_bytes = reader.read(pdf_file_name) # read the pdf content
# proc
## Create Dataset Instance
ds = PymuDocDataset(pdf_bytes)
## inference
if ds.classify() == SupportedPdfParseMethod.OCR:
infer_result = ds.apply(doc_analyze, ocr=True)
## pipeline
pipe_result = infer_result.pipe_ocr_mode(image_writer)
else:
infer_result = ds.apply(doc_analyze, ocr=False)
## pipeline
pipe_result = infer_result.pipe_txt_mode(image_writer)
### draw model result on each page
infer_result.draw_model(os.path.join(local_md_dir, f"{name_without_suff}_model.pdf"))
### get model inference result
model_inference_result = infer_result.get_infer_res()
### draw layout result on each page
pipe_result.draw_layout(os.path.join(local_md_dir, f"{name_without_suff}_layout.pdf"))
### draw spans result on each page
pipe_result.draw_span(os.path.join(local_md_dir, f"{name_without_suff}_spans.pdf"))
### dump markdown
pipe_result.dump_md(md_writer, f"{name_without_suff}.md", image_dir)
### dump content list
pipe_result.dump_content_list(md_writer, f"{name_without_suff}_content_list.json", image_dir)
### get markdown content
md_content = pipe_result.get_markdown(image_dir)
### get content list content
content_list_content = pipe_result.get_content_list(image_dir)
### get middle json
middle_json_content = pipe_result.get_middle_json()
### dump middle json
pipe_result.dump_middle_json(md_writer, f'{name_without_suff}_middle.json')
MS-Office
----------
.. code:: python
import os
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.data.read_api import read_local_office
# prepare env
local_image_dir, local_md_dir = "output/images", "output"
image_dir = str(os.path.basename(local_image_dir))
os.makedirs(local_image_dir, exist_ok=True)
image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(
local_md_dir
)
# proc
## Create Dataset Instance
input_file = "some_ppt.ppt" # replace with real ms-office file
input_file_name = input_file.split(".")[0]
ds = read_local_office(input_file)[0]
ds.apply(doc_analyze, ocr=True).pipe_txt_mode(image_writer).dump_md(
md_writer, f"{input_file_name}.md", image_dir
)
This code snippet can be used to manipulate **ppt**, **pptx**, **doc**, **docx** file
Image
---------
Single Image File
^^^^^^^^^^^^^^^^^^^
.. code:: python
import os
from magic_pdf.data.data_reader_writer import FileBasedDataWriter
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.data.read_api import read_local_images
# prepare env
local_image_dir, local_md_dir = "output/images", "output"
image_dir = str(os.path.basename(local_image_dir))
os.makedirs(local_image_dir, exist_ok=True)
image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(
local_md_dir
)
# proc
## Create Dataset Instance
input_file = "some_image.jpg" # replace with real image file
input_file_name = input_file.split(".")[0]
ds = read_local_images(input_file)[0]
ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(
md_writer, f"{input_file_name}.md", image_dir
)
Directory That Contains Images
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code:: python
import os
from magic_pdf.data.data_reader_writer import FileBasedDataWriter
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.data.read_api import read_local_images
# prepare env
local_image_dir, local_md_dir = "output/images", "output"
image_dir = str(os.path.basename(local_image_dir))
os.makedirs(local_image_dir, exist_ok=True)
image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(
local_md_dir
)
# proc
## Create Dataset Instance
input_directory = "some_image_dir/" # replace with real directory that contains images
dss = read_local_images(input_directory, suffixes=['.png', '.jpg'])
count = 0
for ds in dss:
ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(
md_writer, f"{count}.md", image_dir
)
count += 1
Check :doc:`../data/data_reader_writer` for more [reader | writer] examples and check :doc:`../../api/pipe_operators` or :doc:`../../api/model_operators` for api details
Command Line
===================
.. code:: bash
magic-pdf --help
Usage: magic-pdf [OPTIONS]
Options:
-v, --version display the version and exit
-p, --path PATH local filepath or directory. support PDF, PPT,
PPTX, DOC, DOCX, PNG, JPG files [required]
-o, --output-dir PATH output local directory [required]
-m, --method [ocr|txt|auto] the method for parsing pdf. ocr: using ocr
technique to extract information from pdf. txt:
suitable for the text-based pdf only and
outperform ocr. auto: automatically choose the
best method for parsing pdf from ocr and txt.
without method specified, auto will be used by
default.
-l, --lang TEXT Input the languages in the pdf (if known) to
improve OCR accuracy. Optional. You should
input "Abbreviation" with language form url: ht
tps://paddlepaddle.github.io/PaddleOCR/en/ppocr
/blog/multi_languages.html#5-support-languages-
and-abbreviations
-d, --debug BOOLEAN Enables detailed debugging information during
the execution of the CLI commands.
-s, --start INTEGER The starting page for PDF parsing, beginning
from 0.
-e, --end INTEGER The ending page for PDF parsing, beginning from
0.
--help Show this message and exit.
## show version
magic-pdf -v
## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
.. admonition:: Important
:class: tip
The file must endswith with the following suffix.
.pdf
.png
.jpg
.ppt
.pptx
.doc
.docx
``{some_pdf}`` can be a single PDF file or a directory containing
multiple PDFs. The results will be saved in the ``{some_output_dir}``
directory. The output file list is as follows:
.. code:: text
├── some_pdf.md # markdown file
├── images # directory for storing images
├── some_pdf_layout.pdf # layout diagram
├── some_pdf_middle.json # MinerU intermediate processing result
├── some_pdf_model.json # model inference result
├── some_pdf_origin.pdf # original PDF file
├── some_pdf_spans.pdf # smallest granularity bbox position information diagram
└── some_pdf_content_list.json # Rich text JSON arranged in reading order
.. admonition:: Tip
:class: tip
For more information about the output files, please refer to the :doc:`../inference_result` or :doc:`../pipe_result`
Docker
=======
.. admonition:: Important
:class: tip
Docker requires a GPU with at least 16GB of VRAM, and all acceleration features are enabled by default.
Before running this Docker, you can use the following command to check if your device supports CUDA acceleration on Docker.
.. code-block:: bash
bash docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
.. code:: sh
wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
docker build -t mineru:latest .
docker run --rm -it --gpus=all mineru:latest /bin/bash
magic-pdf --help
numpy==1.26.4
click==8.1.7
fast-langdetect==0.2.2
Brotli==1.1.0
boto3>=1.28.43
loguru>=0.6.0
myst-parser
Pillow==8.4.0
pydantic>=2.7.2,<2.8.0
PyMuPDF>=1.24.9
pdfminer.six==20231228
sphinx
sphinx-argparse>=0.5.2
sphinx-book-theme>=1.1.3
sphinx-copybutton>=0.5.2
sphinx_rtd_theme>=3.0.1
autodoc_pydantic>=2.2.0
version: 2
build:
os: ubuntu-22.04
tools:
python: "3.10"
formats:
- epub
python:
install:
- requirements: next_docs/requirements.txt
sphinx:
configuration: next_docs/zh_cn/conf.py
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = .
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" width="224" height="72" viewBox="-29 -3.67 224 72" xml:space="preserve">
<desc>Created with Fabric.js 5.2.4</desc>
<defs>
</defs>
<rect x="0" y="0" width="100%" height="100%" fill="transparent"></rect>
<g transform="matrix(1 0 0 1 112 36)" id="7a867f58-a908-4f30-a839-fb725512b521" >
<rect style="stroke: none; stroke-width: 1; stroke-dasharray: none; stroke-linecap: butt; stroke-dashoffset: 0; stroke-linejoin: miter; stroke-miterlimit: 4; fill: rgb(255,255,255); fill-rule: nonzero; opacity: 1; visibility: hidden;" vector-effect="non-scaling-stroke" x="-112" y="-36" rx="0" ry="0" width="224" height="72" />
</g>
<g transform="matrix(Infinity NaN NaN Infinity 0 0)" id="29611287-bf1c-4faf-8eb1-df32f6424829" >
</g>
<g transform="matrix(0.07 0 0 0.07 382.02 122.8)" id="60cdd44f-027a-437a-92c4-c8d44c60ef9e" >
<path style="stroke: rgb(0,0,0); stroke-width: 0; stroke-dasharray: none; stroke-linecap: butt; stroke-dashoffset: 0; stroke-linejoin: miter; stroke-miterlimit: 4; fill: rgb(50,50,42); fill-rule: nonzero; opacity: 1;" vector-effect="non-scaling-stroke" transform=" translate(-64, -64)" d="M 57.62 61.68 C 55.919999999999995 61.92 54.75 63.46 55 65.11 C 55.1668510745875 66.32380621250819 56.039448735907676 67.32218371690155 57.22 67.65 C 57.22 67.65 64.69 70.11 77.4 71.16000000000001 C 87.61000000000001 72.01 99.2 70.43 99.2 70.43 C 100.9 70.39 102.23 68.98 102.19 67.28 C 102.17037752125772 66.4652516996782 101.82707564255573 65.69186585376654 101.23597809465886 65.13079230830253 C 100.644880546762 64.56971876283853 99.85466451370849 64.26716220997277 99.03999999999999 64.29 C 98.83999999999999 64.29 98.63999999999999 64.33000000000001 98.42999999999999 64.37 C 98.42999999999999 64.37 87.08999999999999 65.78 77.88 65.02000000000001 C 65.72999999999999 64.05000000000001 59.11 61.83000000000001 59.11 61.83000000000001 C 58.63 61.670000000000016 58.1 61.59000000000001 57.62 61.670000000000016 Z M 57.62 46.46 C 55.919999999999995 46.7 54.75 48.24 55 49.89 C 55.1668510745875 51.10380621250818 56.039448735907676 52.10218371690154 57.22 52.43 C 57.22 52.43 64.69 54.89 77.4 55.94 C 87.61000000000001 56.79 99.2 55.21 99.2 55.21 C 100.9 55.17 102.23 53.76 102.19 52.06 C 102.17037752125772 51.245251699678214 101.82707564255573 50.47186585376654 101.23597809465886 49.91079230830253 C 100.644880546762 49.34971876283853 99.85466451370849 49.047162209972754 99.03999999999999 49.07 C 98.83999999999999 49.07 98.63999999999999 49.11 98.42999999999999 49.15 C 98.42999999999999 49.15 87.08999999999999 50.559999999999995 77.88 49.8 C 65.72999999999999 48.83 59.11 46.61 59.11 46.61 C 58.63 46.45 58.1 46.37 57.62 46.45 Z M 57.62 31.240000000000002 C 55.919999999999995 31.48 54.75 33.02 55 34.67 C 55.1668510745875 35.88380621250818 56.039448735907676 36.882183716901544 57.22 37.21 C 57.22 37.21 64.69 39.67 77.4 40.72 C 87.61000000000001 41.57 99.2 39.99 99.2 39.99 C 100.9 39.95 102.23 38.54 102.19 36.84 C 102.17037752125772 36.025251699678215 101.82707564255573 35.25186585376654 101.23597809465886 34.690792308302534 C 100.644880546762 34.12971876283853 99.85466451370849 33.827162209972755 99.03999999999999 33.85 C 98.83999999999999 33.85 98.63999999999999 33.89 98.42999999999999 33.93 C 98.42999999999999 33.93 87.08999999999999 35.339999999999996 77.88 34.58 C 65.72999999999999 33.61 59.11 31.389999999999997 59.11 31.389999999999997 C 58.63 31.229999999999997 58.1 31.189999999999998 57.62 31.229999999999997 Z M 57.62 16.060000000000002 C 55.919999999999995 16.3 54.75 17.840000000000003 55 19.490000000000002 C 55.1668510745875 20.703806212508187 56.039448735907676 21.702183716901544 57.22 22.03 C 57.22 22.03 64.69 24.490000000000002 77.4 25.54 C 87.61000000000001 26.39 99.2 24.81 99.2 24.81 C 100.9 24.77 102.23 23.36 102.19 21.66 C 102.17037752125772 20.84525169967821 101.82707564255573 20.07186585376654 101.23597809465886 19.510792308302534 C 100.644880546762 18.949718762838526 99.8546645137085 18.64716220997276 99.03999999999999 18.67 C 98.83999999999999 18.67 98.63999999999999 18.71 98.42999999999999 18.75 C 98.42999999999999 18.75 87.08999999999999 20.16 77.88 19.4 C 65.72999999999999 18.43 59.11 16.209999999999997 59.11 16.209999999999997 C 58.637850878541954 16.01924514007714 58.12188500879498 15.963839409097599 57.62 16.049999999999997 Z M 36.31 0 C 20.32 0.12 14.39 5.05 14.39 5.05 L 14.39 124.42 C 14.39 124.42 20.2 119.41 38.93 120.18 C 57.66 120.95000000000002 61.5 127.53 84.50999999999999 127.97000000000001 C 107.52 128.41000000000003 113.28999999999999 124.42000000000002 113.28999999999999 124.42000000000002 L 113.60999999999999 2.750000000000014 C 113.60999999999999 2.750000000000014 103.28 5.7 83.09 5.86 C 62.95 6.01 58.11 0.73 39.62 0.12 C 38.49 0.04 37.4 0 36.31 0 Z M 49.67 7.79 C 49.67 7.79 59.36 10.98 77.24000000000001 11.870000000000001 C 92.38000000000001 12.64 107.52000000000001 10.38 107.52000000000001 10.38 L 107.52000000000001 118.53 C 107.52000000000001 118.53 99.85000000000001 122.57000000000001 80.68 121.19 C 65.82000000000001 120.14 49.480000000000004 114.49 49.480000000000004 114.49 L 49.68000000000001 7.799999999999997 Z M 40.35 10.620000000000001 C 42.050000000000004 10.620000000000001 43.46 11.990000000000002 43.46 13.73 C 43.46 15.469999999999999 42.09 16.84 40.35 16.84 C 40.35 16.84 35.34 16.88 32.28 17.16 C 27.150000000000002 17.68 23.64 19.54 23.64 19.54 C 22.150000000000002 20.349999999999998 20.25 19.74 19.48 18.25 C 18.67 16.76 19.28 14.86 20.77 14.09 C 22.259999999999998 13.32 25.33 11.67 31.67 11.06 C 35.34 10.66 40.35 10.620000000000001 40.35 10.620000000000001 Z M 37.36 25.880000000000003 C 39.06 25.840000000000003 40.35 25.880000000000003 40.35 25.880000000000003 C 42.050000000000004 26.080000000000002 43.260000000000005 27.62 43.050000000000004 29.310000000000002 C 42.88374644848126 30.726609090871516 41.76660909087151 31.843746448481262 40.35 32.010000000000005 C 40.35 32.010000000000005 35.34 32.050000000000004 32.28 32.330000000000005 C 27.150000000000002 32.85000000000001 23.64 34.71000000000001 23.64 34.71000000000001 C 22.150000000000002 35.52000000000001 20.25 34.91000000000001 19.48 33.42000000000001 C 18.67 31.93000000000001 19.28 30.03000000000001 20.77 29.26000000000001 C 20.77 29.26000000000001 25.33 26.84000000000001 31.67 26.230000000000008 C 33.53 25.99000000000001 35.67 25.910000000000007 37.36 25.870000000000008 Z M 40.35 41.06 C 42.050000000000004 41.06 43.46 42.43 43.46 44.17 C 43.46 45.910000000000004 42.09 47.28 40.35 47.28 C 40.35 47.28 35.34 47.24 32.28 47.56 C 27.150000000000002 48.080000000000005 23.64 49.940000000000005 23.64 49.940000000000005 C 22.150000000000002 50.75000000000001 20.25 50.14000000000001 19.48 48.650000000000006 C 18.67 47.160000000000004 19.28 45.260000000000005 20.77 44.49000000000001 C 20.77 44.49000000000001 25.33 42.07000000000001 31.67 41.46000000000001 C 35.34 41.02000000000001 40.35 41.06000000000001 40.35 41.06000000000001 Z" stroke-linecap="round" />
</g>
<g transform="matrix(0.07 0 0 0.07 396.05 123.14)" style="" id="eb0df536-c517-4781-a7c0-3f84cd77c272" >
<text xml:space="preserve" font-family="Lato" font-size="40" font-style="normal" font-weight="400" style="stroke: none; stroke-width: 1; stroke-dasharray: none; stroke-linecap: butt; stroke-dashoffset: 0; stroke-linejoin: miter; stroke-miterlimit: 4; fill: rgb(0,0,0); fill-rule: nonzero; opacity: 1; white-space: pre;" ><tspan x="-130" y="12.57" >Read The Docs</tspan></text>
</g>
<g transform="matrix(0.28 0 0 0.28 27.88 36)" id="7b9eddb9-1652-4040-9437-2ab90652d624" >
<path style="stroke: rgb(0,0,0); stroke-width: 0; stroke-dasharray: none; stroke-linecap: butt; stroke-dashoffset: 0; stroke-linejoin: miter; stroke-miterlimit: 4; fill: rgb(50,50,42); fill-rule: nonzero; opacity: 1;" vector-effect="non-scaling-stroke" transform=" translate(-64, -64)" d="M 57.62 61.68 C 55.919999999999995 61.92 54.75 63.46 55 65.11 C 55.1668510745875 66.32380621250819 56.039448735907676 67.32218371690155 57.22 67.65 C 57.22 67.65 64.69 70.11 77.4 71.16000000000001 C 87.61000000000001 72.01 99.2 70.43 99.2 70.43 C 100.9 70.39 102.23 68.98 102.19 67.28 C 102.17037752125772 66.4652516996782 101.82707564255573 65.69186585376654 101.23597809465886 65.13079230830253 C 100.644880546762 64.56971876283853 99.85466451370849 64.26716220997277 99.03999999999999 64.29 C 98.83999999999999 64.29 98.63999999999999 64.33000000000001 98.42999999999999 64.37 C 98.42999999999999 64.37 87.08999999999999 65.78 77.88 65.02000000000001 C 65.72999999999999 64.05000000000001 59.11 61.83000000000001 59.11 61.83000000000001 C 58.63 61.670000000000016 58.1 61.59000000000001 57.62 61.670000000000016 Z M 57.62 46.46 C 55.919999999999995 46.7 54.75 48.24 55 49.89 C 55.1668510745875 51.10380621250818 56.039448735907676 52.10218371690154 57.22 52.43 C 57.22 52.43 64.69 54.89 77.4 55.94 C 87.61000000000001 56.79 99.2 55.21 99.2 55.21 C 100.9 55.17 102.23 53.76 102.19 52.06 C 102.17037752125772 51.245251699678214 101.82707564255573 50.47186585376654 101.23597809465886 49.91079230830253 C 100.644880546762 49.34971876283853 99.85466451370849 49.047162209972754 99.03999999999999 49.07 C 98.83999999999999 49.07 98.63999999999999 49.11 98.42999999999999 49.15 C 98.42999999999999 49.15 87.08999999999999 50.559999999999995 77.88 49.8 C 65.72999999999999 48.83 59.11 46.61 59.11 46.61 C 58.63 46.45 58.1 46.37 57.62 46.45 Z M 57.62 31.240000000000002 C 55.919999999999995 31.48 54.75 33.02 55 34.67 C 55.1668510745875 35.88380621250818 56.039448735907676 36.882183716901544 57.22 37.21 C 57.22 37.21 64.69 39.67 77.4 40.72 C 87.61000000000001 41.57 99.2 39.99 99.2 39.99 C 100.9 39.95 102.23 38.54 102.19 36.84 C 102.17037752125772 36.025251699678215 101.82707564255573 35.25186585376654 101.23597809465886 34.690792308302534 C 100.644880546762 34.12971876283853 99.85466451370849 33.827162209972755 99.03999999999999 33.85 C 98.83999999999999 33.85 98.63999999999999 33.89 98.42999999999999 33.93 C 98.42999999999999 33.93 87.08999999999999 35.339999999999996 77.88 34.58 C 65.72999999999999 33.61 59.11 31.389999999999997 59.11 31.389999999999997 C 58.63 31.229999999999997 58.1 31.189999999999998 57.62 31.229999999999997 Z M 57.62 16.060000000000002 C 55.919999999999995 16.3 54.75 17.840000000000003 55 19.490000000000002 C 55.1668510745875 20.703806212508187 56.039448735907676 21.702183716901544 57.22 22.03 C 57.22 22.03 64.69 24.490000000000002 77.4 25.54 C 87.61000000000001 26.39 99.2 24.81 99.2 24.81 C 100.9 24.77 102.23 23.36 102.19 21.66 C 102.17037752125772 20.84525169967821 101.82707564255573 20.07186585376654 101.23597809465886 19.510792308302534 C 100.644880546762 18.949718762838526 99.8546645137085 18.64716220997276 99.03999999999999 18.67 C 98.83999999999999 18.67 98.63999999999999 18.71 98.42999999999999 18.75 C 98.42999999999999 18.75 87.08999999999999 20.16 77.88 19.4 C 65.72999999999999 18.43 59.11 16.209999999999997 59.11 16.209999999999997 C 58.637850878541954 16.01924514007714 58.12188500879498 15.963839409097599 57.62 16.049999999999997 Z M 36.31 0 C 20.32 0.12 14.39 5.05 14.39 5.05 L 14.39 124.42 C 14.39 124.42 20.2 119.41 38.93 120.18 C 57.66 120.95000000000002 61.5 127.53 84.50999999999999 127.97000000000001 C 107.52 128.41000000000003 113.28999999999999 124.42000000000002 113.28999999999999 124.42000000000002 L 113.60999999999999 2.750000000000014 C 113.60999999999999 2.750000000000014 103.28 5.7 83.09 5.86 C 62.95 6.01 58.11 0.73 39.62 0.12 C 38.49 0.04 37.4 0 36.31 0 Z M 49.67 7.79 C 49.67 7.79 59.36 10.98 77.24000000000001 11.870000000000001 C 92.38000000000001 12.64 107.52000000000001 10.38 107.52000000000001 10.38 L 107.52000000000001 118.53 C 107.52000000000001 118.53 99.85000000000001 122.57000000000001 80.68 121.19 C 65.82000000000001 120.14 49.480000000000004 114.49 49.480000000000004 114.49 L 49.68000000000001 7.799999999999997 Z M 40.35 10.620000000000001 C 42.050000000000004 10.620000000000001 43.46 11.990000000000002 43.46 13.73 C 43.46 15.469999999999999 42.09 16.84 40.35 16.84 C 40.35 16.84 35.34 16.88 32.28 17.16 C 27.150000000000002 17.68 23.64 19.54 23.64 19.54 C 22.150000000000002 20.349999999999998 20.25 19.74 19.48 18.25 C 18.67 16.76 19.28 14.86 20.77 14.09 C 22.259999999999998 13.32 25.33 11.67 31.67 11.06 C 35.34 10.66 40.35 10.620000000000001 40.35 10.620000000000001 Z M 37.36 25.880000000000003 C 39.06 25.840000000000003 40.35 25.880000000000003 40.35 25.880000000000003 C 42.050000000000004 26.080000000000002 43.260000000000005 27.62 43.050000000000004 29.310000000000002 C 42.88374644848126 30.726609090871516 41.76660909087151 31.843746448481262 40.35 32.010000000000005 C 40.35 32.010000000000005 35.34 32.050000000000004 32.28 32.330000000000005 C 27.150000000000002 32.85000000000001 23.64 34.71000000000001 23.64 34.71000000000001 C 22.150000000000002 35.52000000000001 20.25 34.91000000000001 19.48 33.42000000000001 C 18.67 31.93000000000001 19.28 30.03000000000001 20.77 29.26000000000001 C 20.77 29.26000000000001 25.33 26.84000000000001 31.67 26.230000000000008 C 33.53 25.99000000000001 35.67 25.910000000000007 37.36 25.870000000000008 Z M 40.35 41.06 C 42.050000000000004 41.06 43.46 42.43 43.46 44.17 C 43.46 45.910000000000004 42.09 47.28 40.35 47.28 C 40.35 47.28 35.34 47.24 32.28 47.56 C 27.150000000000002 48.080000000000005 23.64 49.940000000000005 23.64 49.940000000000005 C 22.150000000000002 50.75000000000001 20.25 50.14000000000001 19.48 48.650000000000006 C 18.67 47.160000000000004 19.28 45.260000000000005 20.77 44.49000000000001 C 20.77 44.49000000000001 25.33 42.07000000000001 31.67 41.46000000000001 C 35.34 41.02000000000001 40.35 41.06000000000001 40.35 41.06000000000001 Z" stroke-linecap="round" />
</g>
<g transform="matrix(0.9 0 0 0.9 94 36)" style="" id="385bde16-f9fa-4222-bfea-1d5d5efcf730" >
<text xml:space="preserve" font-family="Lato" font-size="15" font-style="normal" font-weight="100" style="stroke: none; stroke-width: 1; stroke-dasharray: none; stroke-linecap: butt; stroke-dashoffset: 0; stroke-linejoin: miter; stroke-miterlimit: 4; fill: rgb(0,0,0); fill-rule: nonzero; opacity: 1; white-space: pre;" ><tspan x="-48.68" y="4.71" >Read The Docs</tspan></text>
</g>
</svg>
\ No newline at end of file
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment