"vscode:/vscode.git/clone" did not exist on "98db9b258cfe8935f43f903be6186ecfbbf0b21d"
Commit 11994506 authored by xu rui's avatar xu rui
Browse files

feat: add zh_cn docs

parent 91d825b2
...@@ -109,7 +109,7 @@ class Dataset(ABC): ...@@ -109,7 +109,7 @@ class Dataset(ABC):
Args: Args:
proc (Callable): invoke proc as follows: proc (Callable): invoke proc as follows:
proc(dataset, *args, **kwargs) proc(self, *args, **kwargs)
Returns: Returns:
Any: return the result generated by proc Any: return the result generated by proc
......
This diff is collapsed.
This diff is collapsed.
...@@ -9,3 +9,5 @@ ...@@ -9,3 +9,5 @@
:caption: 教程 :caption: 教程
tutorial/output_file_description tutorial/output_file_description
tutorial/pipeline
流水线管道
===========
极简示例
^^^^^^^^
.. code:: python
import os
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
# args
pdf_file_name = "abc.pdf" # replace with the real pdf path
name_without_suff = pdf_file_name.split(".")[0]
# prepare env
local_image_dir, local_md_dir = "output/images", "output"
image_dir = str(os.path.basename(local_image_dir))
os.makedirs(local_image_dir, exist_ok=True)
image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(
local_md_dir
)
image_dir = str(os.path.basename(local_image_dir))
# read bytes
reader1 = FileBasedDataReader("")
pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
# proc
## Create Dataset Instance
ds = PymuDocDataset(pdf_bytes)
ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
运行以上的代码,会得到如下的结果
.. code:: bash
output/
├── abc.md
└── images
除去初始化环境,如建立目录、导入依赖库等逻辑。真正执行将 `pdf` 转换为 `markdown` 的代码片段如下
.. code::
# read bytes
reader1 = FileBasedDataReader("")
pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
# proc
## Create Dataset Instance
ds = PymuDocDataset(pdf_bytes)
ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
`ds.apply(doc_analyze, ocr=True)` 会生成 `InferenceResult` 对象。 `InferenceResult` 的对象执行 `pipe_ocr_mode` 方法会生成 `PipeResult` 对象。
`PipeResult` 对象执行 `dump_md` 会在指定位置生成 `markdown` 文件。
pipeline 的执行过程如下图所示
.. image:: ../../_static/image/pipeline.drawio.svg
.. admonition:: Tip
:class: tip
要想获得更多有关 Dataset、InferenceResult、PipeResult 的使用示例子,请前往 :doc:`../quick_start/to_markdown`
要想获得更多有关 Dataset、InferenceResult、PipeResult 的细节信息请前往英文版 MinerU 文档进行查看!
管道组合
^^^^^^^^^
.. code:: python
class Dataset(ABC):
@abstractmethod
def apply(self, proc: Callable, *args, **kwargs):
"""Apply callable method which.
Args:
proc (Callable): invoke proc as follows:
proc(self, *args, **kwargs)
Returns:
Any: return the result generated by proc
"""
pass
class InferenceResult(InferenceResultBase):
def apply(self, proc: Callable, *args, **kwargs):
"""Apply callable method which.
Args:
proc (Callable): invoke proc as follows:
proc(inference_result, *args, **kwargs)
Returns:
Any: return the result generated by proc
"""
return proc(copy.deepcopy(self._infer_res), *args, **kwargs)
def pipe_ocr_mode(
self,
imageWriter: DataWriter,
start_page_id=0,
end_page_id=None,
debug_mode=False,
lang=None,
) -> PipeResult:
pass
class PipeResult:
def apply(self, proc: Callable, *args, **kwargs):
"""Apply callable method which.
Args:
proc (Callable): invoke proc as follows:
proc(pipeline_result, *args, **kwargs)
Returns:
Any: return the result generated by proc
"""
return proc(copy.deepcopy(self._pipe_res), *args, **kwargs)
`Dataset` 、 `InferenceResult` 和 `PipeResult` 类均有 `apply` method。可用于组合不同阶段的运算过程。
如下所示,`MinerU` 提供一套组合这些类的计算过程。
.. code:: python
# proc
## Create Dataset Instance
ds = PymuDocDataset(pdf_bytes)
ds.apply(doc_analyze, ocr=True).pipe_ocr_mode(image_writer).dump_md(md_writer, f"{name_without_suff}.md", image_dir)
用户可以根据的需求,自行实现一些组合用的函数。比如用户通过 `apply` 方法实现一个统计 `pdf` 文件页数的功能。
.. code:: python
from magic_pdf.data.data_reader_writer import FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset
# args
pdf_file_name = "abc.pdf" # replace with the real pdf path
# read bytes
reader1 = FileBasedDataReader("")
pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
# proc
## Create Dataset Instance
ds = PymuDocDataset(pdf_bytes)
def count_page(ds)-> int:
return len(ds)
print("page number: ", ds.apply(count_page)) # will output the page count of `abc.pdf`
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment