#! -*- coding:utf-8 -*- # 情感分类任务, 加载bert权重 # Mixup策略,包含embedding,hidden, encoder的mixup from bert4torch.tokenizers import Tokenizer from bert4torch.models import build_transformer_model, BaseModel from bert4torch.layers import MixUp from bert4torch.snippets import sequence_padding, Callback, text_segmentate, ListDataset, seed_everything, get_pool_emb import torch.nn as nn import torch import torch.optim as optim from torch.utils.data import DataLoader maxlen = 256 batch_size = 16 config_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/bert_config.json' checkpoint_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/pytorch_model.bin' dict_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/vocab.txt' device = 'cuda' if torch.cuda.is_available() else 'cpu' choice = 'train' # train表示训练,infer表示推理 seed_everything(42) # 建立分词器 tokenizer = Tokenizer(dict_path, do_lower_case=True) # 加载数据集 class MyDataset(ListDataset): @staticmethod def load_data(filenames): """加载数据,并尽量划分为不超过maxlen的句子 """ D = [] seps, strips = u'\n。!?!?;;,, ', u';;,, ' for filename in filenames: with open(filename, encoding='utf-8') as f: for l in f: text, label = l.strip().split('\t') for t in text_segmentate(text, maxlen - 2, seps, strips): D.append((t, int(label))) return D def collate_fn(batch): batch_token_ids, batch_labels = [], [] for text, label in batch: token_ids = tokenizer.encode(text, maxlen=maxlen)[0] batch_token_ids.append(token_ids) batch_labels.append([label]) batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device) batch_labels = torch.tensor(batch_labels, dtype=torch.long, device=device) return batch_token_ids, batch_labels.flatten() # 加载数据集 train_dataloader = DataLoader(MyDataset(['F:/Projects/data/corpus/sentence_classification/sentiment/sentiment.train.data']), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) valid_dataloader = DataLoader(MyDataset(['F:/Projects/data/corpus/sentence_classification/sentiment/sentiment.valid.data']), batch_size=batch_size, collate_fn=collate_fn) test_dataloader = DataLoader(MyDataset(['F:/Projects/data/corpus/sentence_classification/sentiment/sentiment.test.data']), batch_size=batch_size, collate_fn=collate_fn) # 定义bert上的模型结构 class Model(BaseModel): def __init__(self, mixup_method='encoder', pool_method='cls') -> None: super().__init__() self.pool_method = pool_method self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, with_pool=True, segment_vocab_size=0) self.dropout = nn.Dropout(0.1) self.dense = nn.Linear(self.bert.configs['hidden_size'], 2) self.mixup = MixUp(method=mixup_method) def forward(self, token_ids): hidden_states, pooling = self.mixup.encode(self.bert, [token_ids]) pooled_output = get_pool_emb(hidden_states, pooling, token_ids.gt(0).long(), self.pool_method) output = self.dropout(pooled_output) y_pred = self.dense(output) return y_pred def predict(self, token_ids): self.eval() with torch.no_grad(): hidden_states, pooling = self.bert([token_ids]) pooled_output = get_pool_emb(hidden_states, pooling, token_ids.gt(0).long(), self.pool_method) output = self.dropout(pooled_output) y_pred = self.dense(output) return y_pred model = Model().to(device) class Loss(nn.Module): def forward(self, y_pred, y_true): return model.mixup(nn.CrossEntropyLoss(), y_pred, y_true) # 定义使用的loss和optimizer,这里支持自定义 model.compile( loss=Loss(), optimizer=optim.Adam(model.parameters(), lr=2e-5), ) class Evaluator(Callback): """评估与保存 """ def __init__(self): self.best_val_acc = 0. def on_epoch_end(self, global_step, epoch, logs=None): val_acc = self.evaluate(valid_dataloader) test_acc = self.evaluate(test_dataloader) if val_acc > self.best_val_acc: self.best_val_acc = val_acc # model.save_weights('best_model.pt') print(f'val_acc: {val_acc:.5f}, test_acc: {test_acc:.5f}, best_val_acc: {self.best_val_acc:.5f}\n') # 定义评价函数 def evaluate(self, data): total, right = 0., 0. for x_true, y_true in data: y_pred = model.predict(x_true).argmax(axis=1) total += len(y_true) right += (y_true == y_pred).sum().item() return right / total if __name__ == '__main__': if choice == 'train': evaluator = Evaluator() model.fit(train_dataloader, epochs=10, steps_per_epoch=None, callbacks=[evaluator]) else: model.load_weights('best_model.pt')