Unverified Commit 66e616bd authored by Xiaomeng Zhao's avatar Xiaomeng Zhao Committed by GitHub
Browse files

Merge pull request #2895 from opendatalab/release-2.1.0

Release 2.1.0
parents 592b659e a4c9a07b
import requests
import os
import logging
logging.basicConfig(level=logging.INFO)
# test connection to huggingface
TIMEOUT = 3
def config_endpoint():
"""
Checks for connectivity to Hugging Face and sets the model source accordingly.
If the Hugging Face endpoint is reachable, it sets MINERU_MODEL_SOURCE to 'huggingface'.
Otherwise, it falls back to 'modelscope'.
"""
os.environ.setdefault('MINERU_MODEL_SOURCE', 'huggingface')
model_list_url = f"https://huggingface.co/models"
modelscope_url = f"https://modelscope.cn/models"
# Use a specific check for the Hugging Face source
if os.environ['MINERU_MODEL_SOURCE'] == 'huggingface':
try:
response = requests.head(model_list_url, timeout=TIMEOUT)
# Check for any successful status code (2xx)
if response.ok:
logging.info(f"Successfully connected to Hugging Face. Using 'huggingface' as model source.")
return True
else:
logging.warning(f"Hugging Face endpoint returned a non-200 status code: {response.status_code}")
except requests.exceptions.RequestException as e:
logging.error(f"Failed to connect to Hugging Face at {model_list_url}: {e}")
# If any of the above checks fail, switch to modelscope
logging.info("Falling back to 'modelscope' as model source.")
os.environ['MINERU_MODEL_SOURCE'] = 'modelscope'
elif os.environ['MINERU_MODEL_SOURCE'] == 'modelscope':
try:
response = requests.head(modelscope_url, timeout=TIMEOUT)
if response.ok:
logging.info(f"Successfully connected to ModelScope. Using 'modelscope' as model source.")
return True
except requests.exceptions.RequestException as e:
logging.error(f"Failed to connect to ModelScope at {model_list_url}: {e}")
elif os.environ['MINERU_MODEL_SOURCE'] == 'local':
logging.info("Using 'local' as model source.")
return True
else:
logging.error(f"Using custom model source: {os.environ['MINERU_MODEL_SOURCE']}")
return True
return False
if __name__ == '__main__':
print(config_endpoint())
import base64
import requests
import os
from loguru import logger
import asyncio
import aiohttp
async def mineru_parse_async(session, file_path, server_url='http://127.0.0.1:8000/predict', **options):
"""
Asynchronous version of the parse function.
"""
try:
# Asynchronously read and encode the file
with open(file_path, 'rb') as f:
file_b64 = base64.b64encode(f.read()).decode('utf-8')
payload = {
'file': file_b64,
'options': options
}
# Use the aiohttp session to send the request
async with session.post(server_url, json=payload) as response:
if response.status == 200:
result = await response.json()
logger.info(f"✅ Processed: {file_path} -> {result.get('output_dir', 'N/A')}")
return result
else:
error_text = await response.text()
logger.error(f"❌ Server error for {file_path}: {error_text}")
return {'error': error_text}
except Exception as e:
logger.error(f"❌ Failed to process {file_path}: {e}")
return {'error': str(e)}
async def main():
"""
Main function to run all parsing tasks concurrently.
"""
test_files = [
'../../demo/pdfs/demo1.pdf',
'../../demo/pdfs/demo2.pdf',
'../../demo/pdfs/demo3.pdf',
'../../demo/pdfs/small_ocr.pdf',
]
test_files = [os.path.join(os.path.dirname(__file__), f) for f in test_files]
existing_files = [f for f in test_files if os.path.exists(f)]
if not existing_files:
logger.warning("No test files found.")
return
# Create an aiohttp session to be reused across requests
async with aiohttp.ClientSession() as session:
# === Basic Processing ===
basic_tasks = [mineru_parse_async(session, file_path) for file_path in existing_files[:2]]
# === Custom Options ===
custom_options = {
'backend': 'pipeline', 'lang': 'ch', 'method': 'auto',
'formula_enable': True, 'table_enable': True
}
# 'backend': 'sglang-engine' requires 24+ GB VRAM per worker
custom_tasks = [mineru_parse_async(session, file_path, **custom_options) for file_path in existing_files[2:]]
# Start all tasks
all_tasks = basic_tasks + custom_tasks
all_results = await asyncio.gather(*all_tasks)
logger.info(f"All Results: {all_results}")
logger.info("🎉 All processing completed!")
if __name__ == '__main__':
# Run the async main function
asyncio.run(main())
\ No newline at end of file
import os
import base64
import tempfile
from pathlib import Path
import litserve as ls
from fastapi import HTTPException
from loguru import logger
from mineru.cli.common import do_parse, read_fn
from mineru.utils.config_reader import get_device
from mineru.utils.model_utils import get_vram
from _config_endpoint import config_endpoint
class MinerUAPI(ls.LitAPI):
def __init__(self, output_dir='/tmp'):
super().__init__()
self.output_dir = output_dir
def setup(self, device):
"""Setup environment variables exactly like MinerU CLI does"""
logger.info(f"Setting up on device: {device}")
if os.getenv('MINERU_DEVICE_MODE', None) == None:
os.environ['MINERU_DEVICE_MODE'] = device if device != 'auto' else get_device()
device_mode = os.environ['MINERU_DEVICE_MODE']
if os.getenv('MINERU_VIRTUAL_VRAM_SIZE', None) == None:
if device_mode.startswith("cuda") or device_mode.startswith("npu"):
vram = round(get_vram(device_mode))
os.environ['MINERU_VIRTUAL_VRAM_SIZE'] = str(vram)
else:
os.environ['MINERU_VIRTUAL_VRAM_SIZE'] = '1'
logger.info(f"MINERU_VIRTUAL_VRAM_SIZE: {os.environ['MINERU_VIRTUAL_VRAM_SIZE']}")
if os.getenv('MINERU_MODEL_SOURCE', None) in ['huggingface', None]:
config_endpoint()
logger.info(f"MINERU_MODEL_SOURCE: {os.environ['MINERU_MODEL_SOURCE']}")
def decode_request(self, request):
"""Decode file and options from request"""
file_b64 = request['file']
options = request.get('options', {})
file_bytes = base64.b64decode(file_b64)
with tempfile.NamedTemporaryFile(suffix='.pdf', delete=False) as temp:
temp.write(file_bytes)
temp_file = Path(temp.name)
return {
'input_path': str(temp_file),
'backend': options.get('backend', 'pipeline'),
'method': options.get('method', 'auto'),
'lang': options.get('lang', 'ch'),
'formula_enable': options.get('formula_enable', True),
'table_enable': options.get('table_enable', True),
'start_page_id': options.get('start_page_id', 0),
'end_page_id': options.get('end_page_id', None),
'server_url': options.get('server_url', None),
}
def predict(self, inputs):
"""Call MinerU's do_parse - same as CLI"""
input_path = inputs['input_path']
output_dir = Path(self.output_dir) / Path(input_path).stem
try:
os.makedirs(output_dir, exist_ok=True)
file_name = Path(input_path).stem
pdf_bytes = read_fn(Path(input_path))
do_parse(
output_dir=str(output_dir),
pdf_file_names=[file_name],
pdf_bytes_list=[pdf_bytes],
p_lang_list=[inputs['lang']],
backend=inputs['backend'],
parse_method=inputs['method'],
formula_enable=inputs['formula_enable'],
table_enable=inputs['table_enable'],
server_url=inputs['server_url'],
start_page_id=inputs['start_page_id'],
end_page_id=inputs['end_page_id']
)
return str(output_dir)
except Exception as e:
logger.error(f"Processing failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
finally:
# Cleanup temp file
if Path(input_path).exists():
Path(input_path).unlink()
def encode_response(self, response):
return {'output_dir': response}
if __name__ == '__main__':
server = ls.LitServer(
MinerUAPI(output_dir='/tmp/mineru_output'),
accelerator='auto',
devices='auto',
workers_per_device=1,
timeout=False
)
logger.info("Starting MinerU server on port 8000")
server.run(port=8000, generate_client_file=False)
FROM python:3.10-slim-bookworm AS base
WORKDIR /app
ENV DEBIAN_FRONTEND=noninteractive \
LANG=C.UTF-8 \
PYTHONDONTWRITEBYTECODE=1 \
PYTHONUNBUFFERED=1 \
PIP_DISABLE_PIP_VERSION_CHECK=1 \
PIP_NO_CACHE_DIR=1
FROM base AS build
# Update the package list and install necessary packages
RUN apt-get update && \
apt-get install -y --no-install-recommends \
build-essential && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Build Python dependencies
COPY requirements.txt .
RUN python -m venv /app/venv && \
. /app/venv/bin/activate && \
pip install -r requirements.txt
# pip uninstall -y paddlepaddle && \
# pip install -i https://www.paddlepaddle.org.cn/packages/stable/cu118/ \
# paddlepaddle-gpu==3.0.0rc1
# Download models
COPY download_models.py .
RUN . /app/venv/bin/activate && \
./download_models.py
FROM base AS prod
# Copy Python dependencies and models from the build stage
COPY --from=build /app/venv /app/venv
COPY --from=build /opt/models /opt/models
COPY --from=build /opt/layoutreader /opt/layoutreader
# Update the package list and install necessary packages
RUN apt-get update && \
apt-get install -y --no-install-recommends \
libgl1 \
libglib2.0-0 \
libgomp1 && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Create volume for paddleocr models
# RUN mkdir -p /root/.paddleocr
# VOLUME [ "/root/.paddleocr" ]
# Copy the app and its configuration file
COPY entrypoint.sh /app/entrypoint.sh
COPY magic-pdf.json /root/magic-pdf.json
COPY app.py /app/app.py
# Expose the port that FastAPI will run on
EXPOSE 8000
# Command to run FastAPI using Uvicorn, pointing to app.py and binding to 0.0.0.0:8000
ENTRYPOINT [ "/app/entrypoint.sh" ]
CMD ["--host", "0.0.0.0", "--port", "8000"]
# 基于MinerU的PDF解析API
- MinerU的GPU镜像构建
- 基于FastAPI的PDF解析接口
## 构建方式
```
docker build -t mineru-api .
```
或者使用代理:
```
docker build --build-arg http_proxy=http://127.0.0.1:7890 --build-arg https_proxy=http://127.0.0.1:7890 -t mineru-api .
```
## 启动命令
```
docker run --rm -it --gpus=all -p 8000:8000 mineru-api
```
## 测试参数
访问地址:
```
http://localhost:8000/docs
http://127.0.0.1:8000/docs
```
\ No newline at end of file
import json
import os
from base64 import b64encode
from glob import glob
from io import StringIO
import tempfile
from typing import Tuple, Union
import uvicorn
from fastapi import FastAPI, HTTPException, UploadFile
from fastapi.responses import JSONResponse
from loguru import logger
from magic_pdf.data.read_api import read_local_images, read_local_office
import magic_pdf.model as model_config
from magic_pdf.config.enums import SupportedPdfParseMethod
from magic_pdf.data.data_reader_writer import DataWriter, FileBasedDataWriter
from magic_pdf.data.data_reader_writer.s3 import S3DataReader, S3DataWriter
from magic_pdf.data.dataset import ImageDataset, PymuDocDataset
from magic_pdf.libs.config_reader import get_bucket_name, get_s3_config
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.operators.models import InferenceResult
from magic_pdf.operators.pipes import PipeResult
from fastapi import Form
model_config.__use_inside_model__ = True
app = FastAPI()
pdf_extensions = [".pdf"]
office_extensions = [".ppt", ".pptx", ".doc", ".docx"]
image_extensions = [".png", ".jpg", ".jpeg"]
class MemoryDataWriter(DataWriter):
def __init__(self):
self.buffer = StringIO()
def write(self, path: str, data: bytes) -> None:
if isinstance(data, str):
self.buffer.write(data)
else:
self.buffer.write(data.decode("utf-8"))
def write_string(self, path: str, data: str) -> None:
self.buffer.write(data)
def get_value(self) -> str:
return self.buffer.getvalue()
def close(self):
self.buffer.close()
def init_writers(
file_path: str = None,
file: UploadFile = None,
output_path: str = None,
output_image_path: str = None,
) -> Tuple[
Union[S3DataWriter, FileBasedDataWriter],
Union[S3DataWriter, FileBasedDataWriter],
bytes,
]:
"""
Initialize writers based on path type
Args:
file_path: file path (local path or S3 path)
file: Uploaded file object
output_path: Output directory path
output_image_path: Image output directory path
Returns:
Tuple[writer, image_writer, file_bytes]: Returns initialized writer tuple and file content
"""
file_extension:str = None
if file_path:
is_s3_path = file_path.startswith("s3://")
if is_s3_path:
bucket = get_bucket_name(file_path)
ak, sk, endpoint = get_s3_config(bucket)
writer = S3DataWriter(
output_path, bucket=bucket, ak=ak, sk=sk, endpoint_url=endpoint
)
image_writer = S3DataWriter(
output_image_path, bucket=bucket, ak=ak, sk=sk, endpoint_url=endpoint
)
# 临时创建reader读取文件内容
temp_reader = S3DataReader(
"", bucket=bucket, ak=ak, sk=sk, endpoint_url=endpoint
)
file_bytes = temp_reader.read(file_path)
file_extension = os.path.splitext(file_path)[1]
else:
writer = FileBasedDataWriter(output_path)
image_writer = FileBasedDataWriter(output_image_path)
os.makedirs(output_image_path, exist_ok=True)
with open(file_path, "rb") as f:
file_bytes = f.read()
file_extension = os.path.splitext(file_path)[1]
else:
# 处理上传的文件
file_bytes = file.file.read()
file_extension = os.path.splitext(file.filename)[1]
writer = FileBasedDataWriter(output_path)
image_writer = FileBasedDataWriter(output_image_path)
os.makedirs(output_image_path, exist_ok=True)
return writer, image_writer, file_bytes, file_extension
def process_file(
file_bytes: bytes,
file_extension: str,
parse_method: str,
image_writer: Union[S3DataWriter, FileBasedDataWriter],
) -> Tuple[InferenceResult, PipeResult]:
"""
Process PDF file content
Args:
file_bytes: Binary content of file
file_extension: file extension
parse_method: Parse method ('ocr', 'txt', 'auto')
image_writer: Image writer
Returns:
Tuple[InferenceResult, PipeResult]: Returns inference result and pipeline result
"""
ds: Union[PymuDocDataset, ImageDataset] = None
if file_extension in pdf_extensions:
ds = PymuDocDataset(file_bytes)
elif file_extension in office_extensions:
# 需要使用office解析
temp_dir = tempfile.mkdtemp()
with open(os.path.join(temp_dir, f"temp_file.{file_extension}"), "wb") as f:
f.write(file_bytes)
ds = read_local_office(temp_dir)[0]
elif file_extension in image_extensions:
# 需要使用ocr解析
temp_dir = tempfile.mkdtemp()
with open(os.path.join(temp_dir, f"temp_file.{file_extension}"), "wb") as f:
f.write(file_bytes)
ds = read_local_images(temp_dir)[0]
infer_result: InferenceResult = None
pipe_result: PipeResult = None
if parse_method == "ocr":
infer_result = ds.apply(doc_analyze, ocr=True)
pipe_result = infer_result.pipe_ocr_mode(image_writer)
elif parse_method == "txt":
infer_result = ds.apply(doc_analyze, ocr=False)
pipe_result = infer_result.pipe_txt_mode(image_writer)
else: # auto
if ds.classify() == SupportedPdfParseMethod.OCR:
infer_result = ds.apply(doc_analyze, ocr=True)
pipe_result = infer_result.pipe_ocr_mode(image_writer)
else:
infer_result = ds.apply(doc_analyze, ocr=False)
pipe_result = infer_result.pipe_txt_mode(image_writer)
return infer_result, pipe_result
def encode_image(image_path: str) -> str:
"""Encode image using base64"""
with open(image_path, "rb") as f:
return b64encode(f.read()).decode()
@app.post(
"/file_parse",
tags=["projects"],
summary="Parse files (supports local files and S3)",
)
async def file_parse(
file: UploadFile = None,
file_path: str = Form(None),
parse_method: str = Form("auto"),
is_json_md_dump: bool = Form(False),
output_dir: str = Form("output"),
return_layout: bool = Form(False),
return_info: bool = Form(False),
return_content_list: bool = Form(False),
return_images: bool = Form(False),
):
"""
Execute the process of converting PDF to JSON and MD, outputting MD and JSON files
to the specified directory.
Args:
file: The PDF file to be parsed. Must not be specified together with
`file_path`
file_path: The path to the PDF file to be parsed. Must not be specified together
with `file`
parse_method: Parsing method, can be auto, ocr, or txt. Default is auto. If
results are not satisfactory, try ocr
is_json_md_dump: Whether to write parsed data to .json and .md files. Default
to False. Different stages of data will be written to different .json files
(3 in total), md content will be saved to .md file
output_dir: Output directory for results. A folder named after the PDF file
will be created to store all results
return_layout: Whether to return parsed PDF layout. Default to False
return_info: Whether to return parsed PDF info. Default to False
return_content_list: Whether to return parsed PDF content list. Default to False
"""
try:
if (file is None and file_path is None) or (
file is not None and file_path is not None
):
return JSONResponse(
content={"error": "Must provide either file or file_path"},
status_code=400,
)
# Get PDF filename
file_name = os.path.basename(file_path if file_path else file.filename).split(
"."
)[0]
output_path = f"{output_dir}/{file_name}"
output_image_path = f"{output_path}/images"
# Initialize readers/writers and get PDF content
writer, image_writer, file_bytes, file_extension = init_writers(
file_path=file_path,
file=file,
output_path=output_path,
output_image_path=output_image_path,
)
# Process PDF
infer_result, pipe_result = process_file(file_bytes, file_extension, parse_method, image_writer)
# Use MemoryDataWriter to get results
content_list_writer = MemoryDataWriter()
md_content_writer = MemoryDataWriter()
middle_json_writer = MemoryDataWriter()
# Use PipeResult's dump method to get data
pipe_result.dump_content_list(content_list_writer, "", "images")
pipe_result.dump_md(md_content_writer, "", "images")
pipe_result.dump_middle_json(middle_json_writer, "")
# Get content
content_list = json.loads(content_list_writer.get_value())
md_content = md_content_writer.get_value()
middle_json = json.loads(middle_json_writer.get_value())
model_json = infer_result.get_infer_res()
# If results need to be saved
if is_json_md_dump:
writer.write_string(
f"{file_name}_content_list.json", content_list_writer.get_value()
)
writer.write_string(f"{file_name}.md", md_content)
writer.write_string(
f"{file_name}_middle.json", middle_json_writer.get_value()
)
writer.write_string(
f"{file_name}_model.json",
json.dumps(model_json, indent=4, ensure_ascii=False),
)
# Save visualization results
pipe_result.draw_layout(os.path.join(output_path, f"{file_name}_layout.pdf"))
pipe_result.draw_span(os.path.join(output_path, f"{file_name}_spans.pdf"))
pipe_result.draw_line_sort(
os.path.join(output_path, f"{file_name}_line_sort.pdf")
)
infer_result.draw_model(os.path.join(output_path, f"{file_name}_model.pdf"))
# Build return data
data = {}
if return_layout:
data["layout"] = model_json
if return_info:
data["info"] = middle_json
if return_content_list:
data["content_list"] = content_list
if return_images:
image_paths = glob(f"{output_image_path}/*.jpg")
data["images"] = {
os.path.basename(
image_path
): f"data:image/jpeg;base64,{encode_image(image_path)}"
for image_path in image_paths
}
data["md_content"] = md_content # md_content is always returned
# Clean up memory writers
content_list_writer.close()
md_content_writer.close()
middle_json_writer.close()
return JSONResponse(data, status_code=200)
except Exception as e:
logger.exception(e)
return JSONResponse(content={"error": str(e)}, status_code=500)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8888)
#!/usr/bin/env python
from huggingface_hub import snapshot_download
if __name__ == "__main__":
mineru_patterns = [
# "models/Layout/LayoutLMv3/*",
"models/Layout/YOLO/*",
"models/MFD/YOLO/*",
"models/MFR/unimernet_hf_small_2503/*",
"models/OCR/paddleocr_torch/*",
# "models/TabRec/TableMaster/*",
# "models/TabRec/StructEqTable/*",
]
model_dir = snapshot_download(
"opendatalab/PDF-Extract-Kit-1.0",
allow_patterns=mineru_patterns,
local_dir="/opt/",
)
layoutreader_pattern = [
"*.json",
"*.safetensors",
]
layoutreader_model_dir = snapshot_download(
"hantian/layoutreader",
allow_patterns=layoutreader_pattern,
local_dir="/opt/layoutreader/",
)
model_dir = model_dir + "/models"
print(f"model_dir is: {model_dir}")
print(f"layoutreader_model_dir is: {layoutreader_model_dir}")
#!/usr/bin/env bash
set -euo pipefail
. /app/venv/bin/activate
exec uvicorn app:app "$@"
{
"bucket_info":{
"bucket-name-1":["ak", "sk", "endpoint"],
"bucket-name-2":["ak", "sk", "endpoint"]
},
"models-dir":"/opt/models",
"layoutreader-model-dir":"/opt/layoutreader",
"device-mode":"cuda",
"layout-config": {
"model": "doclayout_yolo"
},
"formula-config": {
"mfd_model": "yolo_v8_mfd",
"mfr_model": "unimernet_small",
"enable": true
},
"table-config": {
"model": "rapid_table",
"sub_model": "slanet_plus",
"enable": true,
"max_time": 400
},
"llm-aided-config": {
"formula_aided": {
"api_key": "your_api_key",
"base_url": "https://dashscope.aliyuncs.com/compatible-mode/v1",
"model": "qwen2.5-7b-instruct",
"enable": false
},
"text_aided": {
"api_key": "your_api_key",
"base_url": "https://dashscope.aliyuncs.com/compatible-mode/v1",
"model": "qwen2.5-7b-instruct",
"enable": false
},
"title_aided": {
"api_key": "your_api_key",
"base_url": "https://dashscope.aliyuncs.com/compatible-mode/v1",
"model": "qwen2.5-32b-instruct",
"enable": false
}
},
"config_version": "1.2.0"
}
magic-pdf[full]
fastapi
uvicorn
python-multipart
......@@ -43,7 +43,7 @@ vlm = [
"pydantic",
]
sglang = [
"sglang[all]==0.4.7",
"sglang[all]>=0.4.8,<0.4.9",
]
pipeline = [
"matplotlib>=3.10,<4",
......@@ -62,9 +62,20 @@ pipeline = [
"transformers>=4.49.0,!=4.51.0,<5.0.0",
"fast-langdetect>=0.2.3,<0.3.0",
]
api = [
"fastapi",
"python-multipart",
"uvicorn",
]
gradio = [
"gradio>=5.34,<6",
"gradio-pdf>=0.0.22",
]
core = [
"mineru[vlm]",
"mineru[pipeline]",
"mineru[api]",
"mineru[gradio]",
]
all = [
"mineru[core]",
......@@ -97,6 +108,8 @@ Repository = "https://github.com/opendatalab/MinerU"
mineru = "mineru.cli:client.main"
mineru-sglang-server = "mineru.cli.vlm_sglang_server:main"
mineru-models-download = "mineru.cli.models_download:download_models"
mineru-api = "mineru.cli.fast_api:main"
mineru-gradio = "mineru.cli.gradio_app:main"
[tool.setuptools.dynamic]
version = {attr = "mineru.version.__version__"}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment