Unverified Commit bcbbee8c authored by Xiaomeng Zhao's avatar Xiaomeng Zhao Committed by GitHub
Browse files

Merge pull request #2622 from myhloli/dev

Dev
parents 3cc3f754 ced5a7b4
...@@ -32,14 +32,14 @@ jobs: ...@@ -32,14 +32,14 @@ jobs:
- name: Verify version.py - name: Verify version.py
run: | run: |
ls -l magic_pdf/libs/version.py ls -l mineru/version.py
cat magic_pdf/libs/version.py cat mineru/version.py
- name: Commit changes - name: Commit changes
run: | run: |
git config --local user.email "moe@myhloli.com" git config --local user.email "moe@myhloli.com"
git config --local user.name "myhloli" git config --local user.name "myhloli"
git add magic_pdf/libs/version.py git add mineru/version.py
if git diff-index --quiet HEAD; then if git diff-index --quiet HEAD; then
echo "No changes to commit" echo "No changes to commit"
else else
...@@ -71,18 +71,18 @@ jobs: ...@@ -71,18 +71,18 @@ jobs:
- name: Verify version.py - name: Verify version.py
run: | run: |
ls -l magic_pdf/libs/version.py ls -l mineru/version.py
cat magic_pdf/libs/version.py cat mineru/version.py
- name: Set up Python ${{ matrix.python-version }} - name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
python-version: ${{ matrix.python-version }} python-version: ${{ matrix.python-version }}
- name: Install magic-pdf - name: Install mineru
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install -e .[full] pip install -e .[all]
build: build:
needs: [ check-install ] needs: [ check-install ]
...@@ -103,10 +103,11 @@ jobs: ...@@ -103,10 +103,11 @@ jobs:
- name: Install wheel - name: Install wheel
run: | run: |
python -m pip install wheel python -m pip install wheel
pip install build
- name: Build wheel - name: Build wheel
run: | run: |
python setup.py bdist_wheel python -m build --wheel
- name: Upload artifact - name: Upload artifact
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v4
......
version: 2
build:
os: ubuntu-22.04
tools:
python: "3.10"
formats:
- epub
python:
install:
- requirements: next_docs/zh_cn/requirements.txt
sphinx:
configuration: next_docs/zh_cn/conf.py
...@@ -10,14 +10,17 @@ ...@@ -10,14 +10,17 @@
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU) [![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues) [![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues) [![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://img.shields.io/pypi/v/magic-pdf)](https://pypi.org/project/magic-pdf/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/magic-pdf)](https://pypi.org/project/magic-pdf/) [![PyPI version](https://img.shields.io/pypi/v/mineru)](https://pypi.org/project/mineru/)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mineru)](https://pypi.org/project/mineru/)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf) [![Downloads](https://static.pepy.tech/badge/mineru)](https://pepy.tech/project/mineru)
[![Downloads](https://static.pepy.tech/badge/mineru/month)](https://pepy.tech/project/mineru)
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github) [![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU) [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU) [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![HuggingFace](https://img.shields.io/badge/VLM_Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/mineru2)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/abs/2409.18839) [![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/abs/2409.18839)
...@@ -48,75 +51,167 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte ...@@ -48,75 +51,167 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte
</div> </div>
# Changelog # Changelog
- 2025/05/24 1.3.12 Released - 2025/06/13 2.0.0 Released
- Added support for ppocrv5 model, updated `ch_server` model to `PP-OCRv5_rec_server` and `ch_lite` model to `PP-OCRv5_rec_mobile` (model update required) - MinerU 2.0 represents a comprehensive reconstruction and upgrade from architecture to functionality, delivering a more streamlined design, enhanced performance, and more flexible user experience.
- In testing, we found that ppocrv5(server) shows some improvement for handwritten documents, but slightly lower accuracy than v4_server_doc for other document types. Therefore, the default ch model remains unchanged as `PP-OCRv4_server_rec_doc`. - **New Architecture**: MinerU 2.0 has been deeply restructured in code organization and interaction methods, significantly improving system usability, maintainability, and extensibility.
- Since ppocrv5 enhances recognition capabilities for handwritten text and special characters, you can manually select ppocrv5 models for Japanese, traditional Chinese mixed scenarios and handwritten document scenarios - **Removal of Third-party Dependency Limitations**: Completely eliminated the dependency on `pymupdf`, moving the project toward a more open and compliant open-source direction.
- You can select the appropriate model through the lang parameter `lang='ch_server'` (python api) or `--lang ch_server` (command line): - **Ready-to-use, Easy Configuration**: No need to manually edit JSON configuration files; most parameters can now be set directly via command line or API.
- `ch`: `PP-OCRv4_rec_server_doc` (default) (Chinese, English, Japanese, Traditional Chinese mixed/15k dictionary) - **Automatic Model Management**: Added automatic model download and update mechanisms, allowing users to complete model deployment without manual intervention.
- `ch_server`: `PP-OCRv5_rec_server` (Chinese, English, Japanese, Traditional Chinese mixed + handwriting/18k dictionary) - **Offline Deployment Friendly**: Provides built-in model download commands, supporting deployment requirements in completely offline environments.
- `ch_lite`: `PP-OCRv5_rec_mobile` (Chinese, English, Japanese, Traditional Chinese mixed + handwriting/18k dictionary) - **Streamlined Code Structure**: Removed thousands of lines of redundant code, simplified class inheritance logic, significantly improving code readability and development efficiency.
- `ch_server_v4`: `PP-OCRv4_rec_server` (Chinese, English mixed/6k dictionary) - **Unified Intermediate Format Output**: Adopted standardized `middle_json` format, compatible with most secondary development scenarios based on this format, ensuring seamless ecosystem business migration.
- `ch_lite_v4`: `PP-OCRv4_rec_mobile` (Chinese, English mixed/6k dictionary) - **New Model**: MinerU 2.0 integrates our latest small-parameter, high-performance multimodal document parsing model, achieving end-to-end high-speed, high-precision document understanding.
- Added support for handwritten documents by optimizing layout recognition of handwritten text areas - **Small Model, Big Capabilities**: With parameters under 1B, yet surpassing traditional 72B-level vision-language models (VLMs) in parsing accuracy.
- This feature is supported by default, no additional configuration needed - **Multiple Functions in One**: A single model covers multilingual recognition, handwriting recognition, layout analysis, table parsing, formula recognition, reading order sorting, and other core tasks.
- You can refer to the instructions above to manually select ppocrv5 model for better handwritten document parsing - **Ultimate Inference Speed**: Achieves peak throughput exceeding 10,000 tokens/s through `sglang` acceleration on a single NVIDIA 4090 card, easily handling large-scale document processing requirements.
- The demos on `huggingface` and `modelscope` have been updated to support handwriting recognition and ppocrv5 models, which you can experience online - **Online Experience**: You can experience this model online on our Hugging Face demo: [![HuggingFace](https://img.shields.io/badge/VLM_Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/mineru2)
- 2025/04/29 1.3.10 Released - **Incompatible Changes Notice**: To improve overall architectural rationality and long-term maintainability, this version contains some incompatible changes:
- Support for custom formula delimiters can be achieved by modifying the `latex-delimiter-config` item in the `magic-pdf.json` file under the user directory. - Python package name changed from `magic-pdf` to `mineru`, and the command-line tool changed from `magic-pdf` to `mineru`. Please update your scripts and command calls accordingly.
- 2025/04/27 1.3.9 Released - For modular system design and ecosystem consistency considerations, MinerU 2.0 no longer includes the LibreOffice document conversion module. If you need to process Office documents, we recommend converting them to PDF format through an independently deployed LibreOffice service before proceeding with subsequent parsing operations.
- Optimized the formula parsing function to improve the success rate of formula rendering
- 2025/04/23 1.3.8 Released
- The default `ocr` model (`ch`) has been updated to `PP-OCRv4_server_rec_doc` (model update required)
- `PP-OCRv4_server_rec_doc` is trained on a mix of more Chinese document data and PP-OCR training data, enhancing recognition capabilities for some traditional Chinese characters, Japanese, and special characters. It supports over 15,000 recognizable characters, improving text recognition in documents while also boosting general text recognition.
- [Performance comparison between PP-OCRv4_server_rec_doc, PP-OCRv4_server_rec, and PP-OCRv4_mobile_rec](https://paddlepaddle.github.io/PaddleX/latest/en/module_usage/tutorials/ocr_modules/text_recognition.html#ii-supported-model-list)
- Verified results show that the `PP-OCRv4_server_rec_doc` model significantly improves accuracy in both single-language (`Chinese`, `English`, `Japanese`, `Traditional Chinese`) and mixed-language scenarios, with speed comparable to `PP-OCRv4_server_rec`, making it suitable for most use cases.
- In a small number of pure English scenarios, the `PP-OCRv4_server_rec_doc` model may encounter word concatenation issues, whereas `PP-OCRv4_server_rec` performs better in such cases. Therefore, we have retained the `PP-OCRv4_server_rec` model, which users can invoke by passing the parameter `lang='ch_server'`(python api) or `--lang ch_server`(cli).
- 2025/04/22 1.3.7 Released
- Fixed the issue where the `lang` parameter was ineffective during table parsing model initialization.
- Fixed the significant slowdown in OCR and table parsing speed in `cpu` mode.
- 2025/04/16 1.3.4 Released
- Slightly improved the speed of OCR detection by removing some unused blocks.
- Fixed page-level sorting errors caused by footnotes in certain cases.
- 2025/04/12 1.3.2 released
- Fixed the issue of incompatible dependency package versions when installing in Python 3.13 environment on Windows systems.
- Optimized memory usage during batch inference.
- Improved the parsing effect of tables rotated by 90 degrees.
- Enhanced the parsing accuracy for large tables in financial report samples.
- Fixed the occasional word concatenation issue in English text areas when OCR language is not specified.(The model needs to be updated)
- 2025/04/08 1.3.1 released, fixed some compatibility issues
- Supported Python 3.13
- Made the final adaptation for some outdated Linux systems (e.g., CentOS 7), and no further support will be guaranteed for subsequent versions. [Installation Instructions](https://github.com/opendatalab/MinerU/issues/1004)
- 2025/04/03 1.3.0 released, in this version we made many optimizations and improvements:
- Installation and compatibility optimization
- By removing the use of `layoutlmv3` in layout, resolved compatibility issues caused by `detectron2`.
- Torch version compatibility extended to 2.2~2.6 (excluding 2.5).
- CUDA compatibility supports 11.8/12.4/12.6/12.8 (CUDA version determined by torch), resolving compatibility issues for some users with 50-series and H-series GPUs.
- Python compatible versions expanded to 3.10~3.12, solving the problem of automatic downgrade to 0.6.1 during installation in non-3.10 environments.
- Offline deployment process optimized; no internet connection required after successful deployment to download any model files.
- Performance optimization
- By supporting batch processing of multiple PDF files ([script example](demo/batch_demo.py)), improved parsing speed for small files in batches (compared to version 1.0.1, formula parsing speed increased by over 1400%, overall parsing speed increased by over 500%).
- Optimized loading and usage of the mfr model, reducing GPU memory usage and improving parsing speed (requires re-execution of the [model download process](docs/how_to_download_models_en.md) to obtain incremental updates of model files).
- Optimized GPU memory usage, requiring only a minimum of 6GB to run this project.
- Improved running speed on MPS devices.
- Parsing effect optimization
- Updated the mfr model to `unimernet(2503)`, solving the issue of lost line breaks in multi-line formulas.
- Usability Optimization
- By using `paddleocr2torch`, completely replaced the use of the `paddle` framework and `paddleocr` in the project, resolving conflicts between `paddle` and `torch`, as well as thread safety issues caused by the `paddle` framework.
- Added a real-time progress bar during the parsing process to accurately track progress, making the wait less painful.
<details> <details>
<summary>2025/03/03 1.2.1 released</summary> <summary>History Log</summary>
<ul> <details>
<summary>2025/05/24 Release 1.3.12</summary>
<ul>
<li>Added support for PPOCRv5 models, updated <code>ch_server</code> model to <code>PP-OCRv5_rec_server</code>, and <code>ch_lite</code> model to <code>PP-OCRv5_rec_mobile</code> (model update required)
<ul>
<li>In testing, we found that PPOCRv5(server) has some improvement for handwritten documents, but has slightly lower accuracy than v4_server_doc for other document types, so the default ch model remains unchanged as <code>PP-OCRv4_server_rec_doc</code>.</li>
<li>Since PPOCRv5 has enhanced recognition capabilities for handwriting and special characters, you can manually choose the PPOCRv5 model for Japanese-Traditional Chinese mixed scenarios and handwritten documents</li>
<li>You can select the appropriate model through the lang parameter <code>lang='ch_server'</code> (Python API) or <code>--lang ch_server</code> (command line):
<ul>
<li><code>ch</code>: <code>PP-OCRv4_server_rec_doc</code> (default) (Chinese/English/Japanese/Traditional Chinese mixed/15K dictionary)</li>
<li><code>ch_server</code>: <code>PP-OCRv5_rec_server</code> (Chinese/English/Japanese/Traditional Chinese mixed + handwriting/18K dictionary)</li>
<li><code>ch_lite</code>: <code>PP-OCRv5_rec_mobile</code> (Chinese/English/Japanese/Traditional Chinese mixed + handwriting/18K dictionary)</li>
<li><code>ch_server_v4</code>: <code>PP-OCRv4_rec_server</code> (Chinese/English mixed/6K dictionary)</li>
<li><code>ch_lite_v4</code>: <code>PP-OCRv4_rec_mobile</code> (Chinese/English mixed/6K dictionary)</li>
</ul>
</li>
</ul>
</li>
<li>Added support for handwritten documents through optimized layout recognition of handwritten text areas
<ul>
<li>This feature is supported by default, no additional configuration required</li>
<li>You can refer to the instructions above to manually select the PPOCRv5 model for better handwritten document parsing results</li>
</ul>
</li>
<li>The <code>huggingface</code> and <code>modelscope</code> demos have been updated to versions that support handwriting recognition and PPOCRv5 models, which you can experience online</li>
</ul>
</details>
<details>
<summary>2025/04/29 Release 1.3.10</summary>
<ul>
<li>Added support for custom formula delimiters, which can be configured by modifying the <code>latex-delimiter-config</code> section in the <code>magic-pdf.json</code> file in your user directory.</li>
</ul>
</details>
<details>
<summary>2025/04/27 Release 1.3.9</summary>
<ul>
<li>Optimized formula parsing functionality, improved formula rendering success rate</li>
</ul>
</details>
<details>
<summary>2025/04/23 Release 1.3.8</summary>
<ul>
<li>The default <code>ocr</code> model (<code>ch</code>) has been updated to <code>PP-OCRv4_server_rec_doc</code> (model update required)
<ul>
<li><code>PP-OCRv4_server_rec_doc</code> is trained on a mixture of more Chinese document data and PP-OCR training data based on <code>PP-OCRv4_server_rec</code>, adding recognition capabilities for some traditional Chinese characters, Japanese, and special characters. It can recognize over 15,000 characters and improves both document-specific and general text recognition abilities.</li>
<li><a href="https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/text_recognition.html#_3">Performance comparison of PP-OCRv4_server_rec_doc/PP-OCRv4_server_rec/PP-OCRv4_mobile_rec</a></li>
<li>After verification, the <code>PP-OCRv4_server_rec_doc</code> model shows significant accuracy improvements in Chinese/English/Japanese/Traditional Chinese in both single language and mixed language scenarios, with comparable speed to <code>PP-OCRv4_server_rec</code>, making it suitable for most use cases.</li>
<li>In some pure English scenarios, <code>PP-OCRv4_server_rec_doc</code> may have word adhesion issues, while <code>PP-OCRv4_server_rec</code> performs better in these cases. Therefore, we've kept the <code>PP-OCRv4_server_rec</code> model, which users can access by adding the parameter <code>lang='ch_server'</code> (Python API) or <code>--lang ch_server</code> (command line).</li>
</ul>
</li>
</ul>
</details>
<details>
<summary>2025/04/22 Release 1.3.7</summary>
<ul>
<li>Fixed the issue where the lang parameter was ineffective during table parsing model initialization</li>
<li>Fixed the significant speed reduction of OCR and table parsing in <code>cpu</code> mode</li>
</ul>
</details>
<details>
<summary>2025/04/16 Release 1.3.4</summary>
<ul>
<li>Slightly improved OCR-det speed by removing some unnecessary blocks</li>
<li>Fixed page-internal sorting errors caused by footnotes in certain cases</li>
</ul>
</details>
<details>
<summary>2025/04/12 Release 1.3.2</summary>
<ul>
<li>Fixed dependency version incompatibility issues when installing on Windows with Python 3.13</li>
<li>Optimized memory usage during batch inference</li>
<li>Improved parsing of tables rotated 90 degrees</li>
<li>Enhanced parsing of oversized tables in financial report samples</li>
<li>Fixed the occasional word adhesion issue in English text areas when OCR language is not specified (model update required)</li>
</ul>
</details>
<details>
<summary>2025/04/08 Release 1.3.1</summary>
<ul>
<li>Fixed several compatibility issues
<ul>
<li>Added support for Python 3.13</li>
<li>Made final adaptations for outdated Linux systems (such as CentOS 7) with no guarantee of continued support in future versions, <a href="https://github.com/opendatalab/MinerU/issues/1004">installation instructions</a></li>
</ul>
</li>
</ul>
</details>
<details>
<summary>2025/04/03 Release 1.3.0</summary>
<ul>
<li>Installation and compatibility optimizations
<ul>
<li>Resolved compatibility issues caused by <code>detectron2</code> by removing <code>layoutlmv3</code> usage in layout</li>
<li>Extended torch version compatibility to 2.2~2.6 (excluding 2.5)</li>
<li>Added CUDA compatibility for versions 11.8/12.4/12.6/12.8 (CUDA version determined by torch), solving compatibility issues for users with 50-series and H-series GPUs</li>
<li>Extended Python compatibility to versions 3.10~3.12, fixing the issue of automatic downgrade to version 0.6.1 when installing in non-3.10 environments</li>
<li>Optimized offline deployment process, eliminating the need to download any model files after successful deployment</li>
</ul>
</li>
<li>Performance optimizations
<ul>
<li>Enhanced parsing speed for batches of small files by supporting batch processing of multiple PDF files (<a href="demo/batch_demo.py">script example</a>), with formula parsing speed improved by up to 1400% and overall parsing speed improved by up to 500% compared to version 1.0.1</li>
<li>Reduced memory usage and improved parsing speed by optimizing MFR model loading and usage (requires re-running the <a href="docs/how_to_download_models_zh_cn.md">model download process</a> to get incremental updates to model files)</li>
<li>Optimized GPU memory usage, requiring only 6GB minimum to run this project</li>
<li>Improved running speed on MPS devices</li>
</ul>
</li>
<li>Parsing effect optimizations
<ul>
<li>Updated MFR model to <code>unimernet(2503)</code>, fixing line break loss issues in multi-line formulas</li>
</ul>
</li>
<li>Usability optimizations
<ul>
<li>Completely replaced the <code>paddle</code> framework and <code>paddleocr</code> in the project by using <code>paddleocr2torch</code>, resolving conflicts between <code>paddle</code> and <code>torch</code>, as well as thread safety issues caused by the <code>paddle</code> framework</li>
<li>Added real-time progress bar display during parsing, allowing precise tracking of parsing progress and making the waiting process more bearable</li>
</ul>
</li>
</ul>
</details>
<details>
<summary>2025/03/03 1.2.1 released</summary>
<ul>
<li>Fixed the impact on punctuation marks during full-width to half-width conversion of letters and numbers</li> <li>Fixed the impact on punctuation marks during full-width to half-width conversion of letters and numbers</li>
<li>Fixed caption matching inaccuracies in certain scenarios</li> <li>Fixed caption matching inaccuracies in certain scenarios</li>
<li>Fixed formula span loss issues in certain scenarios</li> <li>Fixed formula span loss issues in certain scenarios</li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2025/02/24 1.2.0 released</summary> <summary>2025/02/24 1.2.0 released</summary>
<p>This version includes several fixes and improvements to enhance parsing efficiency and accuracy:</p> <p>This version includes several fixes and improvements to enhance parsing efficiency and accuracy:</p>
<ul> <ul>
<li><strong>Performance Optimization</strong> <li><strong>Performance Optimization</strong>
<ul> <ul>
<li>Increased classification speed for PDF documents in auto mode.</li> <li>Increased classification speed for PDF documents in auto mode.</li>
...@@ -134,13 +229,13 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte ...@@ -134,13 +229,13 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte
<li>Resolved an issue where title blocks were empty in some cases.</li> <li>Resolved an issue where title blocks were empty in some cases.</li>
</ul> </ul>
</li> </li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2025/01/22 1.1.0 released</summary> <summary>2025/01/22 1.1.0 released</summary>
<p>In this version we have focused on improving parsing accuracy and efficiency:</p> <p>In this version we have focused on improving parsing accuracy and efficiency:</p>
<ul> <ul>
<li><strong>Model capability upgrade</strong> (requires re-executing the <a href="https://github.com/opendatalab/MinerU/blob/master/docs/how_to_download_models_en.md">model download process</a> to obtain incremental updates of model files) <li><strong>Model capability upgrade</strong> (requires re-executing the <a href="https://github.com/opendatalab/MinerU/blob/master/docs/how_to_download_models_en.md">model download process</a> to obtain incremental updates of model files)
<ul> <ul>
<li>The layout recognition model has been upgraded to the latest <code>doclayout_yolo(2501)</code> model, improving layout recognition accuracy.</li> <li>The layout recognition model has been upgraded to the latest <code>doclayout_yolo(2501)</code> model, improving layout recognition accuracy.</li>
...@@ -157,13 +252,13 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte ...@@ -157,13 +252,13 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte
<li>Added a new heading classification feature (testing version, enabled by default) to the online demo (<a href="https://mineru.net/OpenSourceTools/Extractor">mineru.net</a>/<a href="https://huggingface.co/spaces/opendatalab/MinerU">huggingface</a>/<a href="https://www.modelscope.cn/studios/OpenDataLab/MinerU">modelscope</a>), which supports hierarchical classification of headings, thereby enhancing document structuring.</li> <li>Added a new heading classification feature (testing version, enabled by default) to the online demo (<a href="https://mineru.net/OpenSourceTools/Extractor">mineru.net</a>/<a href="https://huggingface.co/spaces/opendatalab/MinerU">huggingface</a>/<a href="https://www.modelscope.cn/studios/OpenDataLab/MinerU">modelscope</a>), which supports hierarchical classification of headings, thereby enhancing document structuring.</li>
</ul> </ul>
</li> </li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2025/01/10 1.0.1 released</summary> <summary>2025/01/10 1.0.1 released</summary>
<p>This is our first official release, where we have introduced a completely new API interface and enhanced compatibility through extensive refactoring, as well as a brand new automatic language identification feature:</p> <p>This is our first official release, where we have introduced a completely new API interface and enhanced compatibility through extensive refactoring, as well as a brand new automatic language identification feature:</p>
<ul> <ul>
<li><strong>New API Interface</strong> <li><strong>New API Interface</strong>
<ul> <ul>
<li>For the data-side API, we have introduced the Dataset class, designed to provide a robust and flexible data processing framework. This framework currently supports a variety of document formats, including images (.jpg and .png), PDFs, Word documents (.doc and .docx), and PowerPoint presentations (.ppt and .pptx). It ensures effective support for data processing tasks ranging from simple to complex.</li> <li>For the data-side API, we have introduced the Dataset class, designed to provide a robust and flexible data processing framework. This framework currently supports a variety of document formats, including images (.jpg and .png), PDFs, Word documents (.doc and .docx), and PowerPoint presentations (.ppt and .pptx). It ensures effective support for data processing tasks ranging from simple to complex.</li>
...@@ -181,32 +276,32 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte ...@@ -181,32 +276,32 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte
<li>By introducing a new language recognition model, setting the <code>lang</code> configuration to <code>auto</code> during document parsing will automatically select the appropriate OCR language model, improving the accuracy of scanned document parsing.</li> <li>By introducing a new language recognition model, setting the <code>lang</code> configuration to <code>auto</code> during document parsing will automatically select the appropriate OCR language model, improving the accuracy of scanned document parsing.</li>
</ul> </ul>
</li> </li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2024/11/22 0.10.0 released</summary> <summary>2024/11/22 0.10.0 released</summary>
<p>Introducing hybrid OCR text extraction capabilities:</p> <p>Introducing hybrid OCR text extraction capabilities:</p>
<ul> <ul>
<li>Significantly improved parsing performance in complex text distribution scenarios such as dense formulas, irregular span regions, and text represented by images.</li> <li>Significantly improved parsing performance in complex text distribution scenarios such as dense formulas, irregular span regions, and text represented by images.</li>
<li>Combines the dual advantages of accurate content extraction and faster speed in text mode, and more precise span/line region recognition in OCR mode.</li> <li>Combines the dual advantages of accurate content extraction and faster speed in text mode, and more precise span/line region recognition in OCR mode.</li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2024/11/15 0.9.3 released</summary> <summary>2024/11/15 0.9.3 released</summary>
<p>Integrated <a href="https://github.com/RapidAI/RapidTable">RapidTable</a> for table recognition, improving single-table parsing speed by more than 10 times, with higher accuracy and lower GPU memory usage.</p> <p>Integrated <a href="https://github.com/RapidAI/RapidTable">RapidTable</a> for table recognition, improving single-table parsing speed by more than 10 times, with higher accuracy and lower GPU memory usage.</p>
</details> </details>
<details> <details>
<summary>2024/11/06 0.9.2 released</summary> <summary>2024/11/06 0.9.2 released</summary>
<p>Integrated the <a href="https://huggingface.co/U4R/StructTable-InternVL2-1B">StructTable-InternVL2-1B</a> model for table recognition functionality.</p> <p>Integrated the <a href="https://huggingface.co/U4R/StructTable-InternVL2-1B">StructTable-InternVL2-1B</a> model for table recognition functionality.</p>
</details> </details>
<details> <details>
<summary>2024/10/31 0.9.0 released</summary> <summary>2024/10/31 0.9.0 released</summary>
<p>This is a major new version with extensive code refactoring, addressing numerous issues, improving performance, reducing hardware requirements, and enhancing usability:</p> <p>This is a major new version with extensive code refactoring, addressing numerous issues, improving performance, reducing hardware requirements, and enhancing usability:</p>
<ul> <ul>
<li>Refactored the sorting module code to use <a href="https://github.com/ppaanngggg/layoutreader">layoutreader</a> for reading order sorting, ensuring high accuracy in various layouts.</li> <li>Refactored the sorting module code to use <a href="https://github.com/ppaanngggg/layoutreader">layoutreader</a> for reading order sorting, ensuring high accuracy in various layouts.</li>
<li>Refactored the paragraph concatenation module to achieve good results in cross-column, cross-page, cross-figure, and cross-table scenarios.</li> <li>Refactored the paragraph concatenation module to achieve good results in cross-column, cross-page, cross-figure, and cross-table scenarios.</li>
<li>Refactored the list and table of contents recognition functions, significantly improving the accuracy of list blocks and table of contents blocks, as well as the parsing of corresponding text paragraphs.</li> <li>Refactored the list and table of contents recognition functions, significantly improving the accuracy of list blocks and table of contents blocks, as well as the parsing of corresponding text paragraphs.</li>
...@@ -221,41 +316,41 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte ...@@ -221,41 +316,41 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte
<li>Due to the repository change for <code>PDF-Extract-Kit 1.0</code>, you need to re-download the model. Please refer to <a href="https://github.com/opendatalab/MinerU/blob/master/docs/how_to_download_models_en.md">How to Download Models</a> for detailed steps.</li> <li>Due to the repository change for <code>PDF-Extract-Kit 1.0</code>, you need to re-download the model. Please refer to <a href="https://github.com/opendatalab/MinerU/blob/master/docs/how_to_download_models_en.md">How to Download Models</a> for detailed steps.</li>
</ul> </ul>
</li> </li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2024/09/27 Version 0.8.1 released</summary> <summary>2024/09/27 Version 0.8.1 released</summary>
<p>Fixed some bugs, and providing a <a href="https://github.com/opendatalab/MinerU/blob/master/projects/web_demo/README.md">localized deployment version</a> of the <a href="https://opendatalab.com/OpenSourceTools/Extractor/PDF/">online demo</a> and the <a href="https://github.com/opendatalab/MinerU/blob/master/projects/web/README.md">front-end interface</a>.</p> <p>Fixed some bugs, and providing a <a href="https://github.com/opendatalab/MinerU/blob/master/projects/web_demo/README.md">localized deployment version</a> of the <a href="https://opendatalab.com/OpenSourceTools/Extractor/PDF/">online demo</a> and the <a href="https://github.com/opendatalab/MinerU/blob/master/projects/web/README.md">front-end interface</a>.</p>
</details> </details>
<details> <details>
<summary>2024/09/09 Version 0.8.0 released</summary> <summary>2024/09/09 Version 0.8.0 released</summary>
<p>Supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.</p> <p>Supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.</p>
</details> </details>
<details> <details>
<summary>2024/08/30 Version 0.7.1 released</summary> <summary>2024/08/30 Version 0.7.1 released</summary>
<p>Add paddle tablemaster table recognition option</p> <p>Add paddle tablemaster table recognition option</p>
</details> </details>
<details> <details>
<summary>2024/08/09 Version 0.7.0b1 released</summary> <summary>2024/08/09 Version 0.7.0b1 released</summary>
<p>Simplified installation process, added table recognition functionality</p> <p>Simplified installation process, added table recognition functionality</p>
</details> </details>
<details> <details>
<summary>2024/08/01 Version 0.6.2b1 released</summary> <summary>2024/08/01 Version 0.6.2b1 released</summary>
<p>Optimized dependency conflict issues and installation documentation</p> <p>Optimized dependency conflict issues and installation documentation</p>
</details> </details>
<details> <details>
<summary>2024/07/05 Initial open-source release</summary> <summary>2024/07/05 Initial open-source release</summary>
</details> </details>
<!-- TABLE OF CONTENT --> <!-- TABLE OF CONTENT -->
<details open="open"> <details open="open">
<summary><h2 style="display: inline-block">Table of Contents</h2></summary> <summary><h2 style="display: inline-block">Table of Contents</h2></summary>
<ol> <ol>
<li> <li>
...@@ -293,6 +388,7 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte ...@@ -293,6 +388,7 @@ Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple inte
<li><a href="#magic-html">Magic-html</a></li> <li><a href="#magic-html">Magic-html</a></li>
<li><a href="#links">Links</a></li> <li><a href="#links">Links</a></li>
</ol> </ol>
</details>
</details> </details>
# MinerU # MinerU
...@@ -326,12 +422,9 @@ If you encounter any installation issues, please first consult the <a href="#faq ...@@ -326,12 +422,9 @@ If you encounter any installation issues, please first consult the <a href="#faq
If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br> If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br>
There are three different ways to experience MinerU: There are three different ways to experience MinerU:
- [Online Demo (No Installation Required)](#online-demo) - [Online Demo](#online-demo)
- [Quick CPU Demo (Windows, Linux, Mac)](#quick-cpu-demo) - [Local Deployment](#local-deployment)
- Accelerate inference by using CUDA/CANN/MPS
- [Linux/Windows + CUDA](#Using-GPU)
- [Linux + CANN](#using-npu)
- [MacOS + MPS](#using-mps)
> [!WARNING] > [!WARNING]
> **Pre-installation Notice—Hardware and Software Environment Support** > **Pre-installation Notice—Hardware and Software Environment Support**
...@@ -342,182 +435,235 @@ There are three different ways to experience MinerU: ...@@ -342,182 +435,235 @@ There are three different ways to experience MinerU:
> >
> In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support. > In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support.
<table> <table border="1">
<tr>
<td colspan="3" rowspan="2">Operating System</td>
</tr>
<tr>
<td>Linux after 2019</td>
<td>Windows 10 / 11</td>
<td>macOS 11+</td>
</tr>
<tr> <tr>
<td colspan="3">CPU</td> <td>Parsing Backend</td>
<td>x86_64 / arm64</td> <td>pipeline</td>
<td>x86_64(unsupported ARM Windows)</td> <td>vlm-transformers</td>
<td>x86_64 / arm64</td> <td>vlm-sgslang</td>
</tr> </tr>
<tr> <tr>
<td colspan="3">Memory Requirements</td> <td>Operating System</td>
<td colspan="3">16GB or more, recommended 32GB+</td> <td>windows/linux/mac</td>
<td>windows/linux</td>
<td>windows(wsl2)/linux</td>
</tr> </tr>
<tr> <tr>
<td colspan="3">Storage Requirements</td> <td>Memory Requirements</td>
<td colspan="3">20GB or more, with a preference for SSD</td> <td colspan="3">Minimum 16GB+, 32GB+ recommended</td>
</tr> </tr>
<tr> <tr>
<td colspan="3">Python Version</td> <td>Disk Space Requirements</td>
<td colspan="3">3.10~3.13</td> <td colspan="3">20GB+, SSD recommended</td>
</tr> </tr>
<tr> <tr>
<td colspan="3">Nvidia Driver Version</td> <td>Python Version</td>
<td>latest (Proprietary Driver)</td> <td colspan="3">3.10-3.13</td>
<td>latest</td>
<td>None</td>
</tr> </tr>
<tr> <tr>
<td colspan="3">CUDA Environment</td> <td>CPU Inference Support</td>
<td colspan="2"><a href="https://pytorch.org/get-started/locally/">Refer to the PyTorch official website</a></td> <td></td>
<td>None</td> <td></td>
<td></td>
</tr> </tr>
<tr> <tr>
<td colspan="3">CANN Environment(NPU support)</td> <td>GPU Requirements</td>
<td>8.0+(Ascend 910b)</td> <td>Turing architecture or later, 6GB+ VRAM or Apple Silicon</td>
<td>None</td> <td>Ampere architecture or later, 8GB+ VRAM</td>
<td>None</td> <td>Ampere architecture or later, 24GB+ VRAM</td>
</tr>
<tr>
<td rowspan="2">GPU/MPS Hardware Support List</td>
<td colspan="2">GPU VRAM 6GB or more</td>
<td colspan="2">All GPUs with Tensor Cores produced from Volta(2017) onwards.<br>
More than 6GB VRAM </td>
<td rowspan="2">Apple silicon</td>
</tr> </tr>
</table> </table>
### Online Demo ## Online Demo
Synced with dev branch updates:
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github) [![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU) [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU) [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
### Quick CPU Demo ### 🚀🚀🚀VLM demo
[![HuggingFace](https://img.shields.io/badge/VLM_Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/mineru2)
## Local Deployment
### 1. Install MinerU
#### 1. Install magic-pdf #### 1.1 Install via pip or uv
```bash ```bash
conda create -n mineru 'python=3.12' -y pip install --upgrade pip
conda activate mineru pip install uv
pip install -U "magic-pdf[full]" uv pip install "mineru[core]>=2.0.0"
``` ```
#### 2. Download model weight files #### 1.2 Install from source
```bash
git clone https://github.com/opendatalab/MinerU.git
cd MinerU
uv pip install -e .[core]
```
#### 1.3 Install full version (with sglang acceleration)
To use **sglang acceleration for VLM model inference**, install the full version:
Refer to [How to Download Model Files](docs/how_to_download_models_en.md) for detailed instructions. ```bash
uv pip install "mineru[all]>=2.0.0"
```
#### 3. Modify the Configuration File for Additional Configuration Or install from source:
After completing the [2. Download model weight files](#2-download-model-weight-files) step, the script will automatically generate a `magic-pdf.json` file in the user directory and configure the default model path. ```bash
You can find the `magic-pdf.json` file in your 【user directory】. uv pip install -e .[all]
```
> [!TIP] ---
> The user directory for Windows is "C:\\Users\\username", for Linux it is "/home/username", and for macOS it is "/Users/username".
You can modify certain configurations in this file to enable or disable features, such as table recognition: ### 2. Using MinerU
#### 2.1 Command Line Usage
> [!NOTE] ##### Basic Usage
> If the following items are not present in the JSON, please manually add the required items and remove the comment content (standard JSON does not support comments).
```json The simplest command line invocation is:
{
// other config ```bash
"layout-config": { mineru -p <input_path> -o <output_path>
"model": "doclayout_yolo"
},
"formula-config": {
"mfd_model": "yolo_v8_mfd",
"mfr_model": "unimernet_small",
"enable": true // The formula recognition feature is enabled by default. If you need to disable it, please change the value here to "false".
},
"table-config": {
"model": "rapid_table",
"sub_model": "slanet_plus",
"enable": true, // The table recognition feature is enabled by default. If you need to disable it, please change the value here to "false".
"max_time": 400
}
}
``` ```
### Using GPU - `<input_path>`: Local PDF file or directory (supports pdf/png/jpg/jpeg)
- `<output_path>`: Output directory
If your device supports CUDA and meets the GPU requirements of the mainline environment, you can use GPU acceleration. Please select the appropriate guide based on your system: ##### View Help Information
- [Ubuntu 22.04 LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_en_US.md) Get all available parameter descriptions:
- [Windows 10/11 + GPU](docs/README_Windows_CUDA_Acceleration_en_US.md)
- Quick Deployment with Docker
> [!IMPORTANT]
> Docker requires a GPU with at least 6GB of VRAM, and all acceleration features are enabled by default.
>
> Before running this Docker, you can use the following command to check if your device supports CUDA acceleration on Docker.
>
> ```bash
> docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
> ```
```bash
wget https://github.com/opendatalab/MinerU/raw/master/docker/global/Dockerfile -O Dockerfile
docker build -t mineru:latest .
docker run -it --name mineru --gpus=all mineru:latest /bin/bash -c "echo 'source /opt/mineru_venv/bin/activate' >> ~/.bashrc && exec bash"
magic-pdf --help
```
### Using NPU ```bash
mineru --help
```
If your device has NPU acceleration hardware, you can follow the tutorial below to use NPU acceleration: ##### Parameter Details
```text
Usage: mineru [OPTIONS]
Options:
-v, --version Show version and exit
-p, --path PATH Input file path or directory (required)
-o, --output PATH Output directory (required)
-m, --method [auto|txt|ocr] Parsing method: auto (default), txt, ocr (pipeline backend only)
-b, --backend [pipeline|vlm-transformers|vlm-sglang-engine|vlm-sglang-client]
Parsing backend (default: pipeline)
-l, --lang [ch|ch_server|... ] Specify document language (improves OCR accuracy, pipeline backend only)
-u, --url TEXT Service address when using sglang-client
-s, --start INTEGER Starting page number (0-based)
-e, --end INTEGER Ending page number (0-based)
-f, --formula BOOLEAN Enable formula parsing (default: on, pipeline backend only)
-t, --table BOOLEAN Enable table parsing (default: on, pipeline backend only)
-d, --device TEXT Inference device (e.g., cpu/cuda/cuda:0/npu/mps, pipeline backend only)
--vram INTEGER Maximum GPU VRAM usage per process (pipeline backend only)
--source [huggingface|modelscope|local]
Model source, default: huggingface
--help Show help information
```
[Ascend NPU Acceleration](docs/README_Ascend_NPU_Acceleration_zh_CN.md) ---
### Using MPS #### 2.2 Model Source Configuration
If your device uses Apple silicon chips, you can enable MPS acceleration for your tasks. MinerU automatically downloads required models from HuggingFace on first run. If HuggingFace is inaccessible, you can switch model sources:
You can enable MPS acceleration by setting the `device-mode` parameter to `mps` in the `magic-pdf.json` configuration file. ##### Switch to ModelScope Source
```json ```bash
{ mineru -p <input_path> -o <output_path> --source modelscope
// other config ```
"device-mode": "mps"
} Or set environment variable:
```bash
export MINERU_MODEL_SOURCE=modelscope
mineru -p <input_path> -o <output_path>
```
##### Using Local Models
###### 1. Download Models Locally
```bash
mineru-models-download --help
```
Or use interactive command-line tool to select models:
```bash
mineru-models-download
``` ```
After download, model paths will be displayed in current terminal and automatically written to `mineru.json` in user directory.
###### 2. Parse Using Local Models
## Usage ```bash
mineru -p <input_path> -o <output_path> --source local
```
Or enable via environment variable:
```bash
export MINERU_MODEL_SOURCE=local
mineru -p <input_path> -o <output_path>
```
---
#### 2.3 Using sglang to Accelerate VLM Model Inference
##### Start sglang-engine Mode
```bash
mineru -p <input_path> -o <output_path> -b vlm-sglang-engine
```
##### Start sglang-server/client Mode
1. Start Server:
```bash
mineru-sglang-server --port 30000
```
2. Use Client in another terminal:
```bash
mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://127.0.0.1:30000
```
### Command Line > 💡 For more information about output files, please refer to [Output File Documentation](docs/output_file_zh_cn.md)
[Using MinerU via Command Line](https://mineru.readthedocs.io/en/latest/user_guide/usage/command_line.html) ---
> [!TIP] ### 3. API Usage
> For more information about the output files, please refer to the [Output File Description](docs/output_file_en_us.md).
### API You can also call MinerU through Python code, see example code at:
👉 [Python Usage Example](demo/demo.py)
[Using MinerU via Python API](https://mineru.readthedocs.io/en/latest/user_guide/usage/api.html) ---
### 4. Deploy Derivative Projects
### Deploy Derived Projects Community developers have created various extensions based on MinerU, including:
Derived projects include secondary development projects based on MinerU by project developers and community developers, - Graphical interface based on Gradio
such as application interfaces based on Gradio, RAG based on llama, web demos similar to the official website, lightweight multi-GPU load balancing client/server ends, etc. - Web API based on FastAPI
These projects may offer more features and a better user experience. - Client/server architecture with multi-GPU load balancing, etc.
For specific deployment methods, please refer to the [Derived Project README](projects/README.md)
These projects typically offer better user experience and additional features.
### Development Guide For detailed deployment instructions, please refer to:
👉 [Derivative Projects Documentation](projects/README_zh-CN.md)
TODO ---
# TODO # TODO
...@@ -562,15 +708,16 @@ This project currently uses PyMuPDF to achieve advanced functionality. However, ...@@ -562,15 +708,16 @@ This project currently uses PyMuPDF to achieve advanced functionality. However,
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit) - [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO) - [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy) - [UniMERNet](https://github.com/opendatalab/UniMERNet)
- [RapidTable](https://github.com/RapidAI/RapidTable) - [RapidTable](https://github.com/RapidAI/RapidTable)
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) - [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [RapidOCR](https://github.com/RapidAI/RapidOCR)
- [PaddleOCR2Pytorch](https://github.com/frotms/PaddleOCR2Pytorch) - [PaddleOCR2Pytorch](https://github.com/frotms/PaddleOCR2Pytorch)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
- [layoutreader](https://github.com/ppaanngggg/layoutreader) - [layoutreader](https://github.com/ppaanngggg/layoutreader)
- [xy-cut](https://github.com/Sanster/xy-cut)
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect) - [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pypdfium2](https://github.com/pypdfium2-team/pypdfium2)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six) - [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
- [pypdf](https://github.com/py-pdf/pypdf)
# Citation # Citation
......
...@@ -10,14 +10,17 @@ ...@@ -10,14 +10,17 @@
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU) [![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues) [![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues) [![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://img.shields.io/pypi/v/magic-pdf)](https://pypi.org/project/magic-pdf/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/magic-pdf)](https://pypi.org/project/magic-pdf/) [![PyPI version](https://img.shields.io/pypi/v/mineru)](https://pypi.org/project/mineru/)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mineru)](https://pypi.org/project/mineru/)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf) [![Downloads](https://static.pepy.tech/badge/mineru)](https://pepy.tech/project/mineru)
[![Downloads](https://static.pepy.tech/badge/mineru/month)](https://pepy.tech/project/mineru)
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github) [![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU) [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU) [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![HuggingFace](https://img.shields.io/badge/VLM_Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/mineru2)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/abs/2409.18839) [![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/abs/2409.18839)
...@@ -47,74 +50,168 @@ ...@@ -47,74 +50,168 @@
</div> </div>
# 更新记录 # 更新记录
- 2025/05/24 1.3.12 发布 - 2025/06/13 2.0.0发布
- 增加ppocrv5模型的支持,将`ch_server`模型更新为`PP-OCRv5_rec_server``ch_lite`模型更新为`PP-OCRv5_rec_mobile`(需更新模型) - MinerU 2.0 是一次从架构到功能的全面重构与升级,带来了更简洁的设计、更强的性能以及更灵活的使用体验。
- 在测试中,发现ppocrv5(server)对手写文档效果有一定提升,但在其余类别文档的精度略差于v4_server_doc,因此默认的ch模型保持不变,仍为`PP-OCRv4_server_rec_doc` - **全新架构**:MinerU 2.0 在代码结构和交互方式上进行了深度重构,显著提升了系统的易用性、可维护性与扩展能力。
- 由于ppocrv5强化了手写场景和特殊字符的识别能力,因此您可以在日繁混合场景以及手写文档场景下手动选择使用ppocrv5模型 - **去除第三方依赖限制**:彻底移除对 `pymupdf` 的依赖,推动项目向更开放、合规的开源方向迈进。
- 您可通过lang参数`lang='ch_server'`(python api)或`--lang ch_server`(命令行)自行选择相应的模型: - **开箱即用,配置便捷**:无需手动编辑 JSON 配置文件,绝大多数参数已支持命令行或 API 直接设置。
- `ch``PP-OCRv4_rec_server_doc`(默认)(中英日繁混合/1.5w字典) - **模型自动管理**:新增模型自动下载与更新机制,用户无需手动干预即可完成模型部署。
- `ch_server``PP-OCRv5_rec_server`(中英日繁混合+手写场景/1.8w字典) - **离线部署友好**:提供内置模型下载命令,支持完全断网环境下的部署需求。
- `ch_lite``PP-OCRv5_rec_mobile`(中英日繁混合+手写场景/1.8w字典) - **代码结构精简**:移除数千行冗余代码,简化类继承逻辑,显著提升代码可读性与开发效率。
- `ch_server_v4``PP-OCRv4_rec_server`(中英混合/6k字典) - **统一中间格式输出**:采用标准化的 `middle_json` 格式,兼容多数基于该格式的二次开发场景,确保生态业务无缝迁移。
- `ch_lite_v4``PP-OCRv4_rec_mobile`(中英混合/6k字典) - **全新模型**:MinerU 2.0 集成了我们最新研发的小参数量、高性能多模态文档解析模型,实现端到端的高速、高精度文档理解。
- 增加手写文档的支持,通过优化layout对手写文本区域的识别,现已支持手写文档的解析 - **小模型,大能力**:模型参数不足 1B,却在解析精度上超越传统 72B 级别的视觉语言模型(VLM)。
- 默认支持此功能,无需额外配置 - **多功能合一**:单模型覆盖多语言识别、手写识别、版面分析、表格解析、公式识别、阅读顺序排序等核心任务。
- 可以参考上述说明,手动选择ppocrv5模型以获得更好的手写文档解析效果 - **极致推理速度**:在单卡 NVIDIA 4090 上通过 `sglang` 加速,达到峰值吞吐量超过 10,000 token/s,轻松应对大规模文档处理需求。
- `huggingface``modelscope`的demo已更新为支持手写识别和ppocrv5模型的版本,可自行在线体验 - **在线体验**:您可在我们的huggingface demo上在线体验该模型:[![HuggingFace](https://img.shields.io/badge/VLM_Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/mineru2)
- 2025/04/29 1.3.10 发布 - **不兼容变更说明**:为提升整体架构合理性与长期可维护性,本版本包含部分不兼容的变更:
- 支持使用自定义公式标识符,可通过修改用户目录下的`magic-pdf.json`文件中的`latex-delimiter-config`项实现。 - Python 包名从 `magic-pdf` 更改为 `mineru`,命令行工具也由 `magic-pdf` 改为 `mineru`,请同步更新脚本与调用命令。
- 2025/04/27 1.3.9 发布 - 出于对系统模块化设计与生态一致性的考虑,MinerU 2.0 已不再内置 LibreOffice 文档转换模块。如需处理 Office 文档,建议通过独立部署的 LibreOffice 服务先行转换为 PDF 格式,再进行后续解析操作。
- 优化公式解析功能,提升公式渲染的成功率
- 2025/04/23 1.3.8 发布
- `ocr`默认模型(`ch`)更新为`PP-OCRv4_server_rec_doc`(需更新模型)
- `PP-OCRv4_server_rec_doc`是在`PP-OCRv4_server_rec`的基础上,在更多中文文档数据和PP-OCR训练数据的混合数据训练而成,增加了部分繁体字、日文、特殊字符的识别能力,可支持识别的字符为1.5万+,除文档相关的文字识别能力提升外,也同时提升了通用文字的识别能力。
- [PP-OCRv4_server_rec_doc/PP-OCRv4_server_rec/PP-OCRv4_mobile_rec 性能对比](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/text_recognition.html#_3)
- 经验证,`PP-OCRv4_server_rec_doc`模型在`中英日繁`单种语言或多种语言混合场景均有明显精度提升,且速度与`PP-OCRv4_server_rec`相当,适合绝大部分场景使用。
- `PP-OCRv4_server_rec_doc`在小部分纯英文场景可能会发生单词粘连问题,`PP-OCRv4_server_rec`则在此场景下表现更好,因此我们保留了`PP-OCRv4_server_rec`模型,用户可通过增加参数`lang='ch_server'`(python api)或`--lang ch_server`(命令行)调用。
- 2025/04/22 1.3.7 发布
- 修复表格解析模型初始化时lang参数失效的问题
- 修复在`cpu`模式下ocr和表格解析速度大幅下降的问题
- 2025/04/16 1.3.4 发布
- 通过移除一些无用的块,小幅提升了ocr-det的速度
- 修复部分情况下由footnote导致的页面内排序错误
- 2025/04/12 1.3.2 发布
- 修复了windows系统下,在python3.13环境安装时一些依赖包版本不兼容的问题
- 优化批量推理时的内存占用
- 优化旋转90度表格的解析效果
- 优化财报样本中超大表格的解析效果
- 修复了在未指定OCR语言时,英文文本区域偶尔出现的单词黏连问题(需要更新模型)
- 2025/04/08 1.3.1 发布,修复了一些兼容问题
- 支持python 3.13
- 为部分过时的linux系统(如centos7)做出最后适配,并不再保证后续版本的继续支持,[安装说明](https://github.com/opendatalab/MinerU/issues/1004)
- 2025/04/03 1.3.0 发布,在这个版本我们做出了许多优化和改进:
- 安装与兼容性优化
- 通过移除layout中`layoutlmv3`的使用,解决了由`detectron2`导致的兼容问题
- torch版本兼容扩展到2.2~2.6(2.5除外)
- cuda兼容支持11.8/12.4/12.6/12.8(cuda版本由torch决定),解决部分用户50系显卡与H系显卡的兼容问题
- python兼容版本扩展到3.10~3.12,解决了在非3.10环境下安装时自动降级到0.6.1的问题
- 优化离线部署流程,部署成功后不需要联网下载任何模型文件
- 性能优化
- 通过支持多个pdf文件的batch处理([脚本样例](demo/batch_demo.py)),提升了批量小文件的解析速度 (与1.0.1版本相比,公式解析速度最高提升超过1400%,整体解析速度最高提升超过500%)
- 通过优化mfr模型的加载和使用,降低了显存占用并提升了解析速度(需重新执行[模型下载流程](docs/how_to_download_models_zh_cn.md)以获得模型文件的增量更新)
- 优化显存占用,最低仅需6GB即可运行本项目
- 优化了在mps设备上的运行速度
- 解析效果优化
- mfr模型更新到`unimernet(2503)`,解决多行公式中换行丢失的问题
- 易用性优化
- 通过使用`paddleocr2torch`,完全替代`paddle`框架以及`paddleocr`在项目中的使用,解决了`paddle``torch`的冲突问题,和由于`paddle`框架导致的线程不安全问题
- 解析过程增加实时进度条显示,精准把握解析进度,让等待不再痛苦
<details> <details>
<summary>2025/03/03 1.2.1 发布,修复了一些问题</summary> <summary>历史日志</summary>
<ul> <details>
<summary>2025/05/24 1.3.12 发布</summary>
<ul>
<li>增加ppocrv5模型的支持,将<code>ch_server</code>模型更新为<code>PP-OCRv5_rec_server</code><code>ch_lite</code>模型更新为<code>PP-OCRv5_rec_mobile</code>(需更新模型)
<ul>
<li>在测试中,发现ppocrv5(server)对手写文档效果有一定提升,但在其余类别文档的精度略差于v4_server_doc,因此默认的ch模型保持不变,仍为<code>PP-OCRv4_server_rec_doc</code></li>
<li>由于ppocrv5强化了手写场景和特殊字符的识别能力,因此您可以在日繁混合场景以及手写文档场景下手动选择使用ppocrv5模型</li>
<li>您可通过lang参数<code>lang='ch_server'</code>(python api)或<code>--lang ch_server</code>(命令行)自行选择相应的模型:
<ul>
<li><code>ch</code><code>PP-OCRv4_rec_server_doc</code>(默认)(中英日繁混合/1.5w字典)</li>
<li><code>ch_server</code><code>PP-OCRv5_rec_server</code>(中英日繁混合+手写场景/1.8w字典)</li>
<li><code>ch_lite</code><code>PP-OCRv5_rec_mobile</code>(中英日繁混合+手写场景/1.8w字典)</li>
<li><code>ch_server_v4</code><code>PP-OCRv4_rec_server</code>(中英混合/6k字典)</li>
<li><code>ch_lite_v4</code><code>PP-OCRv4_rec_mobile</code>(中英混合/6k字典)</li>
</ul>
</li>
</ul>
</li>
<li>增加手写文档的支持,通过优化layout对手写文本区域的识别,现已支持手写文档的解析
<ul>
<li>默认支持此功能,无需额外配置</li>
<li>可以参考上述说明,手动选择ppocrv5模型以获得更好的手写文档解析效果</li>
</ul>
</li>
<li><code>huggingface</code><code>modelscope</code>的demo已更新为支持手写识别和ppocrv5模型的版本,可自行在线体验</li>
</ul>
</details>
<details>
<summary>2025/04/29 1.3.10 发布</summary>
<ul>
<li>支持使用自定义公式标识符,可通过修改用户目录下的<code>magic-pdf.json</code>文件中的<code>latex-delimiter-config</code>项实现。</li>
</ul>
</details>
<details>
<summary>2025/04/27 1.3.9 发布</summary>
<ul>
<li>优化公式解析功能,提升公式渲染的成功率</li>
</ul>
</details>
<details>
<summary>2025/04/23 1.3.8 发布</summary>
<ul>
<li><code>ocr</code>默认模型(<code>ch</code>)更新为<code>PP-OCRv4_server_rec_doc</code>(需更新模型)
<ul>
<li><code>PP-OCRv4_server_rec_doc</code>是在<code>PP-OCRv4_server_rec</code>的基础上,在更多中文文档数据和PP-OCR训练数据的混合数据训练而成,增加了部分繁体字、日文、特殊字符的识别能力,可支持识别的字符为1.5万+,除文档相关的文字识别能力提升外,也同时提升了通用文字的识别能力。</li>
<li><a href="https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/text_recognition.html#_3">PP-OCRv4_server_rec_doc/PP-OCRv4_server_rec/PP-OCRv4_mobile_rec 性能对比</a></li>
<li>经验证,<code>PP-OCRv4_server_rec_doc</code>模型在<code>中英日繁</code>单种语言或多种语言混合场景均有明显精度提升,且速度与<code>PP-OCRv4_server_rec</code>相当,适合绝大部分场景使用。</li>
<li><code>PP-OCRv4_server_rec_doc</code>在小部分纯英文场景可能会发生单词粘连问题,<code>PP-OCRv4_server_rec</code>则在此场景下表现更好,因此我们保留了<code>PP-OCRv4_server_rec</code>模型,用户可通过增加参数<code>lang='ch_server'</code>(python api)或<code>--lang ch_server</code>(命令行)调用。</li>
</ul>
</li>
</ul>
</details>
<details>
<summary>2025/04/22 1.3.7 发布</summary>
<ul>
<li>修复表格解析模型初始化时lang参数失效的问题</li>
<li>修复在<code>cpu</code>模式下ocr和表格解析速度大幅下降的问题</li>
</ul>
</details>
<details>
<summary>2025/04/16 1.3.4 发布</summary>
<ul>
<li>通过移除一些无用的块,小幅提升了ocr-det的速度</li>
<li>修复部分情况下由footnote导致的页面内排序错误</li>
</ul>
</details>
<details>
<summary>2025/04/12 1.3.2 发布</summary>
<ul>
<li>修复了windows系统下,在python3.13环境安装时一些依赖包版本不兼容的问题</li>
<li>优化批量推理时的内存占用</li>
<li>优化旋转90度表格的解析效果</li>
<li>优化财报样本中超大表格的解析效果</li>
<li>修复了在未指定OCR语言时,英文文本区域偶尔出现的单词黏连问题(需要更新模型)</li>
</ul>
</details>
<details>
<summary>2025/04/08 1.3.1 发布</summary>
<ul>
<li>修复了一些兼容问题
<ul>
<li>支持python 3.13</li>
<li>为部分过时的linux系统(如centos7)做出最后适配,并不再保证后续版本的继续支持,<a href="https://github.com/opendatalab/MinerU/issues/1004">安装说明</a></li>
</ul>
</li>
</ul>
</details>
<details>
<summary>2025/04/03 1.3.0 发布</summary>
<ul>
<li>安装与兼容性优化
<ul>
<li>通过移除layout中<code>layoutlmv3</code>的使用,解决了由<code>detectron2</code>导致的兼容问题</li>
<li>torch版本兼容扩展到2.2~2.6(2.5除外)</li>
<li>cuda兼容支持11.8/12.4/12.6/12.8(cuda版本由torch决定),解决部分用户50系显卡与H系显卡的兼容问题</li>
<li>python兼容版本扩展到3.10~3.12,解决了在非3.10环境下安装时自动降级到0.6.1的问题</li>
<li>优化离线部署流程,部署成功后不需要联网下载任何模型文件</li>
</ul>
</li>
<li>性能优化
<ul>
<li>通过支持多个pdf文件的batch处理(<a href="demo/batch_demo.py">脚本样例</a>),提升了批量小文件的解析速度 (与1.0.1版本相比,公式解析速度最高提升超过1400%,整体解析速度最高提升超过500%)</li>
<li>通过优化mfr模型的加载和使用,降低了显存占用并提升了解析速度(需重新执行<a href="docs/how_to_download_models_zh_cn.md">模型下载流程</a>以获得模型文件的增量更新)</li>
<li>优化显存占用,最低仅需6GB即可运行本项目</li>
<li>优化了在mps设备上的运行速度</li>
</ul>
</li>
<li>解析效果优化
<ul>
<li>mfr模型更新到<code>unimernet(2503)</code>,解决多行公式中换行丢失的问题</li>
</ul>
</li>
<li>易用性优化
<ul>
<li>通过使用<code>paddleocr2torch</code>,完全替代<code>paddle</code>框架以及<code>paddleocr</code>在项目中的使用,解决了<code>paddle</code><code>torch</code>的冲突问题,和由于<code>paddle</code>框架导致的线程不安全问题</li>
<li>解析过程增加实时进度条显示,精准把握解析进度,让等待不再痛苦</li>
</ul>
</li>
</ul>
</details>
<details>
<summary>2025/03/03 1.2.1 发布,修复了一些问题</summary>
<ul>
<li>修复在字母与数字的全角转半角操作时对标点符号的影响</li> <li>修复在字母与数字的全角转半角操作时对标点符号的影响</li>
<li>修复在某些情况下caption的匹配不准确问题</li> <li>修复在某些情况下caption的匹配不准确问题</li>
<li>修复在某些情况下的公式span丢失问题</li> <li>修复在某些情况下的公式span丢失问题</li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2025/02/24 1.2.0 发布,这个版本我们修复了一些问题,提升了解析的效率与精度:</summary> <summary>2025/02/24 1.2.0 发布,这个版本我们修复了一些问题,提升了解析的效率与精度:</summary>
<ul> <ul>
<li>性能优化 <li>性能优化
<ul> <ul>
<li>auto模式下pdf文档的分类速度提升</li> <li>auto模式下pdf文档的分类速度提升</li>
...@@ -132,12 +229,12 @@ ...@@ -132,12 +229,12 @@
<li>修复在某些情况下标题block为空的问题</li> <li>修复在某些情况下标题block为空的问题</li>
</ul> </ul>
</li> </li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2025/01/22 1.1.0 发布,在这个版本我们重点提升了解析的精度与效率:</summary> <summary>2025/01/22 1.1.0 发布,在这个版本我们重点提升了解析的精度与效率:</summary>
<ul> <ul>
<li>模型能力升级(需重新执行 <a href="https://github.com/opendatalab/MinerU/docs/how_to_download_models_zh_cn.md">模型下载流程</a> 以获得模型文件的增量更新) <li>模型能力升级(需重新执行 <a href="https://github.com/opendatalab/MinerU/docs/how_to_download_models_zh_cn.md">模型下载流程</a> 以获得模型文件的增量更新)
<ul> <ul>
<li>布局识别模型升级到最新的 `doclayout_yolo(2501)` 模型,提升了layout识别精度</li> <li>布局识别模型升级到最新的 `doclayout_yolo(2501)` 模型,提升了layout识别精度</li>
...@@ -154,12 +251,12 @@ ...@@ -154,12 +251,12 @@
<li>在线demo(<a href="https://mineru.net/OpenSourceTools/Extractor">mineru.net</a> / <a href="https://huggingface.co/spaces/opendatalab/MinerU">huggingface</a> / <a href="https://www.modelscope.cn/studios/OpenDataLab/MinerU">modelscope</a>)上新增标题分级功能(测试版本,默认开启),支持对标题进行分级,提升文档结构化程度</li> <li>在线demo(<a href="https://mineru.net/OpenSourceTools/Extractor">mineru.net</a> / <a href="https://huggingface.co/spaces/opendatalab/MinerU">huggingface</a> / <a href="https://www.modelscope.cn/studios/OpenDataLab/MinerU">modelscope</a>)上新增标题分级功能(测试版本,默认开启),支持对标题进行分级,提升文档结构化程度</li>
</ul> </ul>
</li> </li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2025/01/10 1.0.1 发布,这是我们的第一个正式版本,在这个版本中,我们通过大量重构带来了全新的API接口和更广泛的兼容性,以及全新的自动语言识别功能:</summary> <summary>2025/01/10 1.0.1 发布,这是我们的第一个正式版本,在这个版本中,我们通过大量重构带来了全新的API接口和更广泛的兼容性,以及全新的自动语言识别功能:</summary>
<ul> <ul>
<li>全新API接口 <li>全新API接口
<ul> <ul>
<li>对于数据侧API,我们引入了Dataset类,旨在提供一个强大而灵活的数据处理框架。该框架当前支持包括图像(.jpg及.png)、PDF、Word(.doc及.docx)、以及PowerPoint(.ppt及.pptx)在内的多种文档格式,确保了从简单到复杂的数据处理任务都能得到有效的支持。</li> <li>对于数据侧API,我们引入了Dataset类,旨在提供一个强大而灵活的数据处理框架。该框架当前支持包括图像(.jpg及.png)、PDF、Word(.doc及.docx)、以及PowerPoint(.ppt及.pptx)在内的多种文档格式,确保了从简单到复杂的数据处理任务都能得到有效的支持。</li>
...@@ -177,28 +274,28 @@ ...@@ -177,28 +274,28 @@
<li>通过引入全新的语言识别模型, 在文档解析中将 `lang` 配置为 `auto`,即可自动选择合适的OCR语言模型,提升扫描类文档解析的准确性。</li> <li>通过引入全新的语言识别模型, 在文档解析中将 `lang` 配置为 `auto`,即可自动选择合适的OCR语言模型,提升扫描类文档解析的准确性。</li>
</ul> </ul>
</li> </li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2024/11/22 0.10.0发布,通过引入混合OCR文本提取能力,</summary> <summary>2024/11/22 0.10.0发布,通过引入混合OCR文本提取能力,</summary>
<ul> <ul>
<li>在公式密集、span区域不规范、部分文本使用图像表现等复杂文本分布场景下获得解析效果的显著提升</li> <li>在公式密集、span区域不规范、部分文本使用图像表现等复杂文本分布场景下获得解析效果的显著提升</li>
<li>同时具备文本模式内容提取准确、速度更快与OCR模式span/line区域识别更准的双重优势</li> <li>同时具备文本模式内容提取准确、速度更快与OCR模式span/line区域识别更准的双重优势</li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2024/11/15 0.9.3发布,为表格识别功能接入了<a href="https://github.com/RapidAI/RapidTable">RapidTable</a>,单表解析速度提升10倍以上,准确率更高,显存占用更低</summary> <summary>2024/11/15 0.9.3发布,为表格识别功能接入了<a href="https://github.com/RapidAI/RapidTable">RapidTable</a>,单表解析速度提升10倍以上,准确率更高,显存占用更低</summary>
</details> </details>
<details> <details>
<summary>2024/11/06 0.9.2发布,为表格识别功能接入了<a href="https://huggingface.co/U4R/StructTable-InternVL2-1B">StructTable-InternVL2-1B</a>模型</summary> <summary>2024/11/06 0.9.2发布,为表格识别功能接入了<a href="https://huggingface.co/U4R/StructTable-InternVL2-1B">StructTable-InternVL2-1B</a>模型</summary>
</details> </details>
<details> <details>
<summary>2024/10/31 0.9.0发布,这是我们进行了大量代码重构的全新版本,解决了众多问题,提升了性能,降低了硬件需求,并提供了更丰富的易用性:</summary> <summary>2024/10/31 0.9.0发布,这是我们进行了大量代码重构的全新版本,解决了众多问题,提升了性能,降低了硬件需求,并提供了更丰富的易用性:</summary>
<ul> <ul>
<li>重构排序模块代码,使用 <a href="https://github.com/ppaanngggg/layoutreader">layoutreader</a> 进行阅读顺序排序,确保在各种排版下都能实现极高准确率</li> <li>重构排序模块代码,使用 <a href="https://github.com/ppaanngggg/layoutreader">layoutreader</a> 进行阅读顺序排序,确保在各种排版下都能实现极高准确率</li>
<li>重构段落拼接模块,在跨栏、跨页、跨图、跨表情况下均能实现良好的段落拼接效果</li> <li>重构段落拼接模块,在跨栏、跨页、跨图、跨表情况下均能实现良好的段落拼接效果</li>
<li>重构列表和目录识别功能,极大提升列表块和目录块识别的准确率及对应文本段落的解析效果</li> <li>重构列表和目录识别功能,极大提升列表块和目录块识别的准确率及对应文本段落的解析效果</li>
...@@ -213,37 +310,37 @@ ...@@ -213,37 +310,37 @@
<li>`PDF-Extract-Kit 1.0` 更换仓库,需要重新下载模型,步骤详见 <a href="https://github.com/opendatalab/MinerU/docs/how_to_download_models_zh_cn.md">如何下载模型</a></li> <li>`PDF-Extract-Kit 1.0` 更换仓库,需要重新下载模型,步骤详见 <a href="https://github.com/opendatalab/MinerU/docs/how_to_download_models_zh_cn.md">如何下载模型</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</details> </details>
<details> <details>
<summary>2024/09/27 0.8.1发布,修复了一些bug,同时提供了<a href="https://opendatalab.com/OpenSourceTools/Extractor/PDF/">在线demo</a><a href="https://github.com/opendatalab/MinerU/projects/web_demo/README_zh-CN.md">本地化部署版本</a><a href="https://github.com/opendatalab/MinerU/projects/web/README_zh-CN.md">前端界面</a></summary> <summary>2024/09/27 0.8.1发布,修复了一些bug,同时提供了<a href="https://opendatalab.com/OpenSourceTools/Extractor/PDF/">在线demo</a><a href="https://github.com/opendatalab/MinerU/projects/web_demo/README_zh-CN.md">本地化部署版本</a><a href="https://github.com/opendatalab/MinerU/projects/web/README_zh-CN.md">前端界面</a></summary>
</details> </details>
<details> <details>
<summary>2024/09/09 0.8.0发布,支持Dockerfile快速部署,同时上线了huggingface、modelscope demo</summary> <summary>2024/09/09 0.8.0发布,支持Dockerfile快速部署,同时上线了huggingface、modelscope demo</summary>
</details> </details>
<details> <details>
<summary>2024/08/30 0.7.1发布,集成了paddle tablemaster表格识别功能</summary> <summary>2024/08/30 0.7.1发布,集成了paddle tablemaster表格识别功能</summary>
</details> </details>
<details> <details>
<summary>2024/08/09 0.7.0b1发布,简化安装步骤提升易用性,加入表格识别功能</summary> <summary>2024/08/09 0.7.0b1发布,简化安装步骤提升易用性,加入表格识别功能</summary>
</details> </details>
<details> <details>
<summary>2024/08/01 0.6.2b1发布,优化了依赖冲突问题和安装文档</summary> <summary>2024/08/01 0.6.2b1发布,优化了依赖冲突问题和安装文档</summary>
</details> </details>
<details> <details>
<summary>2024/07/05 首次开源</summary> <summary>2024/07/05 首次开源</summary>
</details> </details>
<!-- TABLE OF CONTENT --> <!-- TABLE OF CONTENT -->
<details open="open"> <details open="open">
<summary><h2 style="display: inline-block">文档目录</h2></summary> <summary><h2 style="display: inline-block">文档目录</h2></summary>
<ol> <ol>
<li> <li>
...@@ -281,8 +378,10 @@ ...@@ -281,8 +378,10 @@
<li><a href="#magic-html">magic-html提取混合网页内容</a></li> <li><a href="#magic-html">magic-html提取混合网页内容</a></li>
<li><a href="#links">Links</a></li> <li><a href="#links">Links</a></li>
</ol> </ol>
</details>
</details> </details>
# MinerU # MinerU
## 项目简介 ## 项目简介
...@@ -312,14 +411,10 @@ https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c ...@@ -312,14 +411,10 @@ https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
如果遇到任何安装问题,请先查询 <a href="#faq">FAQ</a> </br> 如果遇到任何安装问题,请先查询 <a href="#faq">FAQ</a> </br>
如果遇到解析效果不及预期,参考 <a href="#known-issues">Known Issues</a></br> 如果遇到解析效果不及预期,参考 <a href="#known-issues">Known Issues</a></br>
3种不同方式可以体验MinerU的效果: 2种不同方式可以体验MinerU的效果:
- [在线体验(无需任何安装)](#在线体验) - [在线体验](#在线体验)
- [使用CPU快速体验(Windows,Linux,Mac)](#使用cpu快速体验) - [本地部署](#本地部署)
- 使用 CUDA/CANN/MPS 加速推理
- [Linux/Windows + CUDA](#使用gpu)
- [Linux + CANN](#使用npu)
- [MacOS + MPS](#使用mps)
> [!WARNING] > [!WARNING]
...@@ -331,184 +426,236 @@ https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c ...@@ -331,184 +426,236 @@ https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
> >
> 在非主线环境中,由于硬件、软件配置的多样性,以及第三方依赖项的兼容性问题,我们无法100%保证项目的完全可用性。因此,对于希望在非推荐环境中使用本项目的用户,我们建议先仔细阅读文档以及FAQ,大多数问题已经在FAQ中有对应的解决方案,除此之外我们鼓励社区反馈问题,以便我们能够逐步扩大支持范围。 > 在非主线环境中,由于硬件、软件配置的多样性,以及第三方依赖项的兼容性问题,我们无法100%保证项目的完全可用性。因此,对于希望在非推荐环境中使用本项目的用户,我们建议先仔细阅读文档以及FAQ,大多数问题已经在FAQ中有对应的解决方案,除此之外我们鼓励社区反馈问题,以便我们能够逐步扩大支持范围。
<table> <table border="1">
<tr>
<td colspan="3" rowspan="2">操作系统</td>
</tr>
<tr> <tr>
<td>Linux after 2019</td> <td>解析后端</td>
<td>Windows 10 / 11</td> <td>pipeline</td>
<td>macOS 11+</td> <td>vlm-transformers</td>
<td>vlm-sgslang</td>
</tr> </tr>
<tr> <tr>
<td colspan="3">CPU</td> <td>操作系统</td>
<td>x86_64 / arm64</td> <td>windows/linux/mac</td>
<td>x86_64(暂不支持ARM Windows)</td> <td>windows/linux</td>
<td>x86_64 / arm64</td> <td>windows(wsl2)/linux</td>
</tr> </tr>
<tr> <tr>
<td colspan="3">内存</td> <td>内存要求</td>
<td colspan="3">大于等于16GB,推荐32G以上</td> <td colspan="3">最低16G以上,推荐32G以上</td>
</tr> </tr>
<tr> <tr>
<td colspan="3">存储空间</td> <td>磁盘空间要求</td>
<td colspan="3">大于等于20GB,推荐使用SSD以获得最佳性能</td> <td colspan="3">20G以上,推荐使用SSD</td>
</tr> </tr>
<tr> <tr>
<td colspan="3">python版本</td> <td>python版本</td>
<td colspan="3">3.10~3.13</td> <td colspan="3">3.10-3.13</td>
</tr> </tr>
<tr> <tr>
<td colspan="3">Nvidia Driver 版本</td> <td>CPU推理支持</td>
<td>latest(专有驱动)</td> <td></td>
<td>latest</td> <td></td>
<td>None</td> <td></td>
</tr> </tr>
<tr> <tr>
<td colspan="3">CUDA环境</td> <td>GPU要求</td>
<td colspan="2"><a href="https://pytorch.org/get-started/locally/">Refer to the PyTorch official website</a></td> <td>Turing及以后架构,6G显存以上或Apple Silicon</td>
<td>None</td> <td>Ampere及以后架构,8G显存以上</td>
</tr> <td>Ampere及以后架构,24G显存及以上</td>
<tr>
<td colspan="3">CANN环境(NPU支持)</td>
<td>8.0+(Ascend 910b)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td rowspan="2">GPU/MPS 硬件支持列表</td>
<td colspan="2">显存6G以上</td>
<td colspan="2">
Volta(2017)及之后生产的全部带Tensor Core的GPU <br>
6G显存及以上</td>
<td rowspan="2">Apple silicon</td>
</tr> </tr>
</table> </table>
### 在线体验 ## 在线体验
同步dev分支更新:
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github) [![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU) [![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU) [![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
### 使用CPU快速体验 ### 🚀🚀🚀VLM demo
[![HuggingFace](https://img.shields.io/badge/VLM_Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/mineru2)
#### 1. 安装magic-pdf ## 本地部署
> [!NOTE] ### 1. 安装 MinerU
> 最新版本国内镜像源同步可能会有延迟,请耐心等待
#### 1.1 使用 pip 或 uv 安装
```bash ```bash
conda create -n mineru 'python=3.12' -y pip install --upgrade pip
conda activate mineru pip install uv
pip install -U "magic-pdf[full]" -i https://mirrors.aliyun.com/pypi/simple uv pip install "mineru[core]>=2.0.0"
``` ```
#### 2. 下载模型权重文件 #### 1.2 源码安装
详细参考 [如何下载模型文件](docs/how_to_download_models_zh_cn.md) ```bash
git clone https://github.com/opendatalab/MinerU.git
cd MinerU
uv pip install -e .[core]
```
#### 3. 修改配置文件以进行额外配置 #### 1.3 安装完整版(支持 sglang 加速)
完成[2. 下载模型权重文件](#2-下载模型权重文件)步骤后,脚本会自动生成用户目录下的magic-pdf.json文件,并自动配置默认模型路径。 如需使用 **sglang 加速 VLM 模型推理**,请安装完整版本:
您可在【用户目录】下找到magic-pdf.json文件。
> [!TIP] ```bash
> windows的用户目录为 "C:\\Users\\用户名", linux用户目录为 "/home/用户名", macOS用户目录为 "/Users/用户名" uv pip install "mineru[all]>=2.0.0"
```
您可修改该文件中的部分配置实现功能的开关,如表格识别功能 或从源码安装
> [!NOTE] ```bash
>如json内没有如下项目,请手动添加需要的项目,并删除注释内容(标准json不支持注释) uv pip install -e .[all]
```
```json ---
{
// other config ### 2. 使用 MinerU
"layout-config": {
"model": "doclayout_yolo" #### 2.1 命令行使用方式
},
"formula-config": { ##### 基础用法
"mfd_model": "yolo_v8_mfd",
"mfr_model": "unimernet_small", 最简单的命令行调用方式如下:
"enable": true // 公式识别功能默认是开启的,如果需要关闭请修改此处的值为"false"
}, ```bash
"table-config": { mineru -p <input_path> -o <output_path>
"model": "rapid_table",
"sub_model": "slanet_plus",
"enable": true, // 表格识别功能默认是开启的,如果需要关闭请修改此处的值为"false"
"max_time": 400
}
}
``` ```
### 使用GPU - `<input_path>`:本地 PDF 文件或目录(支持 pdf/png/jpg/jpeg)
- `<output_path>`:输出目录
如果您的设备支持CUDA,且满足主线环境中的显卡要求,则可以使用GPU加速,请根据自己的系统选择适合的教程: ##### 查看帮助信息
- [Ubuntu22.04LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_zh_CN.md) 获取所有可用参数说明:
- [Windows10/11 + GPU](docs/README_Windows_CUDA_Acceleration_zh_CN.md)
- 使用Docker快速部署 ```bash
> [!IMPORTANT] mineru --help
> Docker 需设备gpu显存大于等于6GB,默认开启所有加速功能 ```
>
> 运行本docker前可以通过以下命令检测自己的设备是否支持在docker上使用CUDA加速 ##### 参数详解
>
> ```bash ```text
> docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi Usage: mineru [OPTIONS]
> ```
```bash Options:
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/china/Dockerfile -O Dockerfile -v, --version 显示版本并退出
docker build -t mineru:latest . -p, --path PATH 输入文件路径或目录(必填)
docker run -it --name mineru --gpus=all mineru:latest /bin/bash -c "echo 'source /opt/mineru_venv/bin/activate' >> ~/.bashrc && exec bash" -o, --output PATH 输出目录(必填)
magic-pdf --help -m, --method [auto|txt|ocr] 解析方法:auto(默认)、txt、ocr(仅用于 pipeline 后端)
``` -b, --backend [pipeline|vlm-transformers|vlm-sglang-engine|vlm-sglang-client]
### 使用NPU 解析后端(默认为 pipeline)
-l, --lang [ch|ch_server|... ] 指定文档语言(可提升 OCR 准确率,仅用于 pipeline 后端)
如果您的设备存在NPU加速硬件,则可以通过以下教程使用NPU加速: -u, --url TEXT 当使用 sglang-client 时,需指定服务地址
-s, --start INTEGER 开始解析的页码(从 0 开始)
[NPU加速教程](docs/README_Ascend_NPU_Acceleration_zh_CN.md) -e, --end INTEGER 结束解析的页码(从 0 开始)
-f, --formula BOOLEAN 是否启用公式解析(默认开启,仅 pipeline 后端)
### 使用MPS -t, --table BOOLEAN 是否启用表格解析(默认开启,仅 pipeline 后端)
如果您的设备使用Apple silicon 芯片,您可以开启mps加速: -d, --device TEXT 推理设备(如 cpu/cuda/cuda:0/npu/mps,仅 pipeline 后端)
--vram INTEGER 单进程最大 GPU 显存占用(仅 pipeline 后端)
您可以通过在 `magic-pdf.json` 配置文件中将 `device-mode` 参数设置为 `mps` 来启用 MPS 加速。 --source [huggingface|modelscope|local]
模型来源,默认 huggingface
```json --help 显示帮助信息
{
// other config
"device-mode": "mps"
}
``` ```
---
#### 2.2 模型源配置
MinerU 默认在首次运行时自动从 HuggingFace 下载所需模型。若无法访问 HuggingFace,可通过以下方式切换模型源:
##### 切换至 ModelScope 源
```bash
mineru -p <input_path> -o <output_path> --source modelscope
```
或设置环境变量:
```bash
export MINERU_MODEL_SOURCE=modelscope
mineru -p <input_path> -o <output_path>
```
##### 使用本地模型
###### 1. 下载模型到本地
```bash
mineru-models-download --help
```
或使用交互式命令行工具选择模型下载:
```bash
mineru-models-download
```
下载完成后,模型路径会在当前终端窗口输出,并自动写入用户目录下的 `mineru.json`
###### 2. 使用本地模型进行解析
```bash
mineru -p <input_path> -o <output_path> --source local
```
或通过环境变量启用:
```bash
export MINERU_MODEL_SOURCE=local
mineru -p <input_path> -o <output_path>
```
---
#### 2.3 使用 sglang 加速 VLM 模型推理
##### 启动 sglang-engine 模式
```bash
mineru -p <input_path> -o <output_path> -b vlm-sglang-engine
```
##### 启动 sglang-server/client 模式
1. 启动 Server:
```bash
mineru-sglang-server --port 30000
```
2. 在另一个终端中使用 Client 调用:
```bash
mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://127.0.0.1:30000
```
## 使用 > 💡 更多关于输出文件的信息,请参考 [输出文件说明](docs/output_file_zh_cn.md)
### 命令行 ---
[通过命令行使用MinerU](https://mineru.readthedocs.io/en/latest/user_guide/usage/command_line.html) ### 3. API 调用方式
> [!TIP] 您也可以通过 Python 代码调用 MinerU,示例代码请参考:
> 更多有关输出文件的信息,请参考[输出文件说明](docs/output_file_zh_cn.md) 👉 [Python 调用示例](demo/demo.py)
### API ---
[通过Python代码调用MinerU](https://mineru.readthedocs.io/en/latest/user_guide/usage/api.html) ### 4. 部署衍生项目
社区开发者基于 MinerU 进行了多种二次开发,包括:
### 部署衍生项目 - 基于 Gradio 的图形界面
- 基于 FastAPI 的 Web API
- 多卡负载均衡的客户端/服务端架构等
衍生项目包含项目开发者和社群开发者们基于MinerU的二次开发项目, 这些项目通常提供更好的用户体验和更多功能。
例如基于Gradio的应用界面、基于llama的RAG、官网同款web demo、轻量级的多卡负载均衡c/s端等,
这些项目可能会提供更多的功能和更好的用户体验。
具体部署方式请参考 [衍生项目readme](projects/README_zh-CN.md)
详细部署方式请参阅:
👉 [衍生项目说明](projects/README_zh-CN.md)
### 二次开发 ---
TODO
# TODO # TODO
...@@ -548,21 +695,22 @@ TODO ...@@ -548,21 +695,22 @@ TODO
[LICENSE.md](LICENSE.md) [LICENSE.md](LICENSE.md)
本项目目前采用PyMuPDF以实现高级功能,但因其遵循AGPL协议,可能对某些使用场景构成限制。未来版本迭代中,我们计划探索并替换为许可条款更为宽松的PDF处理库,以提升用户友好度及灵活性。 本项目目前部分模型基于YOLO训练,但因其遵循AGPL协议,可能对某些使用场景构成限制。未来版本迭代中,我们计划探索并替换为许可条款更为宽松的模型,以提升用户友好度及灵活性。
# Acknowledgments # Acknowledgments
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit) - [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO) - [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy) - [UniMERNet](https://github.com/opendatalab/UniMERNet)
- [RapidTable](https://github.com/RapidAI/RapidTable) - [RapidTable](https://github.com/RapidAI/RapidTable)
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) - [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [RapidOCR](https://github.com/RapidAI/RapidOCR)
- [PaddleOCR2Pytorch](https://github.com/frotms/PaddleOCR2Pytorch) - [PaddleOCR2Pytorch](https://github.com/frotms/PaddleOCR2Pytorch)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
- [layoutreader](https://github.com/ppaanngggg/layoutreader) - [layoutreader](https://github.com/ppaanngggg/layoutreader)
- [xy-cut](https://github.com/Sanster/xy-cut)
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect) - [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pypdfium2](https://github.com/pypdfium2-team/pypdfium2)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six) - [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
- [pypdf](https://github.com/py-pdf/pypdf)
# Citation # Citation
......
import os
from pathlib import Path
from magic_pdf.data.batch_build_dataset import batch_build_dataset
from magic_pdf.tools.common import batch_do_parse
def batch(pdf_dir, output_dir, method, lang):
os.makedirs(output_dir, exist_ok=True)
doc_paths = []
for doc_path in Path(pdf_dir).glob('*'):
if doc_path.suffix == '.pdf':
doc_paths.append(doc_path)
# build dataset with 2 workers
datasets = batch_build_dataset(doc_paths, 4, lang)
# os.environ["MINERU_MIN_BATCH_INFERENCE_SIZE"] = "200" # every 200 pages will be parsed in one batch
batch_do_parse(output_dir, [str(doc_path.stem) for doc_path in doc_paths], datasets, method)
if __name__ == '__main__':
batch("pdfs", "output", "auto", "")
# Copyright (c) Opendatalab. All rights reserved. # Copyright (c) Opendatalab. All rights reserved.
import copy
import json
import os import os
from pathlib import Path
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset from loguru import logger
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod from mineru.cli.common import convert_pdf_bytes_to_bytes_by_pypdfium2, prepare_env, read_fn
from mineru.data.data_reader_writer import FileBasedDataWriter
# args from mineru.utils.draw_bbox import draw_layout_bbox, draw_span_bbox
__dir__ = os.path.dirname(os.path.abspath(__file__)) from mineru.utils.enum_class import MakeMode
pdf_file_name = os.path.join(__dir__, "pdfs", "demo1.pdf") # replace with the real pdf path from mineru.backend.vlm.vlm_analyze import doc_analyze as vlm_doc_analyze
name_without_extension = os.path.basename(pdf_file_name).split('.')[0] from mineru.backend.pipeline.pipeline_analyze import doc_analyze as pipeline_doc_analyze
from mineru.backend.pipeline.pipeline_middle_json_mkcontent import union_make as pipeline_union_make
# prepare env from mineru.backend.pipeline.model_json_to_middle_json import result_to_middle_json as pipeline_result_to_middle_json
local_image_dir = os.path.join(__dir__, "output", name_without_extension, "images") from mineru.backend.vlm.vlm_middle_json_mkcontent import union_make as vlm_union_make
local_md_dir = os.path.join(__dir__, "output", name_without_extension) from mineru.utils.models_download_utils import auto_download_and_get_model_root_path
image_dir = str(os.path.basename(local_image_dir))
os.makedirs(local_image_dir, exist_ok=True)
def do_parse(
image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir) output_dir, # Output directory for storing parsing results
pdf_file_names: list[str], # List of PDF file names to be parsed
# read bytes pdf_bytes_list: list[bytes], # List of PDF bytes to be parsed
reader1 = FileBasedDataReader("") p_lang_list: list[str], # List of languages for each PDF, default is 'ch' (Chinese)
pdf_bytes = reader1.read(pdf_file_name) # read the pdf content backend="pipeline", # The backend for parsing PDF, default is 'pipeline'
parse_method="auto", # The method for parsing PDF, default is 'auto'
# proc p_formula_enable=True, # Enable formula parsing
## Create Dataset Instance p_table_enable=True, # Enable table parsing
ds = PymuDocDataset(pdf_bytes) server_url=None, # Server URL for vlm-sglang-client backend
f_draw_layout_bbox=True, # Whether to draw layout bounding boxes
## inference f_draw_span_bbox=True, # Whether to draw span bounding boxes
if ds.classify() == SupportedPdfParseMethod.OCR: f_dump_md=True, # Whether to dump markdown files
infer_result = ds.apply(doc_analyze, ocr=True) f_dump_middle_json=True, # Whether to dump middle JSON files
f_dump_model_output=True, # Whether to dump model output files
## pipeline f_dump_orig_pdf=True, # Whether to dump original PDF files
pipe_result = infer_result.pipe_ocr_mode(image_writer) f_dump_content_list=True, # Whether to dump content list files
f_make_md_mode=MakeMode.MM_MD, # The mode for making markdown content, default is MM_MD
else: start_page_id=0, # Start page ID for parsing, default is 0
infer_result = ds.apply(doc_analyze, ocr=False) end_page_id=None, # End page ID for parsing, default is None (parse all pages until the end of the document)
):
## pipeline
pipe_result = infer_result.pipe_txt_mode(image_writer) if backend == "pipeline":
for idx, pdf_bytes in enumerate(pdf_bytes_list):
### get model inference result new_pdf_bytes = convert_pdf_bytes_to_bytes_by_pypdfium2(pdf_bytes, start_page_id, end_page_id)
model_inference_result = infer_result.get_infer_res() pdf_bytes_list[idx] = new_pdf_bytes
### draw layout result on each page infer_results, all_image_lists, all_pdf_docs, lang_list, ocr_enabled_list = pipeline_doc_analyze(pdf_bytes_list, p_lang_list, parse_method=parse_method, formula_enable=p_formula_enable,table_enable=p_table_enable)
pipe_result.draw_layout(os.path.join(local_md_dir, f"{name_without_extension}_layout.pdf"))
for idx, model_list in enumerate(infer_results):
### draw spans result on each page model_json = copy.deepcopy(model_list)
pipe_result.draw_span(os.path.join(local_md_dir, f"{name_without_extension}_spans.pdf")) pdf_file_name = pdf_file_names[idx]
local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method)
### get markdown content image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir)
md_content = pipe_result.get_markdown(image_dir)
images_list = all_image_lists[idx]
### dump markdown pdf_doc = all_pdf_docs[idx]
pipe_result.dump_md(md_writer, f"{name_without_extension}.md", image_dir) _lang = lang_list[idx]
_ocr_enable = ocr_enabled_list[idx]
### get content list content middle_json = pipeline_result_to_middle_json(model_list, images_list, pdf_doc, image_writer, _lang, _ocr_enable, p_formula_enable)
content_list_content = pipe_result.get_content_list(image_dir)
pdf_info = middle_json["pdf_info"]
### dump content list
pipe_result.dump_content_list(md_writer, f"{name_without_extension}_content_list.json", image_dir) pdf_bytes = pdf_bytes_list[idx]
if f_draw_layout_bbox:
### get middle json draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_layout.pdf")
middle_json_content = pipe_result.get_middle_json()
if f_draw_span_bbox:
### dump middle json draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_span.pdf")
pipe_result.dump_middle_json(md_writer, f'{name_without_extension}_middle.json')
if f_dump_orig_pdf:
md_writer.write(
f"{pdf_file_name}_origin.pdf",
pdf_bytes,
)
if f_dump_md:
image_dir = str(os.path.basename(local_image_dir))
md_content_str = pipeline_union_make(pdf_info, f_make_md_mode, image_dir)
md_writer.write_string(
f"{pdf_file_name}.md",
md_content_str,
)
if f_dump_content_list:
image_dir = str(os.path.basename(local_image_dir))
content_list = pipeline_union_make(pdf_info, MakeMode.CONTENT_LIST, image_dir)
md_writer.write_string(
f"{pdf_file_name}_content_list.json",
json.dumps(content_list, ensure_ascii=False, indent=4),
)
if f_dump_middle_json:
md_writer.write_string(
f"{pdf_file_name}_middle.json",
json.dumps(middle_json, ensure_ascii=False, indent=4),
)
if f_dump_model_output:
md_writer.write_string(
f"{pdf_file_name}_model.json",
json.dumps(model_json, ensure_ascii=False, indent=4),
)
logger.info(f"local output dir is {local_md_dir}")
else:
if backend.startswith("vlm-"):
backend = backend[4:]
f_draw_span_bbox = False
parse_method = "vlm"
for idx, pdf_bytes in enumerate(pdf_bytes_list):
pdf_file_name = pdf_file_names[idx]
pdf_bytes = convert_pdf_bytes_to_bytes_by_pypdfium2(pdf_bytes, start_page_id, end_page_id)
local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method)
image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir)
middle_json, infer_result = vlm_doc_analyze(pdf_bytes, image_writer=image_writer, backend=backend, server_url=server_url)
pdf_info = middle_json["pdf_info"]
if f_draw_layout_bbox:
draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_layout.pdf")
if f_draw_span_bbox:
draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_span.pdf")
if f_dump_orig_pdf:
md_writer.write(
f"{pdf_file_name}_origin.pdf",
pdf_bytes,
)
if f_dump_md:
image_dir = str(os.path.basename(local_image_dir))
md_content_str = vlm_union_make(pdf_info, f_make_md_mode, image_dir)
md_writer.write_string(
f"{pdf_file_name}.md",
md_content_str,
)
if f_dump_content_list:
image_dir = str(os.path.basename(local_image_dir))
content_list = vlm_union_make(pdf_info, MakeMode.CONTENT_LIST, image_dir)
md_writer.write_string(
f"{pdf_file_name}_content_list.json",
json.dumps(content_list, ensure_ascii=False, indent=4),
)
if f_dump_middle_json:
md_writer.write_string(
f"{pdf_file_name}_middle.json",
json.dumps(middle_json, ensure_ascii=False, indent=4),
)
if f_dump_model_output:
model_output = ("\n" + "-" * 50 + "\n").join(infer_result)
md_writer.write_string(
f"{pdf_file_name}_model_output.txt",
model_output,
)
logger.info(f"local output dir is {local_md_dir}")
def parse_doc(
path_list: list[Path],
output_dir,
lang="ch",
backend="pipeline",
method="auto",
server_url=None,
start_page_id=0, # Start page ID for parsing, default is 0
end_page_id=None # End page ID for parsing, default is None (parse all pages until the end of the document)
):
"""
Parameter description:
path_list: List of document paths to be parsed, can be PDF or image files.
output_dir: Output directory for storing parsing results.
lang: Language option, default is 'ch', optional values include['ch', 'ch_server', 'ch_lite', 'en', 'korean', 'japan', 'chinese_cht', 'ta', 'te', 'ka']。
Input the languages in the pdf (if known) to improve OCR accuracy. Optional.
Adapted only for the case where the backend is set to "pipeline"
backend: the backend for parsing pdf:
pipeline: More general.
vlm-transformers: More general.
vlm-sglang-engine: Faster(engine).
vlm-sglang-client: Faster(client).
without method specified, pipeline will be used by default.
method: the method for parsing pdf:
auto: Automatically determine the method based on the file type.
txt: Use text extraction method.
ocr: Use OCR method for image-based PDFs.
Without method specified, 'auto' will be used by default.
Adapted only for the case where the backend is set to "pipeline".
server_url: When the backend is `sglang-client`, you need to specify the server_url, for example:`http://127.0.0.1:30000`
"""
try:
file_name_list = []
pdf_bytes_list = []
lang_list = []
for path in path_list:
file_name = str(Path(path).stem)
pdf_bytes = read_fn(path)
file_name_list.append(file_name)
pdf_bytes_list.append(pdf_bytes)
lang_list.append(lang)
do_parse(
output_dir=output_dir,
pdf_file_names=file_name_list,
pdf_bytes_list=pdf_bytes_list,
p_lang_list=lang_list,
backend=backend,
parse_method=method,
server_url=server_url,
start_page_id=start_page_id,
end_page_id=end_page_id
)
except Exception as e:
logger.exception(e)
if __name__ == '__main__':
# args
__dir__ = os.path.dirname(os.path.abspath(__file__))
pdf_files_dir = os.path.join(__dir__, "pdfs")
output_dir = os.path.join(__dir__, "output")
pdf_suffixes = [".pdf"]
image_suffixes = [".png", ".jpeg", ".jpg"]
doc_path_list = []
for doc_path in Path(pdf_files_dir).glob('*'):
if doc_path.suffix in pdf_suffixes + image_suffixes:
doc_path_list.append(doc_path)
"""如果您由于网络问题无法下载模型,可以设置环境变量MINERU_MODEL_SOURCE为modelscope使用免代理仓库下载模型"""
# os.environ['MINERU_MODEL_SOURCE'] = "modelscope"
"""Use pipeline mode if your environment does not support VLM"""
parse_doc(doc_path_list, output_dir, backend="pipeline")
"""To enable VLM mode, change the backend to 'vlm-xxx'"""
# parse_doc(doc_path_list, output_dir, backend="vlm-transformers") # more general.
# parse_doc(doc_path_list, output_dir, backend="vlm-sglang-engine") # faster(engine).
# parse_doc(doc_path_list, output_dir, backend="vlm-sglang-client", server_url="http://127.0.0.1:30000") # faster(client).
\ No newline at end of file
# Use the official Ubuntu base image
FROM swr.cn-central-221.ovaijisuan.com/mindformers/mindformers1.2_mindspore2.3:20240722
USER root
# Set environment variables to non-interactive to avoid prompts during installation
ENV DEBIAN_FRONTEND=noninteractive
# Update the package list and install necessary packages
RUN apt-get update && \
apt-get install -y \
software-properties-common && \
add-apt-repository -y ppa:deadsnakes/ppa && \
apt-get update && \
apt-get install -y \
python3.10 \
python3.10-venv \
python3.10-distutils \
python3.10-dev \
python3-pip \
wget \
git \
libgl1 \
libglib2.0-0 \
&& rm -rf /var/lib/apt/lists/*
# Set Python 3.10 as the default python3
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1
# Create a virtual environment for MinerU
RUN python3 -m venv /opt/mineru_venv
# Copy the configuration file template and install magic-pdf latest
RUN /bin/bash -c "wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/magic-pdf.template.json && \
cp magic-pdf.template.json /root/magic-pdf.json && \
source /opt/mineru_venv/bin/activate && \
pip3 install --upgrade pip -i https://mirrors.aliyun.com/pypi/simple && \
pip3 install torch==2.3.1 torchvision==0.18.1 -i https://mirrors.aliyun.com/pypi/simple && \
pip3 install -U magic-pdf[full] 'numpy<2' decorator attrs absl-py cloudpickle ml-dtypes tornado einops -i https://mirrors.aliyun.com/pypi/simple && \
wget https://gitee.com/ascend/pytorch/releases/download/v6.0.rc2-pytorch2.3.1/torch_npu-2.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl && \
pip3 install torch_npu-2.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl"
# Download models and update the configuration file
RUN /bin/bash -c "source /opt/mineru_venv/bin/activate && \
pip3 install modelscope -i https://mirrors.aliyun.com/pypi/simple && \
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/scripts/download_models.py -O download_models.py && \
python3 download_models.py && \
sed -i 's|cpu|npu|g' /root/magic-pdf.json"
# Set the entry point to activate the virtual environment and run the command line tool
ENTRYPOINT ["/bin/bash", "-c", "source /opt/mineru_venv/bin/activate && exec \"$@\"", "--"]
...@@ -18,37 +18,19 @@ RUN apt-get update && \ ...@@ -18,37 +18,19 @@ RUN apt-get update && \
wget \ wget \
git \ git \
libgl1 \ libgl1 \
libreoffice \
fonts-noto-cjk \
fonts-wqy-zenhei \
fonts-wqy-microhei \
ttf-mscorefonts-installer \
fontconfig \
libglib2.0-0 \ libglib2.0-0 \
libxrender1 \
libsm6 \
libxext6 \
poppler-utils \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
# Set Python 3.10 as the default python3 # Set Python 3.10 as the default python3
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1 RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1
# Create a virtual environment for MinerU # install mineru latest
RUN python3 -m venv /opt/mineru_venv RUN /bin/bash -c "pip3 install --upgrade pip -i https://mirrors.aliyun.com/pypi/simple && \
pip3 install uv -i https://mirrors.aliyun.com/pypi/simple && \
# Copy the configuration file template and install magic-pdf latest uv pip install 'mineru[all]>=2.0.0' -i https://mirrors.aliyun.com/pypi/simple"
RUN /bin/bash -c "wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/magic-pdf.template.json && \
cp magic-pdf.template.json /root/magic-pdf.json && \
source /opt/mineru_venv/bin/activate && \
pip3 install --upgrade pip -i https://mirrors.aliyun.com/pypi/simple && \
pip3 install -U magic-pdf[full] -i https://mirrors.aliyun.com/pypi/simple"
# Download models and update the configuration file # Download models and update the configuration file
RUN /bin/bash -c "pip3 install modelscope -i https://mirrors.aliyun.com/pypi/simple && \ RUN /bin/bash -c "mineru-models-download -s modelscope -m all"
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/scripts/download_models.py -O download_models.py && \
python3 download_models.py && \
sed -i 's|cpu|cuda|g' /root/magic-pdf.json"
# Set the entry point to activate the virtual environment and run the command line tool # Set the entry point to activate the virtual environment and run the command line tool
ENTRYPOINT ["/bin/bash", "-c", "source /opt/mineru_venv/bin/activate && exec \"$@\"", "--"] ENTRYPOINT ["/bin/bash", "-c", "export MINERU_MODEL_SOURCE=local && exec \"$@\"", "--"]
\ No newline at end of file
...@@ -18,37 +18,19 @@ RUN apt-get update && \ ...@@ -18,37 +18,19 @@ RUN apt-get update && \
wget \ wget \
git \ git \
libgl1 \ libgl1 \
libreoffice \
fonts-noto-cjk \
fonts-wqy-zenhei \
fonts-wqy-microhei \
ttf-mscorefonts-installer \
fontconfig \
libglib2.0-0 \ libglib2.0-0 \
libxrender1 \
libsm6 \
libxext6 \
poppler-utils \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
# Set Python 3.10 as the default python3 # Set Python 3.10 as the default python3
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1 RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1
# Create a virtual environment for MinerU # install mineru latest
RUN python3 -m venv /opt/mineru_venv RUN /bin/bash -c "pip3 install --upgrade pip && \
pip3 install uv && \
# Copy the configuration file template and install magic-pdf latest uv pip install 'mineru[all]>=2.0.0'"
RUN /bin/bash -c "wget https://github.com/opendatalab/MinerU/raw/master/magic-pdf.template.json && \
cp magic-pdf.template.json /root/magic-pdf.json && \
source /opt/mineru_venv/bin/activate && \
pip3 install --upgrade pip && \
pip3 install -U magic-pdf[full]"
# Download models and update the configuration file # Download models and update the configuration file
RUN /bin/bash -c "pip3 install huggingface_hub && \ RUN /bin/bash -c "mineru-models-download -s huggingface -m all"
wget https://github.com/opendatalab/MinerU/raw/master/scripts/download_models_hf.py -O download_models.py && \
python3 download_models.py && \
sed -i 's|cpu|cuda|g' /root/magic-pdf.json"
# Set the entry point to activate the virtual environment and run the command line tool # Set the entry point to activate the virtual environment and run the command line tool
ENTRYPOINT ["/bin/bash", "-c", "source /opt/mineru_venv/bin/activate && exec \"$@\"", "--"] ENTRYPOINT ["/bin/bash", "-c", "export MINERU_MODEL_SOURCE=local && exec \"$@\"", "--"]
\ No newline at end of file
# Ascend NPU 加速
## 简介
本文档介绍如何在 Ascend NPU 上使用 MinerU。本文档内容已在`华为 Atlas 800T A2`服务器上测试通过。
```
CPU:鲲鹏 920 aarch64 2.6GHz
NPU:Ascend 910B 64GB
OS:openEuler 22.03 (LTS-SP3)/ Ubuntu 22.04.5 LTS
CANN:8.0.RC2
驱动版本:24.1.rc2.1
```
由于适配 Ascend NPU 的环境较为复杂,建议使用 Docker 容器运行 MinerU。
通过docker运行MinerU前需确保物理机已安装支持CANN 8.0.RC2的驱动和固件。
## 构建镜像
请保持网络状况良好,并执行以下代码构建镜像。
```bash
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/ascend_npu/Dockerfile -O Dockerfile
docker build -t mineru_npu:latest .
```
如果构建过程中未发生报错则说明镜像构建成功。
## 运行容器
```bash
docker run -it -u root --name mineru-npu --privileged=true \
--ipc=host \
--network=host \
--device=/dev/davinci0 \
--device=/dev/davinci1 \
--device=/dev/davinci2 \
--device=/dev/davinci3 \
--device=/dev/davinci4 \
--device=/dev/davinci5 \
--device=/dev/davinci6 \
--device=/dev/davinci7 \
--device=/dev/davinci_manager \
--device=/dev/devmm_svm \
--device=/dev/hisi_hdc \
-v /var/log/npu/:/usr/slog \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
mineru_npu:latest \
/bin/bash -c "echo 'source /opt/mineru_venv/bin/activate' >> ~/.bashrc && exec bash"
magic-pdf --help
```
# Ubuntu 22.04 LTS
### 1. Check if NVIDIA Drivers Are Installed
```sh
nvidia-smi
```
If you see information similar to the following, it means that the NVIDIA drivers are already installed, and you can skip Step 2.
> [!NOTE]
> Notice:`CUDA Version` should be >= 12.4, If the displayed version number is less than 12.4, please upgrade the driver.
```plaintext
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.133.07 Driver Version: 572.83 CUDA Version: 12.8 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 3060 Ti WDDM | 00000000:01:00.0 On | N/A |
| 0% 51C P8 12W / 200W | 1489MiB / 8192MiB | 5% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
```
### 2. Install the Driver
If no driver is installed, use the following command:
```sh
sudo apt-get update
sudo apt-get install nvidia-driver-570-server
```
Install the proprietary driver and restart your computer after installation.
```sh
reboot
```
### 3. Install Anaconda
If Anaconda is already installed, skip this step.
```sh
wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
bash Anaconda3-2024.06-1-Linux-x86_64.sh
```
In the final step, enter `yes`, close the terminal, and reopen it.
### 4. Create an Environment Using Conda
```bash
conda create -n mineru 'python=3.12' -y
conda activate mineru
```
### 5. Install Applications
```sh
pip install -U magic-pdf[full]
```
> [!TIP]
> After installation, you can check the version of `magic-pdf` using the following command:
>
> ```sh
> magic-pdf --version
> ```
### 6. Download Models
Refer to detailed instructions on [how to download model files](how_to_download_models_en.md).
## 7. Understand the Location of the Configuration File
After completing the [6. Download Models](#6-download-models) step, the script will automatically generate a `magic-pdf.json` file in the user directory and configure the default model path.
You can find the `magic-pdf.json` file in your user directory.
> [!TIP]
> The user directory for Linux is "/home/username".
### 8. First Run
Download a sample file from the repository and test it.
```sh
wget https://github.com/opendatalab/MinerU/raw/master/demo/pdfs/small_ocr.pdf
magic-pdf -p small_ocr.pdf -o ./output
```
### 9. Test CUDA Acceleration
If your graphics card has at least **6GB** of VRAM, follow these steps to test CUDA acceleration:
1. Modify the value of `"device-mode"` in the `magic-pdf.json` configuration file located in your home directory.
```json
{
"device-mode": "cuda"
}
```
2. Test CUDA acceleration with the following command:
```sh
magic-pdf -p small_ocr.pdf -o ./output
```
\ No newline at end of file
# Ubuntu 22.04 LTS
## 1. 检测是否已安装nvidia驱动
```bash
nvidia-smi
```
如果看到类似如下的信息,说明已经安装了nvidia驱动,可以跳过步骤2
> [!NOTE]
> `CUDA Version` 显示的版本号应 >= 12.4,如显示的版本号小于12.4,请升级驱动
```plaintext
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.133.07 Driver Version: 572.83 CUDA Version: 12.8 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 3060 Ti WDDM | 00000000:01:00.0 On | N/A |
| 0% 51C P8 12W / 200W | 1489MiB / 8192MiB | 5% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
```
## 2. 安装驱动
如没有驱动,则通过如下命令
```bash
sudo apt-get update
sudo apt-get install nvidia-driver-570-server
```
安装专有驱动,安装完成后,重启电脑
```bash
reboot
```
## 3. 安装anacoda
如果已安装conda,可以跳过本步骤
```bash
wget -U NoSuchBrowser/1.0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
bash Anaconda3-2024.06-1-Linux-x86_64.sh
```
最后一步输入yes,关闭终端重新打开
## 4. 使用conda 创建环境
```bash
conda create -n mineru 'python=3.12' -y
conda activate mineru
```
## 5. 安装应用
```bash
pip install -U magic-pdf[full] -i https://mirrors.aliyun.com/pypi/simple
```
> [!TIP]
> 下载完成后,您可以通过以下命令检查`magic-pdf`的版本:
>
> ```bash
> magic-pdf --version
> ```
## 6. 下载模型
详细参考 [如何下载模型文件](how_to_download_models_zh_cn.md)
## 7. 了解配置文件存放的位置
完成[6.下载模型](#6-下载模型)步骤后,脚本会自动生成用户目录下的magic-pdf.json文件,并自动配置默认模型路径。
您可在【用户目录】下找到magic-pdf.json文件。
> [!TIP]
> linux用户目录为 "/home/用户名"
## 8. 第一次运行
从仓库中下载样本文件,并测试
```bash
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/demo/pdfs/small_ocr.pdf
magic-pdf -p small_ocr.pdf -o ./output
```
## 9. 测试CUDA加速
如果您的显卡显存大于等于 **6GB** ,可以进行以下流程,测试CUDA解析加速效果
**1.修改【用户目录】中配置文件magic-pdf.json中"device-mode"的值**
```json
{
"device-mode":"cuda"
}
```
**2.运行以下命令测试cuda加速效果**
```bash
magic-pdf -p small_ocr.pdf -o ./output
```
> [!TIP]
> CUDA加速是否生效可以根据log中输出的各个阶段cost耗时来简单判断,通常情况下,使用cuda加速会比cpu更快。
# Windows 10/11
### 1. Install CUDA and cuDNN
You need to install a CUDA version that is compatible with torch's requirements. For details, please refer to the [official PyTorch website](https://pytorch.org/get-started/locally/).
- CUDA 11.8 https://developer.nvidia.com/cuda-11-8-0-download-archive
- CUDA 12.4 https://developer.nvidia.com/cuda-12-4-0-download-archive
- CUDA 12.6 https://developer.nvidia.com/cuda-12-6-0-download-archive
- CUDA 12.8 https://developer.nvidia.com/cuda-12-8-0-download-archive
### 2. Install Anaconda
If Anaconda is already installed, you can skip this step.
Download link: https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Windows-x86_64.exe
### 3. Create an Environment Using Conda
```bash
conda create -n mineru 'python=3.12' -y
conda activate mineru
```
### 4. Install Applications
```
pip install -U magic-pdf[full]
```
> [!IMPORTANT]
> After installation, you can check the version of `magic-pdf` using the following command:
>
> ```bash
> magic-pdf --version
> ```
### 5. Download Models
Refer to detailed instructions on [how to download model files](how_to_download_models_en.md).
### 6. Understand the Location of the Configuration File
After completing the [5. Download Models](#5-download-models) step, the script will automatically generate a `magic-pdf.json` file in the user directory and configure the default model path.
You can find the `magic-pdf.json` file in your 【user directory】 .
> [!TIP]
> The user directory for Windows is "C:/Users/username".
### 7. First Run
Download a sample file from the repository and test it.
```powershell
wget https://github.com/opendatalab/MinerU/raw/master/demo/pdfs/small_ocr.pdf -O small_ocr.pdf
magic-pdf -p small_ocr.pdf -o ./output
```
### 8. Test CUDA Acceleration
If your graphics card has at least 6GB of VRAM, follow these steps to test CUDA-accelerated parsing performance.
1. **Overwrite the installation of torch and torchvision** supporting CUDA.(Please select the appropriate index-url based on your CUDA version. For more details, refer to the [PyTorch official website](https://pytorch.org/get-started/locally/).)
```
pip install --force-reinstall torch torchvision --index-url https://download.pytorch.org/whl/cu124
```
2. **Modify the value of `"device-mode"`** in the `magic-pdf.json` configuration file located in your user directory.
```json
{
"device-mode": "cuda"
}
```
3. **Run the following command to test CUDA acceleration**:
```
magic-pdf -p small_ocr.pdf -o ./output
```
\ No newline at end of file
# Windows10/11
## 1. 安装cuda环境
需要安装符合torch要求的cuda版本,具体可参考[torch官网](https://pytorch.org/get-started/locally/)
- CUDA 11.8 https://developer.nvidia.com/cuda-11-8-0-download-archive
- CUDA 12.4 https://developer.nvidia.com/cuda-12-4-0-download-archive
- CUDA 12.6 https://developer.nvidia.com/cuda-12-6-0-download-archive
- CUDA 12.8 https://developer.nvidia.com/cuda-12-8-0-download-archive
## 2. 安装anaconda
如果已安装conda,可以跳过本步骤
下载链接:
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2024.06-1-Windows-x86_64.exe
## 3. 使用conda 创建环境
```bash
conda create -n mineru 'python=3.12' -y
conda activate mineru
```
## 4. 安装应用
```bash
pip install -U magic-pdf[full] -i https://mirrors.aliyun.com/pypi/simple
```
> [!IMPORTANT]
> 下载完成后,您可以通过以下命令检查magic-pdf的版本
>
> ```bash
> magic-pdf --version
> ```
## 5. 下载模型
详细参考 [如何下载模型文件](how_to_download_models_zh_cn.md)
## 6. 了解配置文件存放的位置
完成[5.下载模型](#5-下载模型)步骤后,脚本会自动生成用户目录下的magic-pdf.json文件,并自动配置默认模型路径。
您可在【用户目录】下找到magic-pdf.json文件。
> [!TIP]
> windows用户目录为 "C:/Users/用户名"
## 7. 第一次运行
从仓库中下载样本文件,并测试
```powershell
wget https://github.com/opendatalab/MinerU/raw/master/demo/pdfs/small_ocr.pdf -O small_ocr.pdf
magic-pdf -p small_ocr.pdf -o ./output
```
## 8. 测试CUDA加速
如果您的显卡显存大于等于 **6GB** ,可以进行以下流程,测试CUDA解析加速效果
**1.覆盖安装支持cuda的torch和torchvision**(请根据cuda版本选择合适的index-url,具体可参考[torch官网](https://pytorch.org/get-started/locally/))
```bash
pip install --force-reinstall torch torchvision --index-url https://download.pytorch.org/whl/cu124
```
**2.修改【用户目录】中配置文件magic-pdf.json中"device-mode"的值**
```json
{
"device-mode":"cuda"
}
```
**3.运行以下命令测试cuda加速效果**
```bash
magic-pdf -p small_ocr.pdf -o ./output
```
> [!TIP]
> CUDA加速是否生效可以根据log中输出的各个阶段的耗时来简单判断,通常情况下,cuda加速后运行速度比cpu更快。
Model downloads are divided into initial downloads and updates to the model directory. Please refer to the corresponding documentation for instructions on how to proceed.
# Initial download of model files
### Download the Model from Hugging Face
Use a Python Script to Download Model Files from Hugging Face
```bash
pip install huggingface_hub
wget https://github.com/opendatalab/MinerU/raw/master/scripts/download_models_hf.py -O download_models_hf.py
python download_models_hf.py
```
The Python script will automatically download the model files and configure the model directory in the configuration file.
The configuration file can be found in the user directory, with the filename `magic-pdf.json`.
# How to update models previously downloaded
## 1. Models downloaded via Hugging Face or Model Scope
If you previously downloaded models via Hugging Face or Model Scope, you can rerun the Python script used for the initial download. This will automatically update the model directory to the latest version.
模型下载分为首次下载和更新模型目录,请参考对应的文档内容进行操作
# 首次下载模型文件
模型文件可以从 Hugging Face 或 Model Scope 下载,由于网络原因,国内用户访问HF可能会失败,请使用 ModelScope。
<details>
<summary>方法一:从 Hugging Face 下载模型</summary>
<p>使用python脚本 从Hugging Face下载模型文件</p>
<pre><code>pip install huggingface_hub
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/scripts/download_models_hf.py -O download_models_hf.py
python download_models_hf.py</code></pre>
<p>python脚本会自动下载模型文件并配置好配置文件中的模型目录</p>
</details>
## 方法二:从 ModelScope 下载模型
### 使用python脚本 从ModelScope下载模型文件
```bash
pip install modelscope
wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/scripts/download_models.py -O download_models.py
python download_models.py
```
python脚本会自动下载模型文件并配置好配置文件中的模型目录
配置文件可以在用户目录中找到,文件名为`magic-pdf.json`
> [!TIP]
> windows的用户目录为 "C:\\Users\\用户名", linux用户目录为 "/home/用户名", macOS用户目录为 "/Users/用户名"
# 此前下载过模型,如何更新
## 1. 通过 Hugging Face 或 Model Scope 下载过模型
如此前通过 HuggingFace 或 Model Scope 下载过模型,可以重复执行此前的模型下载python脚本,将会自动将模型目录更新到最新版本。
...@@ -5,8 +5,8 @@ from collections import defaultdict ...@@ -5,8 +5,8 @@ from collections import defaultdict
import numpy as np import numpy as np
from .model_init import AtomModelSingleton from .model_init import AtomModelSingleton
from ...utils.model_utils import crop_img, get_res_list_from_layout_res, get_coords_and_area from ...utils.model_utils import crop_img, get_res_list_from_layout_res
from ...utils.ocr_utils import get_adjusted_mfdetrec_res, get_ocr_result_list from ...utils.ocr_utils import get_adjusted_mfdetrec_res, get_ocr_result_list, OcrConfidence
YOLO_LAYOUT_BASE_BATCH_SIZE = 1 YOLO_LAYOUT_BASE_BATCH_SIZE = 1
MFD_BASE_BATCH_SIZE = 1 MFD_BASE_BATCH_SIZE = 1
...@@ -315,7 +315,7 @@ class BatchAnalyze: ...@@ -315,7 +315,7 @@ class BatchAnalyze:
ocr_text, ocr_score = ocr_res_list[index] ocr_text, ocr_score = ocr_res_list[index]
layout_res_item['text'] = ocr_text layout_res_item['text'] = ocr_text
layout_res_item['score'] = float(f"{ocr_score:.3f}") layout_res_item['score'] = float(f"{ocr_score:.3f}")
if ocr_score < 0.6: if ocr_score < OcrConfidence.min_confidence:
layout_res_item['category_id'] = 16 layout_res_item['category_id'] = 16
total_processed += len(img_crop_list) total_processed += len(img_crop_list)
......
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
import time import time
from loguru import logger from loguru import logger
from tqdm import tqdm
from mineru.utils.config_reader import get_device, get_llm_aided_config from mineru.utils.config_reader import get_device, get_llm_aided_config
from mineru.backend.pipeline.model_init import AtomModelSingleton from mineru.backend.pipeline.model_init import AtomModelSingleton
...@@ -14,6 +15,7 @@ from mineru.utils.enum_class import ContentType ...@@ -14,6 +15,7 @@ from mineru.utils.enum_class import ContentType
from mineru.utils.llm_aided import llm_aided_title from mineru.utils.llm_aided import llm_aided_title
from mineru.utils.model_utils import clean_memory from mineru.utils.model_utils import clean_memory
from mineru.backend.pipeline.pipeline_magic_model import MagicModel from mineru.backend.pipeline.pipeline_magic_model import MagicModel
from mineru.utils.ocr_utils import OcrConfidence
from mineru.utils.span_block_fix import fill_spans_in_blocks, fix_discarded_block, fix_block_spans from mineru.utils.span_block_fix import fill_spans_in_blocks, fix_discarded_block, fix_block_spans
from mineru.utils.span_pre_proc import remove_outside_spans, remove_overlaps_low_confidence_spans, \ from mineru.utils.span_pre_proc import remove_outside_spans, remove_overlaps_low_confidence_spans, \
remove_overlaps_min_spans, txt_spans_extract remove_overlaps_min_spans, txt_spans_extract
...@@ -163,7 +165,7 @@ def page_model_info_to_page_info(page_model_info, image_dict, page, image_writer ...@@ -163,7 +165,7 @@ def page_model_info_to_page_info(page_model_info, image_dict, page, image_writer
def result_to_middle_json(model_list, images_list, pdf_doc, image_writer, lang=None, ocr_enable=False, formula_enabled=True): def result_to_middle_json(model_list, images_list, pdf_doc, image_writer, lang=None, ocr_enable=False, formula_enabled=True):
middle_json = {"pdf_info": [], "_backend":"pipeline", "_version_name": __version__} middle_json = {"pdf_info": [], "_backend":"pipeline", "_version_name": __version__}
for page_index, page_model_info in enumerate(model_list): for page_index, page_model_info in tqdm(enumerate(model_list), total=len(model_list), desc="Processing pages"):
page = pdf_doc[page_index] page = pdf_doc[page_index]
image_dict = images_list[page_index] image_dict = images_list[page_index]
page_info = page_model_info_to_page_info( page_info = page_model_info_to_page_info(
...@@ -208,7 +210,7 @@ def result_to_middle_json(model_list, images_list, pdf_doc, image_writer, lang=N ...@@ -208,7 +210,7 @@ def result_to_middle_json(model_list, images_list, pdf_doc, image_writer, lang=N
need_ocr_list), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_list)}' need_ocr_list), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_list)}'
for index, span in enumerate(need_ocr_list): for index, span in enumerate(need_ocr_list):
ocr_text, ocr_score = ocr_res_list[index] ocr_text, ocr_score = ocr_res_list[index]
if ocr_score > 0.6: if ocr_score > OcrConfidence.min_confidence:
span['content'] = ocr_text span['content'] = ocr_text
span['score'] = float(f"{ocr_score:.3f}") span['score'] = float(f"{ocr_score:.3f}")
else: else:
......
...@@ -7,8 +7,8 @@ DEFAULT_SYSTEM_PROMPT = ( ...@@ -7,8 +7,8 @@ DEFAULT_SYSTEM_PROMPT = (
) )
DEFAULT_USER_PROMPT = "Document Parsing:" DEFAULT_USER_PROMPT = "Document Parsing:"
DEFAULT_TEMPERATURE = 0.0 DEFAULT_TEMPERATURE = 0.0
DEFAULT_TOP_P = 0.01 DEFAULT_TOP_P = 0.8
DEFAULT_TOP_K = 1 DEFAULT_TOP_K = 20
DEFAULT_REPETITION_PENALTY = 1.0 DEFAULT_REPETITION_PENALTY = 1.0
DEFAULT_PRESENCE_PENALTY = 0.0 DEFAULT_PRESENCE_PENALTY = 0.0
DEFAULT_NO_REPEAT_NGRAM_SIZE = 100 DEFAULT_NO_REPEAT_NGRAM_SIZE = 100
......
...@@ -22,7 +22,7 @@ try: ...@@ -22,7 +22,7 @@ try:
hf_loaded = True hf_loaded = True
except ImportError as e: except ImportError as e:
logger.warning("hf is not installed. If you are not using huggingface, you can ignore this warning.") logger.warning("hf is not installed. If you are not using transformers, you can ignore this warning.")
engine_loaded = False engine_loaded = False
try: try:
...@@ -51,9 +51,9 @@ def get_predictor( ...@@ -51,9 +51,9 @@ def get_predictor(
) -> BasePredictor: ) -> BasePredictor:
start_time = time.time() start_time = time.time()
if backend == "huggingface": if backend == "transformers":
if not model_path: if not model_path:
raise ValueError("model_path must be provided for huggingface backend.") raise ValueError("model_path must be provided for transformers backend.")
if not hf_loaded: if not hf_loaded:
raise ImportError( raise ImportError(
"transformers is not installed, so huggingface backend cannot be used. " "transformers is not installed, so huggingface backend cannot be used. "
...@@ -77,7 +77,7 @@ def get_predictor( ...@@ -77,7 +77,7 @@ def get_predictor(
raise ImportError( raise ImportError(
"sglang is not installed, so sglang-engine backend cannot be used. " "sglang is not installed, so sglang-engine backend cannot be used. "
"If you need to use sglang-engine backend for inference, " "If you need to use sglang-engine backend for inference, "
"please install sglang[all]==0.4.6.post4 or a newer version." "please install sglang[all]==0.4.7 or a newer version."
) )
predictor = SglangEnginePredictor( predictor = SglangEnginePredictor(
server_args=ServerArgs(model_path, **kwargs), server_args=ServerArgs(model_path, **kwargs),
...@@ -104,7 +104,7 @@ def get_predictor( ...@@ -104,7 +104,7 @@ def get_predictor(
http_timeout=http_timeout, http_timeout=http_timeout,
) )
else: else:
raise ValueError(f"Unsupported backend: {backend}. Supports: huggingface, sglang-engine, sglang-client.") raise ValueError(f"Unsupported backend: {backend}. Supports: transformers, sglang-engine, sglang-client.")
elapsed = round(time.time() - start_time, 2) elapsed = round(time.time() - start_time, 2)
logger.info(f"get_predictor cost: {elapsed}s") logger.info(f"get_predictor cost: {elapsed}s")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment