Commit 7230bfe3 authored by myhloli's avatar myhloli
Browse files

refactor: add DonutSwin model implementation and enhance character decoding logic

parent 8f0cc148
...@@ -20,6 +20,7 @@ def build_backbone(config, model_type): ...@@ -20,6 +20,7 @@ def build_backbone(config, model_type):
from .det_mobilenet_v3 import MobileNetV3 from .det_mobilenet_v3 import MobileNetV3
from .rec_hgnet import PPHGNet_small from .rec_hgnet import PPHGNet_small
from .rec_lcnetv3 import PPLCNetV3 from .rec_lcnetv3 import PPLCNetV3
from .rec_pphgnetv2 import PPHGNetV2_B4
support_dict = [ support_dict = [
"MobileNetV3", "MobileNetV3",
...@@ -28,6 +29,7 @@ def build_backbone(config, model_type): ...@@ -28,6 +29,7 @@ def build_backbone(config, model_type):
"ResNet_SAST", "ResNet_SAST",
"PPLCNetV3", "PPLCNetV3",
"PPHGNet_small", "PPHGNet_small",
'PPHGNetV2_B4',
] ]
elif model_type == "rec" or model_type == "cls": elif model_type == "rec" or model_type == "cls":
from .rec_hgnet import PPHGNet_small from .rec_hgnet import PPHGNet_small
......
import collections.abc
from collections import OrderedDict
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
class DonutSwinConfig(object):
model_type = "donut-swin"
attribute_map = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
image_size=224,
patch_size=4,
num_channels=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
use_absolute_embeddings=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
**kwargs,
):
super().__init__()
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.depths = depths
self.num_layers = len(depths)
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_absolute_embeddings = use_absolute_embeddings
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
print(f"Can't set {key} with value {value} for {self}")
raise err
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->DonutSwin
class DonutSwinEncoderOutput(OrderedDict):
last_hidden_state = None
hidden_states = None
attentions = None
reshaped_hidden_states = None
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = dict(self.items())
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name, value):
if name in self.keys() and value is not None:
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
super().__setitem__(key, value)
super().__setattr__(key, value)
def to_tuple(self):
"""
Convert self to a tuple containing all the attributes/keys that are not `None`.
"""
return tuple(self[k] for k in self.keys())
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->DonutSwin
class DonutSwinModelOutput(OrderedDict):
last_hidden_state = None
pooler_output = None
hidden_states = None
attentions = None
reshaped_hidden_states = None
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = dict(self.items())
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name, value):
if name in self.keys() and value is not None:
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
super().__setitem__(key, value)
super().__setattr__(key, value)
def to_tuple(self):
"""
Convert self to a tuple containing all the attributes/keys that are not `None`.
"""
return tuple(self[k] for k in self.keys())
# Copied from transformers.models.swin.modeling_swin.window_partition
def window_partition(input_feature, window_size):
"""
Partitions the given input into windows.
"""
batch_size, height, width, num_channels = input_feature.shape
input_feature = input_feature.reshape(
[
batch_size,
height // window_size,
window_size,
width // window_size,
window_size,
num_channels,
]
)
windows = input_feature.transpose([0, 1, 3, 2, 4, 5]).reshape(
[-1, window_size, window_size, num_channels]
)
return windows
# Copied from transformers.models.swin.modeling_swin.window_reverse
def window_reverse(windows, window_size, height, width):
"""
Merges windows to produce higher resolution features.
"""
num_channels = windows.shape[-1]
windows = windows.reshape(
[
-1,
height // window_size,
width // window_size,
window_size,
window_size,
num_channels,
]
)
windows = windows.transpose([0, 1, 3, 2, 4, 5]).reshape(
[-1, height, width, num_channels]
)
return windows
# Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->DonutSwin
class DonutSwinEmbeddings(nn.Module):
"""
Construct the patch and position embeddings. Optionally, also the mask token.
"""
def __init__(self, config, use_mask_token=False):
super().__init__()
self.patch_embeddings = DonutSwinPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.patch_grid = self.patch_embeddings.grid_size
if use_mask_token:
# self.mask_token = paddle.create_parameter(
# [1, 1, config.embed_dim], dtype="float32"
# )
self.mask_token = nn.Parameter(
nn.init.xavier_uniform_(torch.zeros(1, 1, config.embed_dim).to(torch.float32))
)
nn.init.zeros_(self.mask_token)
else:
self.mask_token = None
if config.use_absolute_embeddings:
# self.position_embeddings = paddle.create_parameter(
# [1, num_patches + 1, config.embed_dim], dtype="float32"
# )
self.position_embeddings = nn.Parameter(
nn.init.xavier_uniform_(torch.zeros(1, num_patches + 1, config.embed_dim).to(torch.float32))
)
nn.init.zeros_(self.position_embedding)
else:
self.position_embeddings = None
self.norm = nn.LayerNorm(config.embed_dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, pixel_values, bool_masked_pos=None):
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
batch_size, seq_len, _ = embeddings.shape
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
if self.position_embeddings is not None:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings, output_dimensions
class MyConv2d(nn.Conv2d):
def __init__(
self,
in_channel,
out_channels,
kernel_size,
stride=1,
padding="SAME",
dilation=1,
groups=1,
bias_attr=False,
eps=1e-6,
):
super().__init__(
in_channel,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias_attr=bias_attr,
)
# self.weight = paddle.create_parameter(
# [out_channels, in_channel, kernel_size[0], kernel_size[1]], dtype="float32"
# )
self.weight = torch.Parameter(
nn.init.xavier_uniform_(
torch.zeros(out_channels, in_channel, kernel_size[0], kernel_size[1]).to(torch.float32)
)
)
# self.bias = paddle.create_parameter([out_channels], dtype="float32")
self.bias = torch.Parameter(
nn.init.xavier_uniform_(
torch.zeros(out_channels).to(torch.float32)
)
)
nn.init.ones_(self.weight)
nn.init.zeros_(self.bias)
def forward(self, x):
x = F.conv2d(
x,
self.weight,
self.bias,
self._stride,
self._padding,
self._dilation,
self._groups,
)
return x
# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings
class DonutSwinPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
image_size = (
image_size
if isinstance(image_size, collections.abc.Iterable)
else (image_size, image_size)
)
patch_size = (
patch_size
if isinstance(patch_size, collections.abc.Iterable)
else (patch_size, patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (
image_size[0] // patch_size[0]
)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.is_export = config.is_export
self.grid_size = (
image_size[0] // patch_size[0],
image_size[1] // patch_size[1],
)
self.projection = nn.Conv2D(
num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
)
def maybe_pad(self, pixel_values, height, width):
if width % self.patch_size[1] != 0:
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
if self.is_export:
pad_values = torch.tensor(pad_values, dtype=torch.int32)
pixel_values = nn.functional.pad(pixel_values, pad_values)
if height % self.patch_size[0] != 0:
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
if self.is_export:
pad_values = torch.tensor(pad_values, dtype=torch.int32)
pixel_values = nn.functional.pad(pixel_values, pad_values)
return pixel_values
def forward(self, pixel_values) -> Tuple[torch.Tensor, Tuple[int]]:
_, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
pixel_values = self.maybe_pad(pixel_values, height, width)
embeddings = self.projection(pixel_values)
_, _, height, width = embeddings.shape
output_dimensions = (height, width)
embeddings = embeddings.flatten(2).transpose([0, 2, 1])
return embeddings, output_dimensions
# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging
class DonutSwinPatchMerging(nn.Module):
"""
Patch Merging Layer.
Args:
input_resolution (`Tuple[int]`):
Resolution of input feature.
dim (`int`):
Number of input channels.
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
Normalization layer class.
"""
def __init__(
self,
input_resolution: Tuple[int],
dim: int,
norm_layer: nn.Module = nn.LayerNorm,
is_export=False,
):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False)
self.norm = norm_layer(4 * dim)
self.is_export = is_export
def maybe_pad(self, input_feature, height, width):
should_pad = (height % 2 == 1) or (width % 2 == 1)
if should_pad:
pad_values = (0, 0, 0, width % 2, 0, height % 2)
if self.is_export:
pad_values = torch.tensor(pad_values, dtype=torch.int32)
input_feature = nn.functional.pad(input_feature, pad_values)
return input_feature
def forward(
self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]
) -> torch.Tensor:
height, width = input_dimensions
batch_size, dim, num_channels = input_feature.shape
input_feature = input_feature.reshape([batch_size, height, width, num_channels])
input_feature = self.maybe_pad(input_feature, height, width)
input_feature_0 = input_feature[:, 0::2, 0::2, :]
input_feature_1 = input_feature[:, 1::2, 0::2, :]
input_feature_2 = input_feature[:, 0::2, 1::2, :]
input_feature_3 = input_feature[:, 1::2, 1::2, :]
input_feature = torch.cat(
[input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1
)
input_feature = input_feature.reshape(
[batch_size, -1, 4 * num_channels]
) # batch_size height/2*width/2 4*C
input_feature = self.norm(input_feature)
input_feature = self.reduction(input_feature)
return input_feature
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(
input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
) -> torch.Tensor:
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (
input.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(
shape,
dtype=input.dtype,
)
random_tensor.floor_() # binarize
output = input / keep_prob * random_tensor
return output
# Copied from transformers.models.swin.modeling_swin.SwinDropPath
class DonutSwinDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class DonutSwinSelfAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.window_size = (
window_size
if isinstance(window_size, collections.abc.Iterable)
else (window_size, window_size)
)
# self.relative_position_bias_table = paddle.create_parameter(
# [(2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads],
# dtype="float32",
# )
self.relative_position_bias_table = torch.Parameter(
nn.init.xavier_normal_(
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads).to(torch.float32)
)
)
nn.init.zeros_(self.relative_position_bias_table)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid(coords_h, coords_w, indexing="ij"))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.transpose([1, 2, 0])
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.query = nn.Linear(
self.all_head_size, self.all_head_size, bias_attr=config.qkv_bias
)
self.key = nn.Linear(
self.all_head_size, self.all_head_size, bias_attr=config.qkv_bias
)
self.value = nn.Linear(
self.all_head_size, self.all_head_size, bias_attr=config.qkv_bias
)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.shape[:-1] + [
self.num_attention_heads,
self.attention_head_size,
]
x = x.reshape(new_x_shape)
return x.transpose([0, 2, 1, 3])
def forward(
self,
hidden_states: torch.Tensor,
attention_mask=None,
head_mask=None,
output_attentions=False,
) -> Tuple[torch.Tensor]:
batch_size, dim, num_channels = hidden_states.shape
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose([0, 1, 3, 2]))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.reshape([-1])
]
relative_position_bias = relative_position_bias.reshape(
[
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1,
]
)
relative_position_bias = relative_position_bias.transpose([2, 0, 1])
attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in DonutSwinModel forward() function)
mask_shape = attention_mask.shape[0]
attention_scores = attention_scores.reshape(
[
batch_size // mask_shape,
mask_shape,
self.num_attention_heads,
dim,
dim,
]
)
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(
0
)
attention_scores = attention_scores.reshape(
[-1, self.num_attention_heads, dim, dim]
)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.transpose([0, 2, 1, 3])
new_context_layer_shape = tuple(context_layer.shape[:-2]) + (
self.all_head_size,
)
context_layer = context_layer.reshape(new_context_layer_shape)
outputs = (
(context_layer, attention_probs) if output_attentions else (context_layer,)
)
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput
class DonutSwinSelfOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->DonutSwin
class DonutSwinAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
self.self = DonutSwinSelfAttention(config, dim, num_heads, window_size)
self.output = DonutSwinSelfOutput(config, dim)
self.pruned_heads = set()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask=None,
head_mask=None,
output_attentions=False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states, attention_mask, head_mask, output_attentions
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[
1:
] # add attentions if we output them
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate
class DonutSwinIntermediate(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
self.intermediate_act_fn = F.gelu
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinOutput
class DonutSwinOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->DonutSwin
class DonutSwinLayer(nn.Module):
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.shift_size = shift_size
self.window_size = config.window_size
self.input_resolution = input_resolution
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attention = DonutSwinAttention(
config, dim, num_heads, window_size=self.window_size
)
self.drop_path = (
DonutSwinDropPath(config.drop_path_rate)
if config.drop_path_rate > 0.0
else nn.Identity()
)
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.intermediate = DonutSwinIntermediate(config, dim)
self.output = DonutSwinOutput(config, dim)
self.is_export = config.is_export
def set_shift_and_window_size(self, input_resolution):
if min(input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(input_resolution)
def get_attn_mask_export(self, height, width, dtype):
attn_mask = None
height_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
width_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
img_mask = torch.zeros((1, height, width, 1), dtype=dtype)
count = 0
for height_slice in height_slices:
for width_slice in width_slices:
if self.shift_size > 0:
img_mask[:, height_slice, width_slice, :] = count
count += 1
if torch.Tensor(self.shift_size > 0).to(torch.bool):
# calculate attention mask for SW-MSA
mask_windows = window_partition(img_mask, self.window_size)
mask_windows = mask_windows.reshape(
[-1, self.window_size * self.window_size]
)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(
attn_mask != 0, float(-100.0)
).masked_fill(attn_mask == 0, float(0.0))
return attn_mask
def get_attn_mask(self, height, width, dtype):
if self.shift_size > 0:
# calculate attention mask for SW-MSA
img_mask = torch.zeros((1, height, width, 1), dtype=dtype)
height_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
width_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
count = 0
for height_slice in height_slices:
for width_slice in width_slices:
img_mask[:, height_slice, width_slice, :] = count
count += 1
mask_windows = window_partition(img_mask, self.window_size)
mask_windows = mask_windows.reshape(
[-1, self.window_size * self.window_size]
)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(
attn_mask != 0, float(-100.0)
).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
return attn_mask
def maybe_pad(self, hidden_states, height, width):
pad_right = (self.window_size - width % self.window_size) % self.window_size
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
pad_values = (0, 0, 0, pad_bottom, 0, pad_right, 0, 0)
hidden_states = nn.functional.pad(hidden_states, pad_values)
return hidden_states, pad_values
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask=None,
output_attentions=False,
always_partition=False,
) -> Tuple[torch.Tensor, torch.Tensor]:
if not always_partition:
self.set_shift_and_window_size(input_dimensions)
else:
pass
height, width = input_dimensions
batch_size, _, channels = hidden_states.shape
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states)
hidden_states = hidden_states.reshape([batch_size, height, width, channels])
# pad hidden_states to multiples of window size
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
_, height_pad, width_pad, _ = hidden_states.shape
# cyclic shift
if self.shift_size > 0:
shift_value = (-self.shift_size, -self.shift_size)
if self.is_export:
shift_value = torch.tensor(shift_value, dtype=torch.int32)
shifted_hidden_states = torch.roll(
hidden_states, shifts=shift_value, dims=(1, 2)
)
else:
shifted_hidden_states = hidden_states
# partition windows
hidden_states_windows = window_partition(
shifted_hidden_states, self.window_size
)
hidden_states_windows = hidden_states_windows.reshape(
[-1, self.window_size * self.window_size, channels]
)
attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype)
attention_outputs = self.attention(
hidden_states_windows,
attn_mask,
head_mask,
output_attentions=output_attentions,
)
attention_output = attention_outputs[0]
attention_windows = attention_output.reshape(
[-1, self.window_size, self.window_size, channels]
)
shifted_windows = window_reverse(
attention_windows, self.window_size, height_pad, width_pad
)
# reverse cyclic shift
if self.shift_size > 0:
shift_value = (self.shift_size, self.shift_size)
if self.is_export:
shift_value = torch.tensor(shift_value, dtype=torch.int32)
attention_windows = torch.roll(
shifted_windows, shifts=shift_value, dims=(1, 2)
)
else:
attention_windows = shifted_windows
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_windows = attention_windows[:, :height, :width, :].contiguous()
attention_windows = attention_windows.reshape(
[batch_size, height * width, channels]
)
hidden_states = shortcut + self.drop_path(attention_windows)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = hidden_states + self.output(layer_output)
layer_outputs = (
(layer_output, attention_outputs[1])
if output_attentions
else (layer_output,)
)
return layer_outputs
# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->DonutSwin
class DonutSwinStage(nn.Module):
def __init__(
self, config, dim, input_resolution, depth, num_heads, drop_path, downsample
):
super().__init__()
self.config = config
self.dim = dim
self.blocks = nn.ModuleList(
[
DonutSwinLayer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
shift_size=0 if (i % 2 == 0) else config.window_size // 2,
)
for i in range(depth)
]
)
self.is_export = config.is_export
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution,
dim=dim,
norm_layer=nn.LayerNorm,
is_export=self.is_export,
)
else:
self.downsample = None
self.pointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask=None,
output_attentions=False,
always_partition=False,
) -> Tuple[torch.Tensor]:
height, width = input_dimensions
for i, layer_module in enumerate(self.blocks):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states,
input_dimensions,
layer_head_mask,
output_attentions,
always_partition,
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
output_dimensions = (height, width, height_downsampled, width_downsampled)
hidden_states = self.downsample(
hidden_states_before_downsampling, input_dimensions
)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (
hidden_states,
hidden_states_before_downsampling,
output_dimensions,
)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
# Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->DonutSwin
class DonutSwinEncoder(nn.Module):
def __init__(self, config, grid_size):
super().__init__()
self.num_layers = len(config.depths)
self.config = config
dpr = [
x.item()
for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))
]
self.layers = nn.ModuleList(
[
DonutSwinStage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
input_resolution=(
grid_size[0] // (2**i_layer),
grid_size[1] // (2**i_layer),
),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
drop_path=dpr[
sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])
],
downsample=(
DonutSwinPatchMerging
if (i_layer < self.num_layers - 1)
else None
),
)
for i_layer in range(self.num_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask=None,
output_attentions=False,
output_hidden_states=False,
output_hidden_states_before_downsampling=False,
always_partition=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
batch_size, _, hidden_size = hidden_states.shape
reshaped_hidden_state = hidden_states.view(
batch_size, *input_dimensions, hidden_size
)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
input_dimensions,
layer_head_mask,
output_attentions,
always_partition,
)
else:
layer_outputs = layer_module(
hidden_states,
input_dimensions,
layer_head_mask,
output_attentions,
always_partition,
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = layer_outputs[1]
output_dimensions = layer_outputs[2]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
if output_hidden_states and output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
reshaped_hidden_state = hidden_states_before_downsampling.reshape(
[
batch_size,
*(output_dimensions[0], output_dimensions[1]),
hidden_size,
]
)
reshaped_hidden_state = reshaped_hidden_state.transpose([0, 3, 1, 2])
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states.shape
reshaped_hidden_state = hidden_states.reshape(
[batch_size, *input_dimensions, hidden_size]
)
reshaped_hidden_state = reshaped_hidden_state.transpose([0, 3, 1, 2])
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[3:]
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attentions]
if v is not None
)
return DonutSwinEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
class DonutSwinPreTrainedModel(nn.Module):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DonutSwinConfig
base_model_prefix = "swin"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2D)):
# normal_ = Normal(mean=0.0, std=self.config.initializer_range)
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
nn.init.zeros_(module.bias)
nn.init.ones_(module.weight)
def _initialize_weights(self, module):
"""
Initialize the weights if they are not already initialized.
"""
if getattr(module, "_is_hf_initialized", False):
return
self._init_weights(module)
def post_init(self):
self.apply(self._initialize_weights)
def get_head_mask(self, head_mask, num_hidden_layers, is_attention_chunked=False):
if head_mask is not None:
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
if is_attention_chunked is True:
head_mask = head_mask.unsqueeze(-1)
else:
head_mask = [None] * num_hidden_layers
return head_mask
class DonutSwinModel(DonutSwinPreTrainedModel):
def __init__(
self,
in_channels=3,
hidden_size=1024,
num_layers=4,
num_heads=[4, 8, 16, 32],
add_pooling_layer=True,
use_mask_token=False,
is_export=False,
):
super().__init__()
donut_swin_config = {
"return_dict": True,
"output_hidden_states": False,
"output_attentions": False,
"use_bfloat16": False,
"tf_legacy_loss": False,
"pruned_heads": {},
"tie_word_embeddings": True,
"chunk_size_feed_forward": 0,
"is_encoder_decoder": False,
"is_decoder": False,
"cross_attention_hidden_size": None,
"add_cross_attention": False,
"tie_encoder_decoder": False,
"max_length": 20,
"min_length": 0,
"do_sample": False,
"early_stopping": False,
"num_beams": 1,
"num_beam_groups": 1,
"diversity_penalty": 0.0,
"temperature": 1.0,
"top_k": 50,
"top_p": 1.0,
"typical_p": 1.0,
"repetition_penalty": 1.0,
"length_penalty": 1.0,
"no_repeat_ngram_size": 0,
"encoder_no_repeat_ngram_size": 0,
"bad_words_ids": None,
"num_return_sequences": 1,
"output_scores": False,
"return_dict_in_generate": False,
"forced_bos_token_id": None,
"forced_eos_token_id": None,
"remove_invalid_values": False,
"exponential_decay_length_penalty": None,
"suppress_tokens": None,
"begin_suppress_tokens": None,
"architectures": None,
"finetuning_task": None,
"id2label": {0: "LABEL_0", 1: "LABEL_1"},
"label2id": {"LABEL_0": 0, "LABEL_1": 1},
"tokenizer_class": None,
"prefix": None,
"bos_token_id": None,
"pad_token_id": None,
"eos_token_id": None,
"sep_token_id": None,
"decoder_start_token_id": None,
"task_specific_params": None,
"problem_type": None,
"_name_or_path": "",
"_commit_hash": None,
"_attn_implementation_internal": None,
"transformers_version": None,
"hidden_size": hidden_size,
"num_layers": num_layers,
"path_norm": True,
"use_2d_embeddings": False,
"image_size": [420, 420],
"patch_size": 4,
"num_channels": in_channels,
"embed_dim": 128,
"depths": [2, 2, 14, 2],
"num_heads": num_heads,
"window_size": 5,
"mlp_ratio": 4.0,
"qkv_bias": True,
"hidden_dropout_prob": 0.0,
"attention_probs_dropout_prob": 0.0,
"drop_path_rate": 0.1,
"hidden_act": "gelu",
"use_absolute_embeddings": False,
"layer_norm_eps": 1e-05,
"initializer_range": 0.02,
"is_export": is_export,
}
config = DonutSwinConfig(**donut_swin_config)
self.config = config
self.num_layers = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
self.embeddings = DonutSwinEmbeddings(config, use_mask_token=use_mask_token)
self.encoder = DonutSwinEncoder(config, self.embeddings.patch_grid)
self.pooler = nn.AdaptiveAvgPool1D(1) if add_pooling_layer else None
self.out_channels = hidden_size
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def forward(
self,
input_data=None,
bool_masked_pos=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
) -> Union[Tuple, DonutSwinModelOutput]:
r"""
bool_masked_pos (`paddle.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
if self.training:
pixel_values, label, attention_mask = input_data
else:
if isinstance(input_data, list):
pixel_values = input_data[0]
else:
pixel_values = input_data
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.return_dict
)
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
num_channels = pixel_values.shape[1]
if num_channels == 1:
pixel_values = torch.repeat_interleave(pixel_values, repeats=3, dim=1)
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
embedding_output, input_dimensions = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos
)
encoder_outputs = self.encoder(
embedding_output,
input_dimensions,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.transpose([0, 2, 1]))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
donut_swin_output = DonutSwinModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
if self.training:
return donut_swin_output, label, attention_mask
else:
return donut_swin_output
\ No newline at end of file
...@@ -9,28 +9,28 @@ class Im2Seq(nn.Module): ...@@ -9,28 +9,28 @@ class Im2Seq(nn.Module):
super().__init__() super().__init__()
self.out_channels = in_channels self.out_channels = in_channels
# def forward(self, x):
# B, C, H, W = x.shape
# # assert H == 1
# x = x.squeeze(dim=2)
# # x = x.transpose([0, 2, 1]) # paddle (NTC)(batch, width, channels)
# x = x.permute(0, 2, 1)
# return x
def forward(self, x): def forward(self, x):
B, C, H, W = x.shape B, C, H, W = x.shape
# 处理四维张量,将空间维度展平为序列 # assert H == 1
if H == 1: x = x.squeeze(dim=2)
# 原来的处理逻辑,适用于H=1的情况 # x = x.transpose([0, 2, 1]) # paddle (NTC)(batch, width, channels)
x = x.squeeze(dim=2) x = x.permute(0, 2, 1)
x = x.permute(0, 2, 1) # (B, W, C)
else:
# 处理H不为1的情况
x = x.permute(0, 2, 3, 1) # (B, H, W, C)
x = x.reshape(B, H * W, C) # (B, H*W, C)
return x return x
# def forward(self, x):
# B, C, H, W = x.shape
# # 处理四维张量,将空间维度展平为序列
# if H == 1:
# # 原来的处理逻辑,适用于H=1的情况
# x = x.squeeze(dim=2)
# x = x.permute(0, 2, 1) # (B, W, C)
# else:
# # 处理H不为1的情况
# x = x.permute(0, 2, 3, 1) # (B, H, W, C)
# x = x.reshape(B, H * W, C) # (B, H*W, C)
#
# return x
class EncoderWithRNN_(nn.Module): class EncoderWithRNN_(nn.Module):
def __init__(self, in_channels, hidden_size): def __init__(self, in_channels, hidden_size):
super(EncoderWithRNN_, self).__init__() super(EncoderWithRNN_, self).__init__()
......
...@@ -124,10 +124,10 @@ class DBPostProcess(object): ...@@ -124,10 +124,10 @@ class DBPostProcess(object):
''' '''
h, w = bitmap.shape[:2] h, w = bitmap.shape[:2]
box = _box.copy() box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int64), 0, w - 1) xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int if 'int' in np.__dict__ else np.int32), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int64), 0, w - 1) xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int if 'int' in np.__dict__ else np.int32), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int64), 0, h - 1) ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int if 'int' in np.__dict__ else np.int32), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int64), 0, h - 1) ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int if 'int' in np.__dict__ else np.int32), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin box[:, 0] = box[:, 0] - xmin
......
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import re
import numpy as np import numpy as np
import torch import torch
...@@ -24,8 +25,9 @@ class BaseRecLabelDecode(object): ...@@ -24,8 +25,9 @@ class BaseRecLabelDecode(object):
self.beg_str = "sos" self.beg_str = "sos"
self.end_str = "eos" self.end_str = "eos"
self.reverse = False
self.character_str = [] self.character_str = []
if character_dict_path is None: if character_dict_path is None:
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str) dict_character = list(self.character_str)
...@@ -38,6 +40,8 @@ class BaseRecLabelDecode(object): ...@@ -38,6 +40,8 @@ class BaseRecLabelDecode(object):
if use_space_char: if use_space_char:
self.character_str.append(" ") self.character_str.append(" ")
dict_character = list(self.character_str) dict_character = list(self.character_str)
if "arabic" in character_dict_path:
self.reverse = True
dict_character = self.add_special_char(dict_character) dict_character = self.add_special_char(dict_character)
self.dict = {} self.dict = {}
...@@ -45,10 +49,98 @@ class BaseRecLabelDecode(object): ...@@ -45,10 +49,98 @@ class BaseRecLabelDecode(object):
self.dict[char] = i self.dict[char] = i
self.character = dict_character self.character = dict_character
def pred_reverse(self, pred):
pred_re = []
c_current = ""
for c in pred:
if not bool(re.search("[a-zA-Z0-9 :*./%+-]", c)):
if c_current != "":
pred_re.append(c_current)
pred_re.append(c)
c_current = ""
else:
c_current += c
if c_current != "":
pred_re.append(c_current)
return "".join(pred_re[::-1])
def add_special_char(self, dict_character): def add_special_char(self, dict_character):
return dict_character return dict_character
def decode(self, text_index, text_prob=None, is_remove_duplicate=False): def get_word_info(self, text, selection):
"""
Group the decoded characters and record the corresponding decoded positions.
Args:
text: the decoded text
selection: the bool array that identifies which columns of features are decoded as non-separated characters
Returns:
word_list: list of the grouped words
word_col_list: list of decoding positions corresponding to each character in the grouped word
state_list: list of marker to identify the type of grouping words, including two types of grouping words:
- 'cn': continuous chinese characters (e.g., 你好啊)
- 'en&num': continuous english characters (e.g., hello), number (e.g., 123, 1.123), or mixed of them connected by '-' (e.g., VGG-16)
The remaining characters in text are treated as separators between groups (e.g., space, '(', ')', etc.).
"""
state = None
word_content = []
word_col_content = []
word_list = []
word_col_list = []
state_list = []
valid_col = np.where(selection == True)[0]
for c_i, char in enumerate(text):
if "\u4e00" <= char <= "\u9fff":
c_state = "cn"
elif bool(re.search("[a-zA-Z0-9]", char)):
c_state = "en&num"
else:
c_state = "splitter"
if (
char == "."
and state == "en&num"
and c_i + 1 < len(text)
and bool(re.search("[0-9]", text[c_i + 1]))
): # grouping floating number
c_state = "en&num"
if (
char == "-" and state == "en&num"
): # grouping word with '-', such as 'state-of-the-art'
c_state = "en&num"
if state == None:
state = c_state
if state != c_state:
if len(word_content) != 0:
word_list.append(word_content)
word_col_list.append(word_col_content)
state_list.append(state)
word_content = []
word_col_content = []
state = c_state
if state != "splitter":
word_content.append(char)
word_col_content.append(valid_col[c_i])
if len(word_content) != 0:
word_list.append(word_content)
word_col_list.append(word_col_content)
state_list.append(state)
return word_list, word_col_list, state_list
def decode(
self,
text_index,
text_prob=None,
is_remove_duplicate=False,
return_word_box=False,
):
""" convert text-index into text-label. """ """ convert text-index into text-label. """
result_list = [] result_list = []
ignored_tokens = self.get_ignored_tokens() ignored_tokens = self.get_ignored_tokens()
...@@ -88,12 +180,22 @@ class CTCLabelDecode(BaseRecLabelDecode): ...@@ -88,12 +180,22 @@ class CTCLabelDecode(BaseRecLabelDecode):
super(CTCLabelDecode, self).__init__(character_dict_path, super(CTCLabelDecode, self).__init__(character_dict_path,
use_space_char) use_space_char)
def __call__(self, preds, label=None, *args, **kwargs): def __call__(self, preds, label=None, return_word_box=False, *args, **kwargs):
if isinstance(preds, torch.Tensor): if isinstance(preds, torch.Tensor):
preds = preds.numpy() preds = preds.numpy()
preds_idx = preds.argmax(axis=2) preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2) preds_prob = preds.max(axis=2)
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True) text = self.decode(
preds_idx,
preds_prob,
is_remove_duplicate=True,
return_word_box=return_word_box,
)
if return_word_box:
for rec_idx, rec in enumerate(text):
wh_ratio = kwargs["wh_ratio_list"][rec_idx]
max_wh_ratio = kwargs["max_wh_ratio"]
rec[2][0] = rec[2][0] * (wh_ratio / max_wh_ratio)
if label is None: if label is None:
return text return text
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment