Unverified Commit 6d571e2e authored by Kaiwen Liu's avatar Kaiwen Liu Committed by GitHub
Browse files

Merge pull request #7 from opendatalab/dev

Dev
parents a3358878 37c335ae
......@@ -20,6 +20,8 @@ class BlockType:
InterlineEquation = 'interline_equation'
Footnote = 'footnote'
Discarded = 'discarded'
List = 'list'
Index = 'index'
class CategoryId:
......
......@@ -4,7 +4,9 @@ import fitz
import numpy as np
from loguru import logger
from magic_pdf.libs.config_reader import get_local_models_dir, get_device, get_table_recog_config
from magic_pdf.libs.clean_memory import clean_memory
from magic_pdf.libs.config_reader import get_local_models_dir, get_device, get_table_recog_config, get_layout_config, \
get_formula_config
from magic_pdf.model.model_list import MODEL
import magic_pdf.model as model_config
......@@ -23,7 +25,7 @@ def remove_duplicates_dicts(lst):
return unique_dicts
def load_images_from_pdf(pdf_bytes: bytes, dpi=200) -> list:
def load_images_from_pdf(pdf_bytes: bytes, dpi=200, start_page_id=0, end_page_id=None) -> list:
try:
from PIL import Image
except ImportError:
......@@ -32,18 +34,28 @@ def load_images_from_pdf(pdf_bytes: bytes, dpi=200) -> list:
images = []
with fitz.open("pdf", pdf_bytes) as doc:
pdf_page_num = doc.page_count
end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else pdf_page_num - 1
if end_page_id > pdf_page_num - 1:
logger.warning("end_page_id is out of range, use images length")
end_page_id = pdf_page_num - 1
for index in range(0, doc.page_count):
page = doc[index]
mat = fitz.Matrix(dpi / 72, dpi / 72)
pm = page.get_pixmap(matrix=mat, alpha=False)
if start_page_id <= index <= end_page_id:
page = doc[index]
mat = fitz.Matrix(dpi / 72, dpi / 72)
pm = page.get_pixmap(matrix=mat, alpha=False)
# If the width or height exceeds 9000 after scaling, do not scale further.
if pm.width > 9000 or pm.height > 9000:
pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
# If the width or height exceeds 9000 after scaling, do not scale further.
if pm.width > 9000 or pm.height > 9000:
pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
img = Image.frombytes("RGB", (pm.width, pm.height), pm.samples)
img = np.array(img)
img_dict = {"img": img, "width": pm.width, "height": pm.height}
else:
img_dict = {"img": [], "width": 0, "height": 0}
img = Image.frombytes("RGB", (pm.width, pm.height), pm.samples)
img = np.array(img)
img_dict = {"img": img, "width": pm.width, "height": pm.height}
images.append(img_dict)
return images
......@@ -57,14 +69,17 @@ class ModelSingleton:
cls._instance = super().__new__(cls)
return cls._instance
def get_model(self, ocr: bool, show_log: bool, lang=None):
key = (ocr, show_log, lang)
def get_model(self, ocr: bool, show_log: bool, lang=None, layout_model=None, formula_enable=None, table_enable=None):
key = (ocr, show_log, lang, layout_model, formula_enable, table_enable)
if key not in self._models:
self._models[key] = custom_model_init(ocr=ocr, show_log=show_log, lang=lang)
self._models[key] = custom_model_init(ocr=ocr, show_log=show_log, lang=lang, layout_model=layout_model,
formula_enable=formula_enable, table_enable=table_enable)
return self._models[key]
def custom_model_init(ocr: bool = False, show_log: bool = False, lang=None):
def custom_model_init(ocr: bool = False, show_log: bool = False, lang=None,
layout_model=None, formula_enable=None, table_enable=None):
model = None
if model_config.__model_mode__ == "lite":
......@@ -84,14 +99,30 @@ def custom_model_init(ocr: bool = False, show_log: bool = False, lang=None):
# 从配置文件读取model-dir和device
local_models_dir = get_local_models_dir()
device = get_device()
layout_config = get_layout_config()
if layout_model is not None:
layout_config["model"] = layout_model
formula_config = get_formula_config()
if formula_enable is not None:
formula_config["enable"] = formula_enable
table_config = get_table_recog_config()
model_input = {"ocr": ocr,
"show_log": show_log,
"models_dir": local_models_dir,
"device": device,
"table_config": table_config,
"lang": lang,
}
if table_enable is not None:
table_config["enable"] = table_enable
model_input = {
"ocr": ocr,
"show_log": show_log,
"models_dir": local_models_dir,
"device": device,
"table_config": table_config,
"layout_config": layout_config,
"formula_config": formula_config,
"lang": lang,
}
custom_model = CustomPEKModel(**model_input)
else:
logger.error("Not allow model_name!")
......@@ -106,19 +137,23 @@ def custom_model_init(ocr: bool = False, show_log: bool = False, lang=None):
def doc_analyze(pdf_bytes: bytes, ocr: bool = False, show_log: bool = False,
start_page_id=0, end_page_id=None, lang=None):
start_page_id=0, end_page_id=None, lang=None,
layout_model=None, formula_enable=None, table_enable=None):
model_manager = ModelSingleton()
custom_model = model_manager.get_model(ocr, show_log, lang)
if lang == "":
lang = None
images = load_images_from_pdf(pdf_bytes)
model_manager = ModelSingleton()
custom_model = model_manager.get_model(ocr, show_log, lang, layout_model, formula_enable, table_enable)
# end_page_id = end_page_id if end_page_id else len(images) - 1
end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else len(images) - 1
with fitz.open("pdf", pdf_bytes) as doc:
pdf_page_num = doc.page_count
end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else pdf_page_num - 1
if end_page_id > pdf_page_num - 1:
logger.warning("end_page_id is out of range, use images length")
end_page_id = pdf_page_num - 1
if end_page_id > len(images) - 1:
logger.warning("end_page_id is out of range, use images length")
end_page_id = len(images) - 1
images = load_images_from_pdf(pdf_bytes, start_page_id=start_page_id, end_page_id=end_page_id)
model_json = []
doc_analyze_start = time.time()
......@@ -135,6 +170,11 @@ def doc_analyze(pdf_bytes: bytes, ocr: bool = False, show_log: bool = False,
page_dict = {"layout_dets": result, "page_info": page_info}
model_json.append(page_dict)
gc_start = time.time()
clean_memory()
gc_time = round(time.time() - gc_start, 2)
logger.info(f"gc time: {gc_time}")
doc_analyze_time = round(time.time() - doc_analyze_start, 2)
doc_analyze_speed = round( (end_page_id + 1 - start_page_id) / doc_analyze_time, 2)
logger.info(f"doc analyze time: {round(time.time() - doc_analyze_start, 2)},"
......
import json
from magic_pdf.data.dataset import Dataset
from magic_pdf.libs.boxbase import (_is_in, _is_part_overlap, bbox_distance,
bbox_relative_pos, box_area, calculate_iou,
calculate_overlap_area_in_bbox1_area_ratio,
......@@ -9,6 +10,7 @@ from magic_pdf.libs.coordinate_transform import get_scale_ratio
from magic_pdf.libs.local_math import float_gt
from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
from magic_pdf.libs.ocr_content_type import CategoryId, ContentType
from magic_pdf.pre_proc.remove_bbox_overlap import _remove_overlap_between_bbox
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
......@@ -24,7 +26,7 @@ class MagicModel:
need_remove_list = []
page_no = model_page_info['page_info']['page_no']
horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
model_page_info, self.__docs[page_no]
model_page_info, self.__docs.get_page(page_no)
)
layout_dets = model_page_info['layout_dets']
for layout_det in layout_dets:
......@@ -99,7 +101,7 @@ class MagicModel:
for need_remove in need_remove_list:
layout_dets.remove(need_remove)
def __init__(self, model_list: list, docs: fitz.Document):
def __init__(self, model_list: list, docs: Dataset):
self.__model_list = model_list
self.__docs = docs
"""为所有模型数据添加bbox信息(缩放,poly->bbox)"""
......@@ -119,15 +121,13 @@ class MagicModel:
if left or right:
l1 = bbox1[3] - bbox1[1]
l2 = bbox2[3] - bbox2[1]
minL, maxL = min(l1, l2), max(l1, l2)
if (maxL - minL) / minL > 0.5:
return float('inf')
if bottom or top:
else:
l1 = bbox1[2] - bbox1[0]
l2 = bbox2[2] - bbox2[0]
minL, maxL = min(l1, l2), max(l1, l2)
if (maxL - minL) / minL > 0.5:
return float('inf')
if l2 > l1 and (l2 - l1) / l1 > 0.3:
return float('inf')
return bbox_distance(bbox1, bbox2)
def __fix_footnote(self):
......@@ -215,9 +215,8 @@ class MagicModel:
筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
再求出筛选出的 subjects 和 object 的最短距离
"""
def search_overlap_between_boxes(
subject_idx, object_idx
):
def search_overlap_between_boxes(subject_idx, object_idx):
idxes = [subject_idx, object_idx]
x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
......@@ -245,9 +244,9 @@ class MagicModel:
for other_object in other_objects:
ratio = max(
ratio,
get_overlap_area(
merged_bbox, other_object['bbox']
) * 1.0 / box_area(all_bboxes[object_idx]['bbox'])
get_overlap_area(merged_bbox, other_object['bbox'])
* 1.0
/ box_area(all_bboxes[object_idx]['bbox']),
)
if ratio >= MERGE_BOX_OVERLAP_AREA_RATIO:
break
......@@ -365,12 +364,17 @@ class MagicModel:
if all_bboxes[j]['category_id'] == subject_category_id:
subject_idx, object_idx = j, i
if search_overlap_between_boxes(subject_idx, object_idx) >= MERGE_BOX_OVERLAP_AREA_RATIO:
if (
search_overlap_between_boxes(subject_idx, object_idx)
>= MERGE_BOX_OVERLAP_AREA_RATIO
):
dis[i][j] = float('inf')
dis[j][i] = dis[i][j]
continue
dis[i][j] = self._bbox_distance(all_bboxes[i]['bbox'], all_bboxes[j]['bbox'])
dis[i][j] = self._bbox_distance(
all_bboxes[subject_idx]['bbox'], all_bboxes[object_idx]['bbox']
)
dis[j][i] = dis[i][j]
used = set()
......@@ -461,7 +465,7 @@ class MagicModel:
if is_nearest:
nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
n_dis = self._bbox_distance(
n_dis = bbox_distance(
all_bboxes[i]['bbox'], [nx0, ny0, nx1, ny1]
)
if float_gt(dis[i][j], n_dis):
......@@ -557,7 +561,7 @@ class MagicModel:
# 计算已经配对的 distance 距离
for i in subject_object_relation_map.keys():
for j in subject_object_relation_map[i]:
total_subject_object_dis += self._bbox_distance(
total_subject_object_dis += bbox_distance(
all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
)
......@@ -586,6 +590,245 @@ class MagicModel:
with_caption_subject.add(j)
return ret, total_subject_object_dis
def __tie_up_category_by_distance_v2(
self, page_no, subject_category_id, object_category_id
):
AXIS_MULPLICITY = 0.5
subjects = self.__reduct_overlap(
list(
map(
lambda x: {'bbox': x['bbox'], 'score': x['score']},
filter(
lambda x: x['category_id'] == subject_category_id,
self.__model_list[page_no]['layout_dets'],
),
)
)
)
objects = self.__reduct_overlap(
list(
map(
lambda x: {'bbox': x['bbox'], 'score': x['score']},
filter(
lambda x: x['category_id'] == object_category_id,
self.__model_list[page_no]['layout_dets'],
),
)
)
)
M = len(objects)
subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
sub_obj_map_h = {i: [] for i in range(len(subjects))}
dis_by_directions = {
'top': [[-1, float('inf')]] * M,
'bottom': [[-1, float('inf')]] * M,
'left': [[-1, float('inf')]] * M,
'right': [[-1, float('inf')]] * M,
}
for i, obj in enumerate(objects):
l_x_axis, l_y_axis = (
obj['bbox'][2] - obj['bbox'][0],
obj['bbox'][3] - obj['bbox'][1],
)
axis_unit = min(l_x_axis, l_y_axis)
for j, sub in enumerate(subjects):
bbox1, bbox2, _ = _remove_overlap_between_bbox(
objects[i]['bbox'], subjects[j]['bbox']
)
left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
flags = [left, right, bottom, top]
if sum([1 if v else 0 for v in flags]) > 1:
continue
if left:
if dis_by_directions['left'][i][1] > bbox_distance(
obj['bbox'], sub['bbox']
):
dis_by_directions['left'][i] = [
j,
bbox_distance(obj['bbox'], sub['bbox']),
]
if right:
if dis_by_directions['right'][i][1] > bbox_distance(
obj['bbox'], sub['bbox']
):
dis_by_directions['right'][i] = [
j,
bbox_distance(obj['bbox'], sub['bbox']),
]
if bottom:
if dis_by_directions['bottom'][i][1] > bbox_distance(
obj['bbox'], sub['bbox']
):
dis_by_directions['bottom'][i] = [
j,
bbox_distance(obj['bbox'], sub['bbox']),
]
if top:
if dis_by_directions['top'][i][1] > bbox_distance(
obj['bbox'], sub['bbox']
):
dis_by_directions['top'][i] = [
j,
bbox_distance(obj['bbox'], sub['bbox']),
]
if dis_by_directions['left'][i][1] != float('inf') or dis_by_directions[
'right'
][i][1] != float('inf'):
if dis_by_directions['left'][i][1] != float(
'inf'
) and dis_by_directions['right'][i][1] != float('inf'):
if AXIS_MULPLICITY * axis_unit >= abs(
dis_by_directions['left'][i][1]
- dis_by_directions['right'][i][1]
):
left_sub_bbox = subjects[dis_by_directions['left'][i][0]][
'bbox'
]
right_sub_bbox = subjects[dis_by_directions['right'][i][0]][
'bbox'
]
left_sub_bbox_y_axis = left_sub_bbox[3] - left_sub_bbox[1]
right_sub_bbox_y_axis = right_sub_bbox[3] - right_sub_bbox[1]
if (
abs(left_sub_bbox_y_axis - l_y_axis)
+ dis_by_directions['left'][i][0]
> abs(right_sub_bbox_y_axis - l_y_axis)
+ dis_by_directions['right'][i][0]
):
left_or_right = dis_by_directions['right'][i]
else:
left_or_right = dis_by_directions['left'][i]
else:
left_or_right = dis_by_directions['left'][i]
if left_or_right[1] > dis_by_directions['right'][i][1]:
left_or_right = dis_by_directions['right'][i]
else:
left_or_right = dis_by_directions['left'][i]
if left_or_right[1] == float('inf'):
left_or_right = dis_by_directions['right'][i]
else:
left_or_right = [-1, float('inf')]
if dis_by_directions['top'][i][1] != float('inf') or dis_by_directions[
'bottom'
][i][1] != float('inf'):
if dis_by_directions['top'][i][1] != float('inf') and dis_by_directions[
'bottom'
][i][1] != float('inf'):
if AXIS_MULPLICITY * axis_unit >= abs(
dis_by_directions['top'][i][1]
- dis_by_directions['bottom'][i][1]
):
top_bottom = subjects[dis_by_directions['bottom'][i][0]]['bbox']
bottom_top = subjects[dis_by_directions['top'][i][0]]['bbox']
top_bottom_x_axis = top_bottom[2] - top_bottom[0]
bottom_top_x_axis = bottom_top[2] - bottom_top[0]
if abs(top_bottom_x_axis - l_x_axis) + dis_by_directions['bottom'][i][1] > abs(
bottom_top_x_axis - l_x_axis
) + dis_by_directions['top'][i][1]:
top_or_bottom = dis_by_directions['top'][i]
else:
top_or_bottom = dis_by_directions['bottom'][i]
else:
top_or_bottom = dis_by_directions['top'][i]
if top_or_bottom[1] > dis_by_directions['bottom'][i][1]:
top_or_bottom = dis_by_directions['bottom'][i]
else:
top_or_bottom = dis_by_directions['top'][i]
if top_or_bottom[1] == float('inf'):
top_or_bottom = dis_by_directions['bottom'][i]
else:
top_or_bottom = [-1, float('inf')]
if left_or_right[1] != float('inf') or top_or_bottom[1] != float('inf'):
if left_or_right[1] != float('inf') and top_or_bottom[1] != float(
'inf'
):
if AXIS_MULPLICITY * axis_unit >= abs(
left_or_right[1] - top_or_bottom[1]
):
y_axis_bbox = subjects[left_or_right[0]]['bbox']
x_axis_bbox = subjects[top_or_bottom[0]]['bbox']
if (
abs((x_axis_bbox[2] - x_axis_bbox[0]) - l_x_axis) / l_x_axis
> abs((y_axis_bbox[3] - y_axis_bbox[1]) - l_y_axis)
/ l_y_axis
):
sub_obj_map_h[left_or_right[0]].append(i)
else:
sub_obj_map_h[top_or_bottom[0]].append(i)
else:
if left_or_right[1] > top_or_bottom[1]:
sub_obj_map_h[top_or_bottom[0]].append(i)
else:
sub_obj_map_h[left_or_right[0]].append(i)
else:
if left_or_right[1] != float('inf'):
sub_obj_map_h[left_or_right[0]].append(i)
else:
sub_obj_map_h[top_or_bottom[0]].append(i)
ret = []
for i in sub_obj_map_h.keys():
ret.append(
{
'sub_bbox': {
'bbox': subjects[i]['bbox'],
'score': subjects[i]['score'],
},
'obj_bboxes': [
{'score': objects[j]['score'], 'bbox': objects[j]['bbox']}
for j in sub_obj_map_h[i]
],
'sub_idx': i,
}
)
return ret
def get_imgs_v2(self, page_no: int):
with_captions = self.__tie_up_category_by_distance_v2(page_no, 3, 4)
with_footnotes = self.__tie_up_category_by_distance_v2(
page_no, 3, CategoryId.ImageFootnote
)
ret = []
for v in with_captions:
record = {
'image_body': v['sub_bbox'],
'image_caption_list': v['obj_bboxes'],
}
filter_idx = v['sub_idx']
d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
record['image_footnote_list'] = d['obj_bboxes']
ret.append(record)
return ret
def get_tables_v2(self, page_no: int) -> list:
with_captions = self.__tie_up_category_by_distance_v2(page_no, 5, 6)
with_footnotes = self.__tie_up_category_by_distance_v2(page_no, 5, 7)
ret = []
for v in with_captions:
record = {
'table_body': v['sub_bbox'],
'table_caption_list': v['obj_bboxes'],
}
filter_idx = v['sub_idx']
d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
record['table_footnote_list'] = d['obj_bboxes']
ret.append(record)
return ret
def get_imgs(self, page_no: int):
with_captions, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
with_footnotes, _ = self.__tie_up_category_by_distance(
......@@ -719,10 +962,10 @@ class MagicModel:
def get_page_size(self, page_no: int): # 获取页面宽高
# 获取当前页的page对象
page = self.__docs[page_no]
page = self.__docs.get_page(page_no).get_page_info()
# 获取当前页的宽高
page_w = page.rect.width
page_h = page.rect.height
page_w = page.w
page_h = page.h
return page_w, page_h
def __get_blocks_by_type(
......
......@@ -26,6 +26,7 @@ try:
from unimernet.common.config import Config
import unimernet.tasks as tasks
from unimernet.processors import load_processor
from doclayout_yolo import YOLOv10
except ImportError as e:
logger.exception(e)
......@@ -42,7 +43,7 @@ from magic_pdf.model.ppTableModel import ppTableModel
def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
if table_model_type == STRUCT_EQTABLE:
if table_model_type == MODEL_NAME.STRUCT_EQTABLE:
table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
else:
config = {
......@@ -83,11 +84,16 @@ def layout_model_init(weight, config_file, device):
return model
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None):
def doclayout_yolo_model_init(weight):
model = YOLOv10(weight)
return model
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None, use_dilation=True, det_db_unclip_ratio=1.8):
if lang is not None:
model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang)
model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
else:
model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh)
model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, use_dilation=use_dilation, det_db_unclip_ratio=det_db_unclip_ratio)
return model
......@@ -120,19 +126,27 @@ class AtomModelSingleton:
return cls._instance
def get_atom_model(self, atom_model_name: str, **kwargs):
if atom_model_name not in self._models:
self._models[atom_model_name] = atom_model_init(model_name=atom_model_name, **kwargs)
return self._models[atom_model_name]
lang = kwargs.get("lang", None)
layout_model_name = kwargs.get("layout_model_name", None)
key = (atom_model_name, layout_model_name, lang)
if key not in self._models:
self._models[key] = atom_model_init(model_name=atom_model_name, **kwargs)
return self._models[key]
def atom_model_init(model_name: str, **kwargs):
if model_name == AtomicModel.Layout:
atom_model = layout_model_init(
kwargs.get("layout_weights"),
kwargs.get("layout_config_file"),
kwargs.get("device")
)
if kwargs.get("layout_model_name") == MODEL_NAME.LAYOUTLMv3:
atom_model = layout_model_init(
kwargs.get("layout_weights"),
kwargs.get("layout_config_file"),
kwargs.get("device")
)
elif kwargs.get("layout_model_name") == MODEL_NAME.DocLayout_YOLO:
atom_model = doclayout_yolo_model_init(
kwargs.get("doclayout_yolo_weights"),
)
elif model_name == AtomicModel.MFD:
atom_model = mfd_model_init(
kwargs.get("mfd_weights")
......@@ -151,7 +165,7 @@ def atom_model_init(model_name: str, **kwargs):
)
elif model_name == AtomicModel.Table:
atom_model = table_model_init(
kwargs.get("table_model_type"),
kwargs.get("table_model_name"),
kwargs.get("table_model_path"),
kwargs.get("table_max_time"),
kwargs.get("device")
......@@ -199,23 +213,35 @@ class CustomPEKModel:
with open(config_path, "r", encoding='utf-8') as f:
self.configs = yaml.load(f, Loader=yaml.FullLoader)
# 初始化解析配置
self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
# layout config
self.layout_config = kwargs.get("layout_config")
self.layout_model_name = self.layout_config.get("model", MODEL_NAME.DocLayout_YOLO)
# formula config
self.formula_config = kwargs.get("formula_config")
self.mfd_model_name = self.formula_config.get("mfd_model", MODEL_NAME.YOLO_V8_MFD)
self.mfr_model_name = self.formula_config.get("mfr_model", MODEL_NAME.UniMerNet_v2_Small)
self.apply_formula = self.formula_config.get("enable", True)
# table config
self.table_config = kwargs.get("table_config", self.configs["config"]["table_config"])
self.apply_table = self.table_config.get("is_table_recog_enable", False)
self.table_config = kwargs.get("table_config")
self.apply_table = self.table_config.get("enable", False)
self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
self.table_model_type = self.table_config.get("model", TABLE_MASTER)
self.table_model_name = self.table_config.get("model", MODEL_NAME.TABLE_MASTER)
# ocr config
self.apply_ocr = ocr
self.lang = kwargs.get("lang", None)
logger.info(
"DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}, apply_table: {}, lang: {}".format(
self.apply_layout, self.apply_formula, self.apply_ocr, self.apply_table, self.lang
"DocAnalysis init, this may take some times, layout_model: {}, apply_formula: {}, apply_ocr: {}, "
"apply_table: {}, table_model: {}, lang: {}".format(
self.layout_model_name, self.apply_formula, self.apply_ocr, self.apply_table, self.table_model_name, self.lang
)
)
assert self.apply_layout, "DocAnalysis must contain layout model."
# 初始化解析方案
self.device = kwargs.get("device", self.configs["config"]["device"])
self.device = kwargs.get("device", "cpu")
logger.info("using device: {}".format(self.device))
models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
logger.info("using models_dir: {}".format(models_dir))
......@@ -224,17 +250,16 @@ class CustomPEKModel:
# 初始化公式识别
if self.apply_formula:
# 初始化公式检测模型
# self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))
self.mfd_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.MFD,
mfd_weights=str(os.path.join(models_dir, self.configs["weights"]["mfd"]))
mfd_weights=str(os.path.join(models_dir, self.configs["weights"][self.mfd_model_name]))
)
# 初始化公式解析模型
mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"][self.mfr_model_name]))
mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
# self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
# self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.MFR,
mfr_weight_dir=mfr_weight_dir,
......@@ -243,17 +268,20 @@ class CustomPEKModel:
)
# 初始化layout模型
# self.layout_model = Layoutlmv3_Predictor(
# str(os.path.join(models_dir, self.configs['weights']['layout'])),
# str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
# device=self.device
# )
self.layout_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.Layout,
layout_weights=str(os.path.join(models_dir, self.configs['weights']['layout'])),
layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
device=self.device
)
if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
self.layout_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.Layout,
layout_model_name=MODEL_NAME.LAYOUTLMv3,
layout_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name])),
layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
device=self.device
)
elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
self.layout_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.Layout,
layout_model_name=MODEL_NAME.DocLayout_YOLO,
doclayout_yolo_weights=str(os.path.join(models_dir, self.configs['weights'][self.layout_model_name]))
)
# 初始化ocr
if self.apply_ocr:
......@@ -266,12 +294,10 @@ class CustomPEKModel:
)
# init table model
if self.apply_table:
table_model_dir = self.configs["weights"][self.table_model_type]
# self.table_model = table_model_init(self.table_model_type, str(os.path.join(models_dir, table_model_dir)),
# max_time=self.table_max_time, _device_=self.device)
table_model_dir = self.configs["weights"][self.table_model_name]
self.table_model = atom_model_manager.get_atom_model(
atom_model_name=AtomicModel.Table,
table_model_type=self.table_model_type,
table_model_name=self.table_model_name,
table_model_path=str(os.path.join(models_dir, table_model_dir)),
table_max_time=self.table_max_time,
device=self.device
......@@ -288,7 +314,21 @@ class CustomPEKModel:
# layout检测
layout_start = time.time()
layout_res = self.layout_model(image, ignore_catids=[])
if self.layout_model_name == MODEL_NAME.LAYOUTLMv3:
# layoutlmv3
layout_res = self.layout_model(image, ignore_catids=[])
elif self.layout_model_name == MODEL_NAME.DocLayout_YOLO:
# doclayout_yolo
layout_res = []
doclayout_yolo_res = self.layout_model.predict(image, imgsz=1024, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
for xyxy, conf, cla in zip(doclayout_yolo_res.boxes.xyxy.cpu(), doclayout_yolo_res.boxes.conf.cpu(), doclayout_yolo_res.boxes.cls.cpu()):
xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
new_item = {
'category_id': int(cla.item()),
'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
'score': round(float(conf.item()), 3),
}
layout_res.append(new_item)
layout_cost = round(time.time() - layout_start, 2)
logger.info(f"layout detection time: {layout_cost}")
......@@ -297,7 +337,7 @@ class CustomPEKModel:
if self.apply_formula:
# 公式检测
mfd_start = time.time()
mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True, device=self.device)[0]
logger.info(f"mfd time: {round(time.time() - mfd_start, 2)}")
for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
......@@ -309,7 +349,6 @@ class CustomPEKModel:
}
layout_res.append(new_item)
latex_filling_list.append(new_item)
# bbox_img = get_croped_image(pil_img, [xmin, ymin, xmax, ymax])
bbox_img = pil_img.crop((xmin, ymin, xmax, ymax))
mf_image_list.append(bbox_img)
......@@ -346,7 +385,7 @@ class CustomPEKModel:
if torch.cuda.is_available():
properties = torch.cuda.get_device_properties(self.device)
total_memory = properties.total_memory / (1024 ** 3) # 将字节转换为 GB
if total_memory <= 8:
if total_memory <= 10:
gc_start = time.time()
clean_memory()
gc_time = round(time.time() - gc_start, 2)
......@@ -411,7 +450,7 @@ class CustomPEKModel:
# logger.info("------------------table recognition processing begins-----------------")
latex_code = None
html_code = None
if self.table_model_type == STRUCT_EQTABLE:
if self.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
with torch.no_grad():
latex_code = self.table_model.image2latex(new_image)[0]
else:
......
......@@ -52,11 +52,11 @@ class ppTableModel(object):
rec_model_dir = os.path.join(model_dir, REC_MODEL_DIR)
rec_char_dict_path = os.path.join(model_dir, REC_CHAR_DICT)
device = kwargs.get("device", "cpu")
use_gpu = True if device == "cuda" else False
use_gpu = True if device.startswith("cuda") else False
config = {
"use_gpu": use_gpu,
"table_max_len": kwargs.get("table_max_len", TABLE_MAX_LEN),
"table_algorithm": TABLE_MASTER,
"table_algorithm": "TableMaster",
"table_model_dir": table_model_dir,
"table_char_dict_path": table_char_dict_path,
"det_model_dir": det_model_dir,
......
import copy
from loguru import logger
from magic_pdf.libs.Constants import LINES_DELETED, CROSS_PAGE
from magic_pdf.libs.ocr_content_type import BlockType, ContentType
LINE_STOP_FLAG = ('.', '!', '?', '。', '!', '?', ')', ')', '"', '”', ':', ':', ';', ';')
LIST_END_FLAG = ('.', '。', ';', ';')
class ListLineTag:
IS_LIST_START_LINE = "is_list_start_line"
IS_LIST_END_LINE = "is_list_end_line"
def __process_blocks(blocks):
# 对所有block预处理
# 1.通过title和interline_equation将block分组
# 2.bbox边界根据line信息重置
result = []
current_group = []
for i in range(len(blocks)):
current_block = blocks[i]
# 如果当前块是 text 类型
if current_block['type'] == 'text':
current_block["bbox_fs"] = copy.deepcopy(current_block["bbox"])
if 'lines' in current_block and len(current_block["lines"]) > 0:
current_block['bbox_fs'] = [min([line['bbox'][0] for line in current_block['lines']]),
min([line['bbox'][1] for line in current_block['lines']]),
max([line['bbox'][2] for line in current_block['lines']]),
max([line['bbox'][3] for line in current_block['lines']])]
current_group.append(current_block)
# 检查下一个块是否存在
if i + 1 < len(blocks):
next_block = blocks[i + 1]
# 如果下一个块不是 text 类型且是 title 或 interline_equation 类型
if next_block['type'] in ['title', 'interline_equation']:
result.append(current_group)
current_group = []
# 处理最后一个 group
if current_group:
result.append(current_group)
return result
def __is_list_or_index_block(block):
# 一个block如果是list block 应该同时满足以下特征
# 1.block内有多个line 2.block 内有多个line左侧顶格写 3.block内有多个line 右侧不顶格(狗牙状)
# 1.block内有多个line 2.block 内有多个line左侧顶格写 3.多个line以endflag结尾
# 1.block内有多个line 2.block 内有多个line左侧顶格写 3.block内有多个line 左侧不顶格
# index block 是一种特殊的list block
# 一个block如果是index block 应该同时满足以下特征
# 1.block内有多个line 2.block 内有多个line两侧均顶格写 3.line的开头或者结尾均为数字
if len(block['lines']) >= 2:
first_line = block['lines'][0]
line_height = first_line['bbox'][3] - first_line['bbox'][1]
block_weight = block['bbox_fs'][2] - block['bbox_fs'][0]
left_close_num = 0
left_not_close_num = 0
right_not_close_num = 0
right_close_num = 0
lines_text_list = []
multiple_para_flag = False
last_line = block['lines'][-1]
# 如果首行左边不顶格而右边顶格,末行左边顶格而右边不顶格 (第一行可能可以右边不顶格)
if (first_line['bbox'][0] - block['bbox_fs'][0] > line_height / 2 and
# block['bbox_fs'][2] - first_line['bbox'][2] < line_height and
abs(last_line['bbox'][0] - block['bbox_fs'][0]) < line_height / 2 and
block['bbox_fs'][2] - last_line['bbox'][2] > line_height
):
multiple_para_flag = True
for line in block['lines']:
line_text = ""
for span in line['spans']:
span_type = span['type']
if span_type == ContentType.Text:
line_text += span['content'].strip()
lines_text_list.append(line_text)
# 计算line左侧顶格数量是否大于2,是否顶格用abs(block['bbox_fs'][0] - line['bbox'][0]) < line_height/2 来判断
if abs(block['bbox_fs'][0] - line['bbox'][0]) < line_height / 2:
left_close_num += 1
elif line['bbox'][0] - block['bbox_fs'][0] > line_height:
# logger.info(f"{line_text}, {block['bbox_fs']}, {line['bbox']}")
left_not_close_num += 1
# 计算右侧是否顶格
if abs(block['bbox_fs'][2] - line['bbox'][2]) < line_height:
right_close_num += 1
else:
# 右侧不顶格情况下是否有一段距离,拍脑袋用0.3block宽度做阈值
closed_area = 0.3 * block_weight
# closed_area = 5 * line_height
if block['bbox_fs'][2] - line['bbox'][2] > closed_area:
right_not_close_num += 1
# 判断lines_text_list中的元素是否有超过80%都以LIST_END_FLAG结尾
line_end_flag = False
# 判断lines_text_list中的元素是否有超过80%都以数字开头或都以数字结尾
line_num_flag = False
num_start_count = 0
num_end_count = 0
flag_end_count = 0
if len(lines_text_list) > 0:
for line_text in lines_text_list:
if len(line_text) > 0:
if line_text[-1] in LIST_END_FLAG:
flag_end_count += 1
if line_text[0].isdigit():
num_start_count += 1
if line_text[-1].isdigit():
num_end_count += 1
if flag_end_count / len(lines_text_list) >= 0.8:
line_end_flag = True
if num_start_count / len(lines_text_list) >= 0.8 or num_end_count / len(lines_text_list) >= 0.8:
line_num_flag = True
# 有的目录右侧不贴边, 目前认为左边或者右边有一边全贴边,且符合数字规则极为index
if ((left_close_num/len(block['lines']) >= 0.8 or right_close_num/len(block['lines']) >= 0.8)
and line_num_flag
):
for line in block['lines']:
line[ListLineTag.IS_LIST_START_LINE] = True
return BlockType.Index
elif left_close_num >= 2 and (
right_not_close_num >= 2 or line_end_flag or left_not_close_num >= 2) and not multiple_para_flag:
# 处理一种特殊的没有缩进的list,所有行都贴左边,通过右边的空隙判断是否是item尾
if left_close_num / len(block['lines']) > 0.9:
# 这种是每个item只有一行,且左边都贴边的短item list
if flag_end_count == 0 and right_close_num / len(block['lines']) < 0.5:
for line in block['lines']:
if abs(block['bbox_fs'][0] - line['bbox'][0]) < line_height / 2:
line[ListLineTag.IS_LIST_START_LINE] = True
# 这种是大部分line item 都有结束标识符的情况,按结束标识符区分不同item
elif line_end_flag:
for i, line in enumerate(block['lines']):
if lines_text_list[i][-1] in LIST_END_FLAG:
line[ListLineTag.IS_LIST_END_LINE] = True
if i + 1 < len(block['lines']):
block['lines'][i+1][ListLineTag.IS_LIST_START_LINE] = True
# line item基本没有结束标识符,而且也没有缩进,按右侧空隙判断哪些是item end
else:
line_start_flag = False
for i, line in enumerate(block['lines']):
if line_start_flag:
line[ListLineTag.IS_LIST_START_LINE] = True
line_start_flag = False
elif abs(block['bbox_fs'][2] - line['bbox'][2]) > line_height:
line[ListLineTag.IS_LIST_END_LINE] = True
line_start_flag = True
# 一种有缩进的特殊有序list,start line 左侧不贴边且以数字开头,end line 以 IS_LIST_END_LINE 结尾且数量和start line 一致
elif num_start_count >= 2 and num_start_count == flag_end_count: # 简单一点先不考虑左侧不贴边的情况
for i, line in enumerate(block['lines']):
if lines_text_list[i][0].isdigit():
line[ListLineTag.IS_LIST_START_LINE] = True
if lines_text_list[i][-1] in LIST_END_FLAG:
line[ListLineTag.IS_LIST_END_LINE] = True
else:
# 正常有缩进的list处理
for line in block['lines']:
if abs(block['bbox_fs'][0] - line['bbox'][0]) < line_height / 2:
line[ListLineTag.IS_LIST_START_LINE] = True
if abs(block['bbox_fs'][2] - line['bbox'][2]) > line_height:
line[ListLineTag.IS_LIST_END_LINE] = True
return BlockType.List
else:
return BlockType.Text
else:
return BlockType.Text
def __merge_2_text_blocks(block1, block2):
if len(block1['lines']) > 0:
first_line = block1['lines'][0]
line_height = first_line['bbox'][3] - first_line['bbox'][1]
block1_weight = block1['bbox'][2] - block1['bbox'][0]
block2_weight = block2['bbox'][2] - block2['bbox'][0]
min_block_weight = min(block1_weight, block2_weight)
if abs(block1['bbox_fs'][0] - first_line['bbox'][0]) < line_height / 2:
last_line = block2['lines'][-1]
if len(last_line['spans']) > 0:
last_span = last_line['spans'][-1]
line_height = last_line['bbox'][3] - last_line['bbox'][1]
if (abs(block2['bbox_fs'][2] - last_line['bbox'][2]) < line_height and
not last_span['content'].endswith(LINE_STOP_FLAG) and
# 两个block宽度差距超过2倍也不合并
abs(block1_weight - block2_weight) < min_block_weight
):
if block1['page_num'] != block2['page_num']:
for line in block1['lines']:
for span in line['spans']:
span[CROSS_PAGE] = True
block2['lines'].extend(block1['lines'])
block1['lines'] = []
block1[LINES_DELETED] = True
return block1, block2
def __merge_2_list_blocks(block1, block2):
if block1['page_num'] != block2['page_num']:
for line in block1['lines']:
for span in line['spans']:
span[CROSS_PAGE] = True
block2['lines'].extend(block1['lines'])
block1['lines'] = []
block1[LINES_DELETED] = True
return block1, block2
def __is_list_group(text_blocks_group):
# list group的特征是一个group内的所有block都满足以下条件
# 1.每个block都不超过3行 2. 每个block 的左边界都比较接近(逻辑简单点先不加这个规则)
for block in text_blocks_group:
if len(block['lines']) > 3:
return False
return True
def __para_merge_page(blocks):
page_text_blocks_groups = __process_blocks(blocks)
for text_blocks_group in page_text_blocks_groups:
if len(text_blocks_group) > 0:
# 需要先在合并前对所有block判断是否为list or index block
for block in text_blocks_group:
block_type = __is_list_or_index_block(block)
block['type'] = block_type
# logger.info(f"{block['type']}:{block}")
if len(text_blocks_group) > 1:
# 在合并前判断这个group 是否是一个 list group
is_list_group = __is_list_group(text_blocks_group)
# 倒序遍历
for i in range(len(text_blocks_group) - 1, -1, -1):
current_block = text_blocks_group[i]
# 检查是否有前一个块
if i - 1 >= 0:
prev_block = text_blocks_group[i - 1]
if current_block['type'] == 'text' and prev_block['type'] == 'text' and not is_list_group:
__merge_2_text_blocks(current_block, prev_block)
elif (
(current_block['type'] == BlockType.List and prev_block['type'] == BlockType.List) or
(current_block['type'] == BlockType.Index and prev_block['type'] == BlockType.Index)
):
__merge_2_list_blocks(current_block, prev_block)
else:
continue
def para_split(pdf_info_dict, debug_mode=False):
all_blocks = []
for page_num, page in pdf_info_dict.items():
blocks = copy.deepcopy(page['preproc_blocks'])
for block in blocks:
block['page_num'] = page_num
all_blocks.extend(blocks)
__para_merge_page(all_blocks)
for page_num, page in pdf_info_dict.items():
page['para_blocks'] = []
for block in all_blocks:
if block['page_num'] == page_num:
page['para_blocks'].append(block)
if __name__ == '__main__':
input_blocks = []
# 调用函数
groups = __process_blocks(input_blocks)
for group_index, group in enumerate(groups):
print(f"Group {group_index}: {group}")
from magic_pdf.config.enums import SupportedPdfParseMethod
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.pdf_parse_union_core_v2 import pdf_parse_union
......@@ -8,10 +10,11 @@ def parse_pdf_by_ocr(pdf_bytes,
end_page_id=None,
debug_mode=False,
):
return pdf_parse_union(pdf_bytes,
dataset = PymuDocDataset(pdf_bytes)
return pdf_parse_union(dataset,
model_list,
imageWriter,
"ocr",
SupportedPdfParseMethod.OCR,
start_page_id=start_page_id,
end_page_id=end_page_id,
debug_mode=debug_mode,
......
from magic_pdf.config.enums import SupportedPdfParseMethod
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.pdf_parse_union_core_v2 import pdf_parse_union
......@@ -9,10 +11,11 @@ def parse_pdf_by_txt(
end_page_id=None,
debug_mode=False,
):
return pdf_parse_union(pdf_bytes,
dataset = PymuDocDataset(pdf_bytes)
return pdf_parse_union(dataset,
model_list,
imageWriter,
"txt",
SupportedPdfParseMethod.TXT,
start_page_id=start_page_id,
end_page_id=end_page_id,
debug_mode=debug_mode,
......
This diff is collapsed.
......@@ -17,7 +17,7 @@ class AbsPipe(ABC):
PIP_TXT = "txt"
def __init__(self, pdf_bytes: bytes, model_list: list, image_writer: AbsReaderWriter, is_debug: bool = False,
start_page_id=0, end_page_id=None, lang=None):
start_page_id=0, end_page_id=None, lang=None, layout_model=None, formula_enable=None, table_enable=None):
self.pdf_bytes = pdf_bytes
self.model_list = model_list
self.image_writer = image_writer
......@@ -26,6 +26,9 @@ class AbsPipe(ABC):
self.start_page_id = start_page_id
self.end_page_id = end_page_id
self.lang = lang
self.layout_model = layout_model
self.formula_enable = formula_enable
self.table_enable = table_enable
def get_compress_pdf_mid_data(self):
return JsonCompressor.compress_json(self.pdf_mid_data)
......@@ -95,9 +98,7 @@ class AbsPipe(ABC):
"""
pdf_mid_data = JsonCompressor.decompress_json(compressed_pdf_mid_data)
pdf_info_list = pdf_mid_data["pdf_info"]
parse_type = pdf_mid_data["_parse_type"]
lang = pdf_mid_data.get("_lang", None)
content_list = union_make(pdf_info_list, MakeMode.STANDARD_FORMAT, drop_mode, img_buket_path, parse_type, lang)
content_list = union_make(pdf_info_list, MakeMode.STANDARD_FORMAT, drop_mode, img_buket_path)
return content_list
@staticmethod
......@@ -107,9 +108,7 @@ class AbsPipe(ABC):
"""
pdf_mid_data = JsonCompressor.decompress_json(compressed_pdf_mid_data)
pdf_info_list = pdf_mid_data["pdf_info"]
parse_type = pdf_mid_data["_parse_type"]
lang = pdf_mid_data.get("_lang", None)
md_content = union_make(pdf_info_list, md_make_mode, drop_mode, img_buket_path, parse_type, lang)
md_content = union_make(pdf_info_list, md_make_mode, drop_mode, img_buket_path)
return md_content
......@@ -10,8 +10,10 @@ from magic_pdf.user_api import parse_ocr_pdf
class OCRPipe(AbsPipe):
def __init__(self, pdf_bytes: bytes, model_list: list, image_writer: AbsReaderWriter, is_debug: bool = False,
start_page_id=0, end_page_id=None, lang=None):
super().__init__(pdf_bytes, model_list, image_writer, is_debug, start_page_id, end_page_id, lang)
start_page_id=0, end_page_id=None, lang=None,
layout_model=None, formula_enable=None, table_enable=None):
super().__init__(pdf_bytes, model_list, image_writer, is_debug, start_page_id, end_page_id, lang,
layout_model, formula_enable, table_enable)
def pipe_classify(self):
pass
......@@ -19,12 +21,14 @@ class OCRPipe(AbsPipe):
def pipe_analyze(self):
self.model_list = doc_analyze(self.pdf_bytes, ocr=True,
start_page_id=self.start_page_id, end_page_id=self.end_page_id,
lang=self.lang)
lang=self.lang, layout_model=self.layout_model,
formula_enable=self.formula_enable, table_enable=self.table_enable)
def pipe_parse(self):
self.pdf_mid_data = parse_ocr_pdf(self.pdf_bytes, self.model_list, self.image_writer, is_debug=self.is_debug,
start_page_id=self.start_page_id, end_page_id=self.end_page_id,
lang=self.lang)
lang=self.lang, layout_model=self.layout_model,
formula_enable=self.formula_enable, table_enable=self.table_enable)
def pipe_mk_uni_format(self, img_parent_path: str, drop_mode=DropMode.WHOLE_PDF):
result = super().pipe_mk_uni_format(img_parent_path, drop_mode)
......
......@@ -11,8 +11,10 @@ from magic_pdf.user_api import parse_txt_pdf
class TXTPipe(AbsPipe):
def __init__(self, pdf_bytes: bytes, model_list: list, image_writer: AbsReaderWriter, is_debug: bool = False,
start_page_id=0, end_page_id=None, lang=None):
super().__init__(pdf_bytes, model_list, image_writer, is_debug, start_page_id, end_page_id, lang)
start_page_id=0, end_page_id=None, lang=None,
layout_model=None, formula_enable=None, table_enable=None):
super().__init__(pdf_bytes, model_list, image_writer, is_debug, start_page_id, end_page_id, lang,
layout_model, formula_enable, table_enable)
def pipe_classify(self):
pass
......@@ -20,12 +22,14 @@ class TXTPipe(AbsPipe):
def pipe_analyze(self):
self.model_list = doc_analyze(self.pdf_bytes, ocr=False,
start_page_id=self.start_page_id, end_page_id=self.end_page_id,
lang=self.lang)
lang=self.lang, layout_model=self.layout_model,
formula_enable=self.formula_enable, table_enable=self.table_enable)
def pipe_parse(self):
self.pdf_mid_data = parse_txt_pdf(self.pdf_bytes, self.model_list, self.image_writer, is_debug=self.is_debug,
start_page_id=self.start_page_id, end_page_id=self.end_page_id,
lang=self.lang)
lang=self.lang, layout_model=self.layout_model,
formula_enable=self.formula_enable, table_enable=self.table_enable)
def pipe_mk_uni_format(self, img_parent_path: str, drop_mode=DropMode.WHOLE_PDF):
result = super().pipe_mk_uni_format(img_parent_path, drop_mode)
......
......@@ -14,9 +14,11 @@ from magic_pdf.user_api import parse_union_pdf, parse_ocr_pdf
class UNIPipe(AbsPipe):
def __init__(self, pdf_bytes: bytes, jso_useful_key: dict, image_writer: AbsReaderWriter, is_debug: bool = False,
start_page_id=0, end_page_id=None, lang=None):
start_page_id=0, end_page_id=None, lang=None,
layout_model=None, formula_enable=None, table_enable=None):
self.pdf_type = jso_useful_key["_pdf_type"]
super().__init__(pdf_bytes, jso_useful_key["model_list"], image_writer, is_debug, start_page_id, end_page_id, lang)
super().__init__(pdf_bytes, jso_useful_key["model_list"], image_writer, is_debug, start_page_id, end_page_id,
lang, layout_model, formula_enable, table_enable)
if len(self.model_list) == 0:
self.input_model_is_empty = True
else:
......@@ -29,18 +31,21 @@ class UNIPipe(AbsPipe):
if self.pdf_type == self.PIP_TXT:
self.model_list = doc_analyze(self.pdf_bytes, ocr=False,
start_page_id=self.start_page_id, end_page_id=self.end_page_id,
lang=self.lang)
lang=self.lang, layout_model=self.layout_model,
formula_enable=self.formula_enable, table_enable=self.table_enable)
elif self.pdf_type == self.PIP_OCR:
self.model_list = doc_analyze(self.pdf_bytes, ocr=True,
start_page_id=self.start_page_id, end_page_id=self.end_page_id,
lang=self.lang)
lang=self.lang, layout_model=self.layout_model,
formula_enable=self.formula_enable, table_enable=self.table_enable)
def pipe_parse(self):
if self.pdf_type == self.PIP_TXT:
self.pdf_mid_data = parse_union_pdf(self.pdf_bytes, self.model_list, self.image_writer,
is_debug=self.is_debug, input_model_is_empty=self.input_model_is_empty,
start_page_id=self.start_page_id, end_page_id=self.end_page_id,
lang=self.lang)
lang=self.lang, layout_model=self.layout_model,
formula_enable=self.formula_enable, table_enable=self.table_enable)
elif self.pdf_type == self.PIP_OCR:
self.pdf_mid_data = parse_ocr_pdf(self.pdf_bytes, self.model_list, self.image_writer,
is_debug=self.is_debug,
......
from loguru import logger
from magic_pdf.libs.boxbase import get_minbox_if_overlap_by_ratio, calculate_overlap_area_in_bbox1_area_ratio, \
calculate_iou
calculate_iou, calculate_vertical_projection_overlap_ratio
from magic_pdf.libs.drop_tag import DropTag
from magic_pdf.libs.ocr_content_type import BlockType
from magic_pdf.pre_proc.remove_bbox_overlap import remove_overlap_between_bbox_for_block
......@@ -60,29 +60,34 @@ def ocr_prepare_bboxes_for_layout_split(img_blocks, table_blocks, discarded_bloc
return all_bboxes, all_discarded_blocks, drop_reasons
def ocr_prepare_bboxes_for_layout_split_v2(img_blocks, table_blocks, discarded_blocks, text_blocks,
title_blocks, interline_equation_blocks, page_w, page_h):
all_bboxes = []
all_discarded_blocks = []
for image in img_blocks:
x0, y0, x1, y1 = image['bbox']
all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.Image, None, None, None, None, image["score"]])
def add_bboxes(blocks, block_type, bboxes):
for block in blocks:
x0, y0, x1, y1 = block['bbox']
if block_type in [
BlockType.ImageBody, BlockType.ImageCaption, BlockType.ImageFootnote,
BlockType.TableBody, BlockType.TableCaption, BlockType.TableFootnote
]:
bboxes.append([x0, y0, x1, y1, None, None, None, block_type, None, None, None, None, block["score"], block["group_id"]])
else:
bboxes.append([x0, y0, x1, y1, None, None, None, block_type, None, None, None, None, block["score"]])
for table in table_blocks:
x0, y0, x1, y1 = table['bbox']
all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.Table, None, None, None, None, table["score"]])
for text in text_blocks:
x0, y0, x1, y1 = text['bbox']
all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.Text, None, None, None, None, text["score"]])
def ocr_prepare_bboxes_for_layout_split_v2(
img_body_blocks, img_caption_blocks, img_footnote_blocks,
table_body_blocks, table_caption_blocks, table_footnote_blocks,
discarded_blocks, text_blocks, title_blocks, interline_equation_blocks, page_w, page_h
):
all_bboxes = []
for title in title_blocks:
x0, y0, x1, y1 = title['bbox']
all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.Title, None, None, None, None, title["score"]])
for interline_equation in interline_equation_blocks:
x0, y0, x1, y1 = interline_equation['bbox']
all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.InterlineEquation, None, None, None, None, interline_equation["score"]])
add_bboxes(img_body_blocks, BlockType.ImageBody, all_bboxes)
add_bboxes(img_caption_blocks, BlockType.ImageCaption, all_bboxes)
add_bboxes(img_footnote_blocks, BlockType.ImageFootnote, all_bboxes)
add_bboxes(table_body_blocks, BlockType.TableBody, all_bboxes)
add_bboxes(table_caption_blocks, BlockType.TableCaption, all_bboxes)
add_bboxes(table_footnote_blocks, BlockType.TableFootnote, all_bboxes)
add_bboxes(text_blocks, BlockType.Text, all_bboxes)
add_bboxes(title_blocks, BlockType.Title, all_bboxes)
add_bboxes(interline_equation_blocks, BlockType.InterlineEquation, all_bboxes)
'''block嵌套问题解决'''
'''文本框与标题框重叠,优先信任文本框'''
......@@ -96,23 +101,47 @@ def ocr_prepare_bboxes_for_layout_split_v2(img_blocks, table_blocks, discarded_b
'''interline_equation框被包含在文本类型框内,且interline_equation比文本区块小很多时信任文本框,这时需要舍弃公式框'''
# 通过后续大框套小框逻辑删除
'''discarded_blocks中只保留宽度超过1/3页面宽度的,高度超过10的,处于页面下半50%区域的(限定footnote)'''
'''discarded_blocks'''
all_discarded_blocks = []
add_bboxes(discarded_blocks, BlockType.Discarded, all_discarded_blocks)
'''footnote识别:宽度超过1/3页面宽度的,高度超过10的,处于页面下半50%区域的'''
footnote_blocks = []
for discarded in discarded_blocks:
x0, y0, x1, y1 = discarded['bbox']
all_discarded_blocks.append([x0, y0, x1, y1, None, None, None, BlockType.Discarded, None, None, None, None, discarded["score"]])
# 将footnote加入到all_bboxes中,用来计算layout
# if (x1 - x0) > (page_w / 3) and (y1 - y0) > 10 and y0 > (page_h / 2):
# all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.Footnote, None, None, None, None, discarded["score"]])
if (x1 - x0) > (page_w / 3) and (y1 - y0) > 10 and y0 > (page_h / 2):
footnote_blocks.append([x0, y0, x1, y1])
'''移除在footnote下面的任何框'''
need_remove_blocks = find_blocks_under_footnote(all_bboxes, footnote_blocks)
if len(need_remove_blocks) > 0:
for block in need_remove_blocks:
all_bboxes.remove(block)
all_discarded_blocks.append(block)
'''经过以上处理后,还存在大框套小框的情况,则删除小框'''
all_bboxes = remove_overlaps_min_blocks(all_bboxes)
all_discarded_blocks = remove_overlaps_min_blocks(all_discarded_blocks)
'''将剩余的bbox做分离处理,防止后面分layout时出错'''
# all_bboxes, drop_reasons = remove_overlap_between_bbox_for_block(all_bboxes)
all_bboxes, drop_reasons = remove_overlap_between_bbox_for_block(all_bboxes)
return all_bboxes, all_discarded_blocks
def find_blocks_under_footnote(all_bboxes, footnote_blocks):
need_remove_blocks = []
for block in all_bboxes:
block_x0, block_y0, block_x1, block_y1 = block[:4]
for footnote_bbox in footnote_blocks:
footnote_x0, footnote_y0, footnote_x1, footnote_y1 = footnote_bbox
# 如果footnote的纵向投影覆盖了block的纵向投影的80%且block的y0大于等于footnote的y1
if block_y0 >= footnote_y1 and calculate_vertical_projection_overlap_ratio((block_x0, block_y0, block_x1, block_y1), footnote_bbox) >= 0.8:
if block not in need_remove_blocks:
need_remove_blocks.append(block)
break
return need_remove_blocks
def fix_interline_equation_overlap_text_blocks_with_hi_iou(all_bboxes):
# 先提取所有text和interline block
text_blocks = []
......
......@@ -49,8 +49,7 @@ def merge_spans_to_line(spans):
continue
# 如果当前的span与当前行的最后一个span在y轴上重叠,则添加到当前行
if __is_overlaps_y_exceeds_threshold(span['bbox'],
current_line[-1]['bbox']):
if __is_overlaps_y_exceeds_threshold(span['bbox'], current_line[-1]['bbox'], 0.5):
current_line.append(span)
else:
# 否则,开始新行
......@@ -154,6 +153,11 @@ def fill_spans_in_blocks(blocks, spans, radio):
'type': block_type,
'bbox': block_bbox,
}
if block_type in [
BlockType.ImageBody, BlockType.ImageCaption, BlockType.ImageFootnote,
BlockType.TableBody, BlockType.TableCaption, BlockType.TableFootnote
]:
block_dict["group_id"] = block[-1]
block_spans = []
for span in spans:
span_bbox = span['bbox']
......@@ -202,6 +206,27 @@ def fix_block_spans(block_with_spans, img_blocks, table_blocks):
return fix_blocks
def fix_block_spans_v2(block_with_spans):
"""1、img_block和table_block因为包含caption和footnote的关系,存在block的嵌套关系
需要将caption和footnote的text_span放入相应img_block和table_block内的
caption_block和footnote_block中 2、同时需要删除block中的spans字段."""
fix_blocks = []
for block in block_with_spans:
block_type = block['type']
if block_type in [BlockType.Text, BlockType.Title,
BlockType.ImageCaption, BlockType.ImageFootnote,
BlockType.TableCaption, BlockType.TableFootnote
]:
block = fix_text_block(block)
elif block_type in [BlockType.InterlineEquation, BlockType.ImageBody, BlockType.TableBody]:
block = fix_interline_block(block)
else:
continue
fix_blocks.append(block)
return fix_blocks
def fix_discarded_block(discarded_block_with_spans):
fix_discarded_blocks = []
for block in discarded_block_with_spans:
......
config:
device: cpu
layout: True
formula: True
table_config:
model: TableMaster
is_table_recog_enable: False
max_time: 400
weights:
layout: Layout/model_final.pth
mfd: MFD/weights.pt
mfr: MFR/unimernet_small
layoutlmv3: Layout/LayoutLMv3/model_final.pth
doclayout_yolo: Layout/YOLO/doclayout_yolo_ft.pt
yolo_v8_mfd: MFD/YOLO/yolo_v8_ft.pt
unimernet_small: MFR/unimernet_small
struct_eqtable: TabRec/StructEqTable
TableMaster: TabRec/TableMaster
\ No newline at end of file
tablemaster: TabRec/TableMaster
\ No newline at end of file
......@@ -52,7 +52,7 @@ without method specified, auto will be used by default.""",
help="""
Input the languages in the pdf (if known) to improve OCR accuracy. Optional.
You should input "Abbreviation" with language form url:
https://paddlepaddle.github.io/PaddleOCR/en/ppocr/blog/multi_languages.html#5-support-languages-and-abbreviations
https://paddlepaddle.github.io/PaddleOCR/latest/en/ppocr/blog/multi_languages.html#5-support-languages-and-abbreviations
""",
default=None,
)
......
......@@ -6,8 +6,8 @@ import click
from loguru import logger
import magic_pdf.model as model_config
from magic_pdf.libs.draw_bbox import (draw_layout_bbox, draw_span_bbox,
draw_model_bbox, draw_line_sort_bbox)
from magic_pdf.libs.draw_bbox import (draw_layout_bbox, draw_line_sort_bbox,
draw_model_bbox, draw_span_bbox)
from magic_pdf.libs.MakeContentConfig import DropMode, MakeMode
from magic_pdf.pipe.OCRPipe import OCRPipe
from magic_pdf.pipe.TXTPipe import TXTPipe
......@@ -46,10 +46,12 @@ def do_parse(
start_page_id=0,
end_page_id=None,
lang=None,
layout_model=None,
formula_enable=None,
table_enable=None,
):
if debug_able:
logger.warning('debug mode is on')
# f_dump_content_list = True
f_draw_model_bbox = True
f_draw_line_sort_bbox = True
......@@ -64,13 +66,16 @@ def do_parse(
if parse_method == 'auto':
jso_useful_key = {'_pdf_type': '', 'model_list': model_list}
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer, is_debug=True,
start_page_id=start_page_id, end_page_id=end_page_id, lang=lang)
start_page_id=start_page_id, end_page_id=end_page_id, lang=lang,
layout_model=layout_model, formula_enable=formula_enable, table_enable=table_enable)
elif parse_method == 'txt':
pipe = TXTPipe(pdf_bytes, model_list, image_writer, is_debug=True,
start_page_id=start_page_id, end_page_id=end_page_id, lang=lang)
start_page_id=start_page_id, end_page_id=end_page_id, lang=lang,
layout_model=layout_model, formula_enable=formula_enable, table_enable=table_enable)
elif parse_method == 'ocr':
pipe = OCRPipe(pdf_bytes, model_list, image_writer, is_debug=True,
start_page_id=start_page_id, end_page_id=end_page_id, lang=lang)
start_page_id=start_page_id, end_page_id=end_page_id, lang=lang,
layout_model=layout_model, formula_enable=formula_enable, table_enable=table_enable)
else:
logger.error('unknown parse method')
exit(1)
......
......@@ -101,11 +101,19 @@ def parse_union_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWr
if pdf_info_dict is None or pdf_info_dict.get("_need_drop", False):
logger.warning(f"parse_pdf_by_txt drop or error, switch to parse_pdf_by_ocr")
if input_model_is_empty:
pdf_models = doc_analyze(pdf_bytes,
ocr=True,
start_page_id=start_page_id,
end_page_id=end_page_id,
lang=lang)
layout_model = kwargs.get("layout_model", None)
formula_enable = kwargs.get("formula_enable", None)
table_enable = kwargs.get("table_enable", None)
pdf_models = doc_analyze(
pdf_bytes,
ocr=True,
start_page_id=start_page_id,
end_page_id=end_page_id,
lang=lang,
layout_model=layout_model,
formula_enable=formula_enable,
table_enable=table_enable,
)
pdf_info_dict = parse_pdf(parse_pdf_by_ocr)
if pdf_info_dict is None:
raise Exception("Both parse_pdf_by_txt and parse_pdf_by_ocr failed.")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment