Commit 6750b53d authored by xu rui's avatar xu rui Committed by icecraft
Browse files

feat: 1.update demos, 2.update docs

parent 91aa7e56
import os
from loguru import logger
from magic_pdf.data.data_reader_writer import FileBasedDataWriter
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.pipe.UNIPipe import UNIPipe
try:
current_script_dir = os.path.dirname(os.path.abspath(__file__))
demo_name = 'demo1'
pdf_path = os.path.join(current_script_dir, f'{demo_name}.pdf')
pdf_bytes = open(pdf_path, 'rb').read()
jso_useful_key = {'_pdf_type': '', 'model_list': []}
local_image_dir = os.path.join(current_script_dir, 'images')
image_dir = str(os.path.basename(local_image_dir))
image_writer = FileBasedDataWriter(local_image_dir)
pipe = UNIPipe(PymuDocDataset(pdf_bytes), jso_useful_key, image_writer)
pipe.pipe_classify()
pipe.pipe_analyze()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode='none')
with open(f'{demo_name}.md', 'w', encoding='utf-8') as f:
f.write(md_content)
except Exception as e:
logger.exception(e)
import copy
import json
import os
from loguru import logger
from magic_pdf.data.data_reader_writer import FileBasedDataWriter
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.libs.draw_bbox import draw_layout_bbox, draw_span_bbox
from magic_pdf.pipe.OCRPipe import OCRPipe
from magic_pdf.pipe.TXTPipe import TXTPipe
from magic_pdf.pipe.UNIPipe import UNIPipe
# todo: 设备类型选择 (?)
def json_md_dump(
pipe,
md_writer,
pdf_name,
content_list,
md_content,
orig_model_list,
):
# 写入模型结果到 model.json
md_writer.write_string(
f'{pdf_name}_model.json',
json.dumps(orig_model_list, ensure_ascii=False, indent=4)
)
# 写入中间结果到 middle.json
md_writer.write_string(
f'{pdf_name}_middle.json',
json.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4)
)
# text文本结果写入到 conent_list.json
md_writer.write_string(
f'{pdf_name}_content_list.json',
json.dumps(content_list, ensure_ascii=False, indent=4)
)
# 写入结果到 .md 文件中
md_writer.write_string(
f'{pdf_name}.md',
md_content,
)
# 可视化
def draw_visualization_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name):
# 画布局框,附带排序结果
draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name)
# 画 span 框
draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name)
def pdf_parse_main(
pdf_path: str,
parse_method: str = 'auto',
model_json_path: str = None,
is_json_md_dump: bool = True,
is_draw_visualization_bbox: bool = True,
output_dir: str = None
):
"""执行从 pdf 转换到 json、md 的过程,输出 md 和 json 文件到 pdf 文件所在的目录.
:param pdf_path: .pdf 文件的路径,可以是相对路径,也可以是绝对路径
:param parse_method: 解析方法, 共 auto、ocr、txt 三种,默认 auto,如果效果不好,可以尝试 ocr
:param model_json_path: 已经存在的模型数据文件,如果为空则使用内置模型,pdf 和 model_json 务必对应
:param is_json_md_dump: 是否将解析后的数据写入到 .json 和 .md 文件中,默认 True,会将不同阶段的数据写入到不同的 .json 文件中(共3个.json文件),md内容会保存到 .md 文件中
:param is_draw_visualization_bbox: 是否绘制可视化边界框,默认 True,会生成布局框和 span 框的图像
:param output_dir: 输出结果的目录地址,会生成一个以 pdf 文件名命名的文件夹并保存所有结果
"""
try:
pdf_name = os.path.basename(pdf_path).split('.')[0]
pdf_path_parent = os.path.dirname(pdf_path)
if output_dir:
output_path = os.path.join(output_dir, pdf_name)
else:
output_path = os.path.join(pdf_path_parent, pdf_name)
output_image_path = os.path.join(output_path, 'images')
# 获取图片的父路径,为的是以相对路径保存到 .md 和 conent_list.json 文件中
image_path_parent = os.path.basename(output_image_path)
pdf_bytes = open(pdf_path, 'rb').read() # 读取 pdf 文件的二进制数据
orig_model_list = []
if model_json_path:
# 读取已经被模型解析后的pdf文件的 json 原始数据,list 类型
model_json = json.loads(open(model_json_path, 'r', encoding='utf-8').read())
orig_model_list = copy.deepcopy(model_json)
else:
model_json = []
# 执行解析步骤
image_writer, md_writer = FileBasedDataWriter(output_image_path), FileBasedDataWriter(output_path)
# 选择解析方式
if parse_method == 'auto':
jso_useful_key = {'_pdf_type': '', 'model_list': model_json}
pipe = UNIPipe(PymuDocDataset(pdf_bytes), jso_useful_key, image_writer)
elif parse_method == 'txt':
pipe = TXTPipe(PymuDocDataset(pdf_bytes), model_json, image_writer)
elif parse_method == 'ocr':
pipe = OCRPipe(PymuDocDataset(pdf_bytes), model_json, image_writer)
else:
logger.error('unknown parse method, only auto, ocr, txt allowed')
exit(1)
# 执行分类
pipe.pipe_classify()
# 如果没有传入模型数据,则使用内置模型解析
if len(model_json) == 0:
pipe.pipe_analyze() # 解析
orig_model_list = copy.deepcopy(pipe.model_list)
# 执行解析
pipe.pipe_parse()
# 保存 text 和 md 格式的结果
content_list = pipe.pipe_mk_uni_format(image_path_parent, drop_mode='none')
md_content = pipe.pipe_mk_markdown(image_path_parent, drop_mode='none')
if is_json_md_dump:
json_md_dump(pipe, md_writer, pdf_name, content_list, md_content, orig_model_list)
if is_draw_visualization_bbox:
draw_visualization_bbox(pipe.pdf_mid_data['pdf_info'], pdf_bytes, output_path, pdf_name)
except Exception as e:
logger.exception(e)
# 测试
if __name__ == '__main__':
current_script_dir = os.path.dirname(os.path.abspath(__file__))
demo_names = ['demo1', 'demo2', 'small_ocr']
for name in demo_names:
file_path = os.path.join(current_script_dir, f'{name}.pdf')
pdf_parse_main(file_path)
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
<p align="center">
<img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
</p>
<!-- icon -->
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/abs/2409.18839)
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
<!-- language -->
[English](README.md) | [简体中文](README_zh-CN.md)
<!-- hot link -->
<p align="center">
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: High-Quality PDF Extraction Toolkit</a>🔥🔥🔥
</p>
<!-- join us -->
<p align="center">
👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
</p>
<!-- read the docs -->
<p align="center">
read more docs on <a href="https://mineru.readthedocs.io/en/latest/"> Read The Docs </a>
</p>
</div>
# Changelog
- 2024/11/06 0.9.2 released. Integrated the [StructTable-InternVL2-1B](https://huggingface.co/U4R/StructTable-InternVL2-1B) model for table recognition functionality.
- 2024/10/31 0.9.0 released. This is a major new version with extensive code refactoring, addressing numerous issues, improving performance, reducing hardware requirements, and enhancing usability:
- Refactored the sorting module code to use [layoutreader](https://github.com/ppaanngggg/layoutreader) for reading order sorting, ensuring high accuracy in various layouts.
- Refactored the paragraph concatenation module to achieve good results in cross-column, cross-page, cross-figure, and cross-table scenarios.
- Refactored the list and table of contents recognition functions, significantly improving the accuracy of list blocks and table of contents blocks, as well as the parsing of corresponding text paragraphs.
- Refactored the matching logic for figures, tables, and descriptive text, greatly enhancing the accuracy of matching captions and footnotes to figures and tables, and reducing the loss rate of descriptive text to near zero.
- Added multi-language support for OCR, supporting detection and recognition of 84 languages.For the list of supported languages, see [OCR Language Support List](https://paddlepaddle.github.io/PaddleOCR/latest/en/ppocr/blog/multi_languages.html#5-support-languages-and-abbreviations).
- Added memory recycling logic and other memory optimization measures, significantly reducing memory usage. The memory requirement for enabling all acceleration features except table acceleration (layout/formula/OCR) has been reduced from 16GB to 8GB, and the memory requirement for enabling all acceleration features has been reduced from 24GB to 10GB.
- Optimized configuration file feature switches, adding an independent formula detection switch to significantly improve speed and parsing results when formula detection is not needed.
- Integrated [PDF-Extract-Kit 1.0](https://github.com/opendatalab/PDF-Extract-Kit):
- Added the self-developed `doclayout_yolo` model, which speeds up processing by more than 10 times compared to the original solution while maintaining similar parsing effects, and can be freely switched with `layoutlmv3` via the configuration file.
- Upgraded formula parsing to `unimernet 0.2.1`, improving formula parsing accuracy while significantly reducing memory usage.
- Due to the repository change for `PDF-Extract-Kit 1.0`, you need to re-download the model. Please refer to [How to Download Models](docs/how_to_download_models_en.md) for detailed steps.
- 2024/09/27 Version 0.8.1 released, Fixed some bugs, and providing a [localized deployment version](projects/web_demo/README.md) of the [online demo](https://opendatalab.com/OpenSourceTools/Extractor/PDF/) and the [front-end interface](projects/web/README.md).
- 2024/09/09: Version 0.8.0 released, supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.
- 2024/08/30: Version 0.7.1 released, add paddle tablemaster table recognition option
- 2024/08/09: Version 0.7.0b1 released, simplified installation process, added table recognition functionality
- 2024/08/01: Version 0.6.2b1 released, optimized dependency conflict issues and installation documentation
- 2024/07/05: Initial open-source release
<!-- TABLE OF CONTENT -->
<details open="open">
<summary><h2 style="display: inline-block">Table of Contents</h2></summary>
<ol>
<li>
<a href="#mineru">MinerU</a>
<ul>
<li><a href="#project-introduction">Project Introduction</a></li>
<li><a href="#key-features">Key Features</a></li>
<li><a href="#quick-start">Quick Start</a>
<ul>
<li><a href="#online-demo">Online Demo</a></li>
<li><a href="#quick-cpu-demo">Quick CPU Demo</a></li>
</ul>
</li>
<li><a href="#usage">Usage</a>
<ul>
<li><a href="#api">API</a></li>
<li><a href="#deploy-derived-projects">Deploy Derived Projects</a></li>
<li><a href="#development-guide">Development Guide</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#todo">TODO</a></li>
<li><a href="#all-thanks-to-our-contributors">All Thanks To Our Contributors</a></li>
<li><a href="#license-information">License Information</a></li>
<li><a href="#acknowledgments">Acknowledgments</a></li>
<li><a href="#citation">Citation</a></li>
<li><a href="#star-history">Star History</a></li>
<li><a href="#magic-doc">Magic-doc</a></li>
<li><a href="#magic-html">Magic-html</a></li>
<li><a href="#links">Links</a></li>
</ol>
</details>
# MinerU
## Project Introduction
MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format.
MinerU was born during the pre-training process of [InternLM](https://github.com/InternLM/InternLM). We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models.
Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on [issue](https://github.com/opendatalab/MinerU/issues) and **attach the relevant PDF**.
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
## Quick Start
There are multiple different ways to experience MinerU:
- [Online Demo (No Installation Required)](#online-demo)
- [Quick CPU Demo (Windows, Linux, Mac)](#quick-cpu-demo)
### Online Demo
Stable Version (Stable version verified by QA):
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
Test Version (Synced with dev branch updates, testing new features):
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
### Quick CPU Demo
#### 1. Install magic-pdf
```bash
conda create -n MinerU python=3.10
conda activate MinerU
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
```
#### 2. Download model weight files
Refer to [How to Download Model Files](docs/how_to_download_models_en.md) for detailed instructions.
#### 3. Modify the Configuration File for Additional Configuration
After completing the [2. Download model weight files](#2-download-model-weight-files) step, the script will automatically generate a `magic-pdf.json` file in the user directory and configure the default model path.
You can find the `magic-pdf.json` file in your 【user directory】.
> [!TIP]
> The user directory for Windows is "C:\\Users\\username", for Linux it is "/home/username", and for macOS it is "/Users/username".
You can modify certain configurations in this file to enable or disable features, such as table recognition:
> [!NOTE]
> If the following items are not present in the JSON, please manually add the required items and remove the comment content (standard JSON does not support comments).
```json
{
// other config
"layout-config": {
"model": "layoutlmv3" // Please change to "doclayout_yolo" when using doclayout_yolo.
},
"formula-config": {
"mfd_model": "yolo_v8_mfd",
"mfr_model": "unimernet_small",
"enable": true // The formula recognition feature is enabled by default. If you need to disable it, please change the value here to "false".
},
"table-config": {
"model": "rapid_table", // Default to using "rapid_table", can be switched to "tablemaster" or "struct_eqtable".
"enable": false, // The table recognition feature is disabled by default. If you need to enable it, please change the value here to "true".
"max_time": 400
}
}
```
## Usage
### API
Processing files from local disk
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
jso_useful_key = {"_pdf_type": "", "model_list": []}
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
pipe.pipe_analyze()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```
Processing files from object storage
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
jso_useful_key = {"_pdf_type": "", "model_list": []}
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
pipe.pipe_analyze()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```
For detailed implementation, refer to:
- [demo.py Simplest Processing Method](demo/demo.py)
- [magic_pdf_parse_main.py More Detailed Processing Workflow](demo/magic_pdf_parse_main.py)
### Deploy Derived Projects
Derived projects include secondary development projects based on MinerU by project developers and community developers,
such as application interfaces based on Gradio, RAG based on llama, web demos similar to the official website, lightweight multi-GPU load balancing client/server ends, etc.
These projects may offer more features and a better user experience.
For specific deployment methods, please refer to the [Derived Project README](projects/README.md)
### Development Guide
TODO
# TODO
- [x] Reading order based on the model
- [x] Recognition of `index` and `list` in the main text
- [x] Table recognition
- [ ] Code block recognition in the main text
- [ ] [Chemical formula recognition](docs/chemical_knowledge_introduction/introduction.pdf)
- [ ] Geometric shape recognition
# All Thanks To Our Contributors
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
<img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>
# License Information
[LICENSE.md](LICENSE.md)
This project currently uses PyMuPDF to achieve advanced functionality. However, since it adheres to the AGPL license, it may impose restrictions on certain usage scenarios. In future iterations, we plan to explore and replace it with a more permissive PDF processing library to enhance user-friendliness and flexibility.
# Acknowledgments
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
- [RapidTable](https://github.com/RapidAI/RapidTable)
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
- [layoutreader](https://github.com/ppaanngggg/layoutreader)
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
# Citation
```bibtex
@misc{wang2024mineruopensourcesolutionprecise,
title={MinerU: An Open-Source Solution for Precise Document Content Extraction},
author={Bin Wang and Chao Xu and Xiaomeng Zhao and Linke Ouyang and Fan Wu and Zhiyuan Zhao and Rui Xu and Kaiwen Liu and Yuan Qu and Fukai Shang and Bo Zhang and Liqun Wei and Zhihao Sui and Wei Li and Botian Shi and Yu Qiao and Dahua Lin and Conghui He},
year={2024},
eprint={2409.18839},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2409.18839},
}
@article{he2024opendatalab,
title={Opendatalab: Empowering general artificial intelligence with open datasets},
author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
journal={arXiv preprint arXiv:2407.13773},
year={2024}
}
```
# Star History
<a>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
</picture>
</a>
# Magic-doc
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool
# Magic-html
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool
# Links
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
<p align="center">
<img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
</p>
<!-- icon -->
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/abs/2409.18839)
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
<!-- language -->
[English](README.md) | [简体中文](README_zh-CN.md)
<!-- hot link -->
<p align="center">
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: 高质量PDF解析工具箱</a>🔥🔥🔥
</p>
<!-- join us -->
<p align="center">
👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
</p>
<!-- read the docs -->
<p align="center">
read more docs on <a href="https://mineru.readthedocs.io/zh-cn/latest/"> Read The Docs </a>
</p>
</div>
# 更新记录
- 2024/11/06 0.9.2发布,为表格识别功能接入了[StructTable-InternVL2-1B](https://huggingface.co/U4R/StructTable-InternVL2-1B)模型
- 2024/10/31 0.9.0发布,这是我们进行了大量代码重构的全新版本,解决了众多问题,提升了性能,降低了硬件需求,并提供了更丰富的易用性:
- 重构排序模块代码,使用 [layoutreader](https://github.com/ppaanngggg/layoutreader) 进行阅读顺序排序,确保在各种排版下都能实现极高准确率
- 重构段落拼接模块,在跨栏、跨页、跨图、跨表情况下均能实现良好的段落拼接效果
- 重构列表和目录识别功能,极大提升列表块和目录块识别的准确率及对应文本段落的解析效果
- 重构图、表与描述性文本的匹配逻辑,大幅提升 caption 和 footnote 与图表的匹配准确率,并将描述性文本的丢失率降至接近0
- 增加 OCR 的多语言支持,支持 84 种语言的检测与识别,语言支持列表详见 [OCR 语言支持列表](https://paddlepaddle.github.io/PaddleOCR/latest/ppocr/blog/multi_languages.html#5)
- 增加显存回收逻辑及其他显存优化措施,大幅降低显存使用需求。开启除表格加速外的全部加速功能(layout/公式/OCR)的显存需求从16GB降至8GB,开启全部加速功能的显存需求从24GB降至10GB
- 优化配置文件的功能开关,增加独立的公式检测开关,无需公式检测时可大幅提升速度和解析效果
- 集成 [PDF-Extract-Kit 1.0](https://github.com/opendatalab/PDF-Extract-Kit)
- 加入自研的 `doclayout_yolo` 模型,在相近解析效果情况下比原方案提速10倍以上,可通过配置文件与 `layoutlmv3` 自由切换
- 公式解析升级至 `unimernet 0.2.1`,在提升公式解析准确率的同时,大幅降低显存需求
-`PDF-Extract-Kit 1.0` 更换仓库,需要重新下载模型,步骤详见 [如何下载模型](docs/how_to_download_models_zh_cn.md)
- 2024/09/27 0.8.1发布,修复了一些bug,同时提供了[在线demo](https://opendatalab.com/OpenSourceTools/Extractor/PDF/)[本地化部署版本](projects/web_demo/README_zh-CN.md)[前端界面](projects/web/README_zh-CN.md)
- 2024/09/09 0.8.0发布,支持Dockerfile快速部署,同时上线了huggingface、modelscope demo
- 2024/08/30 0.7.1发布,集成了paddle tablemaster表格识别功能
- 2024/08/09 0.7.0b1发布,简化安装步骤提升易用性,加入表格识别功能
- 2024/08/01 0.6.2b1发布,优化了依赖冲突问题和安装文档
- 2024/07/05 首次开源
<!-- TABLE OF CONTENT -->
<details open="open">
<summary><h2 style="display: inline-block">文档目录</h2></summary>
<ol>
<li>
<a href="#mineru">MinerU</a>
<ul>
<li><a href="#项目简介">项目简介</a></li>
<li><a href="#主要功能">主要功能</a></li>
<li><a href="#快速开始">快速开始</a>
<ul>
<li><a href="#在线体验">在线体验</a></li>
<li><a href="#使用CPU快速体验">使用CPU快速体验</a></li>
</ul>
</li>
<li><a href="#使用">使用方式</a>
<ul>
<li><a href="#api">API</a></li>
<li><a href="#部署衍生项目">部署衍生项目</a></li>
<li><a href="#二次开发">二次开发</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#todo">TODO</a></li>
<li><a href="#known-issues">Known Issues</a></li>
<li><a href="#faq">FAQ</a></li>
<li><a href="#all-thanks-to-our-contributors">Contributors</a></li>
<li><a href="#license-information">License Information</a></li>
<li><a href="#acknowledgments">Acknowledgements</a></li>
<li><a href="#citation">Citation</a></li>
<li><a href="#star-history">Star History</a></li>
<li><a href="#magic-doc">magic-doc快速提取PPT/DOC/PDF</a></li>
<li><a href="#magic-html">magic-html提取混合网页内容</a></li>
<li><a href="#links">Links</a></li>
</ol>
</details>
# MinerU
## 项目简介
MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。
MinerU诞生于[书生-浦语](https://github.com/InternLM/InternLM)的预训练过程中,我们将会集中精力解决科技文献中的符号转化问题,希望在大模型时代为科技发展做出贡献。
相比国内外知名商用产品MinerU还很年轻,如果遇到问题或者结果不及预期请到[issue](https://github.com/opendatalab/MinerU/issues)提交问题,同时**附上相关PDF**
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
## 快速开始
有多种不同方式可以体验MinerU的效果:
- [在线体验(无需任何安装)](#在线体验)
- [使用CPU快速体验(Windows,Linux,Mac)](#使用cpu快速体验)
### 在线体验
稳定版(经过QA验证的稳定版本):
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
测试版(同步dev分支更新,测试新特性):
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
### 使用CPU快速体验
#### 1. 安装magic-pdf
> [!NOTE]
> 最新版本国内镜像源同步可能会有延迟,请耐心等待
```bash
conda create -n MinerU python=3.10
conda activate MinerU
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com -i https://mirrors.aliyun.com/pypi/simple
```
#### 2. 下载模型权重文件
详细参考 [如何下载模型文件](docs/how_to_download_models_zh_cn.md)
#### 3. 修改配置文件以进行额外配置
完成[2. 下载模型权重文件](#2-下载模型权重文件)步骤后,脚本会自动生成用户目录下的magic-pdf.json文件,并自动配置默认模型路径。
您可在【用户目录】下找到magic-pdf.json文件。
> [!TIP]
> windows的用户目录为 "C:\\Users\\用户名", linux用户目录为 "/home/用户名", macOS用户目录为 "/Users/用户名"
您可修改该文件中的部分配置实现功能的开关,如表格识别功能:
> [!NOTE]
>如json内没有如下项目,请手动添加需要的项目,并删除注释内容(标准json不支持注释)
```json
{
// other config
"layout-config": {
"model": "layoutlmv3" // 使用doclayout_yolo请修改为“doclayout_yolo"
},
"formula-config": {
"mfd_model": "yolo_v8_mfd",
"mfr_model": "unimernet_small",
"enable": true // 公式识别功能默认是开启的,如果需要关闭请修改此处的值为"false"
},
"table-config": {
"model": "rapid_table", // 默认使用"rapid_table",可以切换为"tablemaster"和"struct_eqtable"
"enable": false, // 表格识别功能默认是关闭的,如果需要开启请修改此处的值为"true"
"max_time": 400
}
}
```
## 使用
### API
处理本地磁盘上的文件
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
jso_useful_key = {"_pdf_type": "", "model_list": []}
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
pipe.pipe_analyze()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```
处理对象存储上的文件
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
jso_useful_key = {"_pdf_type": "", "model_list": []}
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
pipe.pipe_analyze()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```
详细实现可参考
- [demo.py 最简单的处理方式](demo/demo.py)
- [magic_pdf_parse_main.py 能够更清晰看到处理流程](demo/magic_pdf_parse_main.py)
### 部署衍生项目
衍生项目包含项目开发者和社群开发者们基于MinerU的二次开发项目,
例如基于Gradio的应用界面、基于llama的RAG、官网同款web demo、轻量级的多卡负载均衡c/s端等,
这些项目可能会提供更多的功能和更好的用户体验。
具体部署方式请参考 [衍生项目readme](projects/README_zh-CN.md)
### 二次开发
TODO
# TODO
- [x] 基于模型的阅读顺序
- [x] 正文中目录、列表识别
- [x] 表格识别
- [ ] 正文中代码块识别
- [ ] [化学式识别](docs/chemical_knowledge_introduction/introduction.pdf)
- [ ] 几何图形识别
# All Thanks To Our Contributors
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
<img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>
# License Information
[LICENSE.md](LICENSE.md)
本项目目前采用PyMuPDF以实现高级功能,但因其遵循AGPL协议,可能对某些使用场景构成限制。未来版本迭代中,我们计划探索并替换为许可条款更为宽松的PDF处理库,以提升用户友好度及灵活性。
# Acknowledgments
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
- [RapidTable](https://github.com/RapidAI/RapidTable)
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
- [layoutreader](https://github.com/ppaanngggg/layoutreader)
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
# Citation
```bibtex
@misc{wang2024mineruopensourcesolutionprecise,
title={MinerU: An Open-Source Solution for Precise Document Content Extraction},
author={Bin Wang and Chao Xu and Xiaomeng Zhao and Linke Ouyang and Fan Wu and Zhiyuan Zhao and Rui Xu and Kaiwen Liu and Yuan Qu and Fukai Shang and Bo Zhang and Liqun Wei and Zhihao Sui and Wei Li and Botian Shi and Yu Qiao and Dahua Lin and Conghui He},
year={2024},
eprint={2409.18839},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2409.18839},
}
@article{he2024opendatalab,
title={Opendatalab: Empowering general artificial intelligence with open datasets},
author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
journal={arXiv preprint arXiv:2407.13773},
year={2024}
}
```
# Star History
<a>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
</picture>
</a>
# Magic-doc
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool
# Magic-html
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool
# Links
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)
......@@ -83,7 +83,24 @@ Read images from path or directory
datasets = read_local_images("tt.png") # replace with real file path
# read files from directory that endswith suffix in suffixes array
datasets = read_local_images("images/", suffixes=["png", "jpg"]) # replace with real directory
datasets = read_local_images("images/", suffixes=[".png", ".jpg"]) # replace with real directory
read_local_office
^^^^^^^^^^^^^^^^^^^^
Read MS-Office files from path or directory
.. code:: python
from magic_pdf.data.read_api import *
# read from image path
datasets = read_local_office("tt.doc") # replace with real file path
# read files from directory that endswith suffix in suffixes array
datasets = read_local_office("docs/") # replace with real directory
Check :doc:`../../api/read_api` for more details
\ No newline at end of file
......@@ -213,7 +213,7 @@ Directory That Contains Images
input_directory = "some_image_dir/" # replace with real directory that contains images
dss = read_local_images(input_directory, suffixes=['.png', '.jpg'])[0]
dss = read_local_images(input_directory, suffixes=['.png', '.jpg'])
count = 0
for ds in dss:
......
......@@ -8,6 +8,7 @@ myst-parser
Pillow==8.4.0
pydantic>=2.7.2,<2.8.0
PyMuPDF>=1.24.9
pdfminer.six==20231228
sphinx
sphinx-argparse>=0.5.2
sphinx-book-theme>=1.1.3
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment