# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. """Gradient clipping.""" import os from typing import List, Optional, Union import amp_C import torch from apex.multi_tensor_apply import multi_tensor_applier from torch import inf from ..tensor_parallel import param_is_not_tensor_parallel_duplicate from ..transformer.module import param_is_not_shared def get_grad_norm_fp32( grads_for_norm: Union[List[torch.Tensor], torch.Tensor], norm_type: Union[int, float] = 2, model_parallel_group: Optional[torch.distributed.ProcessGroup] = None, ) -> float: """Calculate the norm of gradients in fp32. This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and added functionality to handle model parallel parameters. Arguments: grads_for_norm (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will be used for calculating the grad norm. norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. model_parallel_group (group): given the nature of the distributed optimizer, this is passed as an argument. Returns: Total norm of the parameters (viewed as a single vector). """ if isinstance(grads_for_norm, torch.Tensor): grads_for_norm = [grads_for_norm] # Norm parameters. norm_type = float(norm_type) total_norm = 0.0 # Calculate norm. if norm_type == inf: total_norm = max(grad.abs().max() for grad in grads_for_norm) total_norm_cuda = torch.tensor([float(total_norm)], dtype=torch.float, device='cuda') # Take max across all model-parallel GPUs. torch.distributed.all_reduce( total_norm_cuda, op=torch.distributed.ReduceOp.MAX, group=model_parallel_group ) total_norm = total_norm_cuda[0].item() else: if norm_type == 2.0: dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device='cuda') # Use apex's multi-tensor applier for efficiency reasons. # Multi-tensor applier takes a function and a list of list # and performs the operation on that list all in one kernel. if grads_for_norm: grad_norm, _ = multi_tensor_applier( amp_C.multi_tensor_l2norm, dummy_overflow_buf, [grads_for_norm], False, # no per-parameter norm ) else: grad_norm = torch.tensor([0], dtype=torch.float, device='cuda') # Since we will be summing across data parallel groups, # we need the pow(norm-type). total_norm = grad_norm ** norm_type else: for grad in grads_for_norm: grad_norm = torch.norm(grad, norm_type) total_norm += grad_norm ** norm_type # Sum across all model-parallel GPUs. torch.distributed.all_reduce( total_norm, op=torch.distributed.ReduceOp.SUM, group=model_parallel_group ) total_norm = total_norm.item() ** (1.0 / norm_type) return total_norm def clip_grad_by_total_norm_fp32( parameters: Union[List[torch.Tensor], torch.Tensor], max_norm: Union[int, float], total_norm: float, ): """Clips gradient of an iterable of parameters in fp32 by total norm. Note that the gradients are modified in place. Args: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized. max_norm (float or int): max norm of the gradients. total_norm (float): total norm of the gradients. """ # Grads. grads = [] for param in parameters: if param.grad is not None: assert param.grad.type() == 'torch.cuda.FloatTensor' grads.append(param.grad.detach()) # Scale. clip_coeff = max_norm / (total_norm + 1.0e-6) if clip_coeff < 1.0: dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device='cuda') multi_tensor_applier( amp_C.multi_tensor_scale, dummy_overflow_buf, [grads, grads], clip_coeff ) def count_zeros_fp32( parameters: Union[List[torch.Tensor], torch.Tensor], model_parallel_group: torch.distributed.ProcessGroup, ) -> float: """Counts the number of zeros in gradients associated with the passed-in list of parameters. Args: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have the number of zeros in its corresponding gradient counted. model_parallel_group (torch.distributed.ProcessGroup, optional): model-parallel group over which grad norm needs to be aggregated. """ if isinstance(parameters, torch.Tensor): parameters = [parameters] # Filter parameters based on: # - grad should not be none # - parameter should not be shared # - should not be a replica due to tensor model parallelism total_num_zeros = torch.tensor([0.0], dtype=torch.float, device='cuda') for param in parameters: grad_not_none = param.grad is not None is_not_shared = param_is_not_shared(param) is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param) if grad_not_none and is_not_shared and is_not_tp_duplicate: grad = param.grad.detach() num_zeros = grad.numel() - torch.count_nonzero(grad) total_num_zeros = num_zeros + total_num_zeros # Sum across all model-parallel GPUs. torch.distributed.all_reduce( total_num_zeros, op=torch.distributed.ReduceOp.SUM, group=model_parallel_group ) total_num_zeros = total_num_zeros.item() return total_num_zeros