# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->UnimerSwin
classUnimerSwinEncoderOutput(ModelOutput):
"""
UnimerSwin encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
# Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->UnimerSwin
classUnimerSwinModelOutput(ModelOutput):
"""
UnimerSwin model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
img: img for OCR, support ndarray, img_path and list or ndarray
det: use text detection or not. If False, only rec will be exec. Default is True
rec: use text recognition or not. If False, only det will be exec. Default is True
cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.
bin: binarize image to black and white. Default is False.
inv: invert image colors. Default is False.
alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white.
"""
assertisinstance(img,(np.ndarray,list,str,bytes))
ifisinstance(img,list)anddet==True:
logger.error('When input a list of images, det must be false')
exit(0)
ifcls==Trueandself.use_angle_cls==False:
pass
# logger.warning(
# 'Since the angle classifier is not initialized, it will not be used during the forward process'
img: Image for OCR. It can be an ndarray, img_path, or a list of ndarrays.
det: Use text detection or not. If False, only text recognition will be executed. Default is True.
rec: Use text recognition or not. If False, only text detection will be executed. Default is True.
cls: Use angle classifier or not. Default is True. If True, the text with a rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance.
bin: Binarize image to black and white. Default is False.
inv: Invert image colors. Default is False.
alpha_color: Set RGB color Tuple for transparent parts replacement. Default is pure white.
slice: Use sliding window inference for large images. Both det and rec must be True. Requires int values for slice["horizontal_stride"], slice["vertical_stride"], slice["merge_x_thres"], slice["merge_y_thres"] (See doc/doc_en/slice_en.md). Default is {}.
Returns:
If both det and rec are True, returns a list of OCR results for each image. Each OCR result is a list of bounding boxes and recognized text for each detected text region.
If det is True and rec is False, returns a list of detected bounding boxes for each image.
If det is False and rec is True, returns a list of recognized text for each image.
If both det and rec are False, returns a list of angle classification results for each image.
Raises:
AssertionError: If the input image is not of type ndarray, list, str, or bytes.
SystemExit: If det is True and the input is a list of images.
Note:
- If the angle classifier is not initialized (use_angle_cls=False), it will not be used during the forward process.
- For PDF files, if the input is a list of images and the page_num is specified, only the first page_num images will be processed.
- The preprocess_image function is used to preprocess the input image by applying alpha color replacement, inversion, and binarization if specified.
"""
assertisinstance(img,(np.ndarray,list,str,bytes))
ifisinstance(img,list)anddet==True:
logger.error("When input a list of images, det must be false")
exit(0)
ifcls==Trueandself.use_angle_cls==False:
logger.warning(
"Since the angle classifier is not initialized, it will not be used during the forward process"