# 数据生成step2 import os import time import argparse import json from decimal import Decimal import numpy as np from bert4torch.snippets import seed_everything from utils import convert_ext_examples, convert_cls_examples, logger def do_convert(): seed_everything(args.seed) tic_time = time.time() if not os.path.exists(args.doccano_file): raise ValueError("Please input the correct path of doccano file.") if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) if len(args.splits) != 0 and len(args.splits) != 3: raise ValueError("Only []/ len(splits)==3 accepted for splits.") def _check_sum(splits): return Decimal(str(splits[0])) + Decimal(str(splits[1])) + Decimal( str(splits[2])) == Decimal("1") if len(args.splits) == 3 and not _check_sum(args.splits): raise ValueError( "Please set correct splits, sum of elements in splits should be equal to 1." ) with open(args.doccano_file, "r", encoding="utf-8") as f: raw_examples = f.readlines() def _create_ext_examples(examples, negative_ratio=0, shuffle=False, is_train=True): entities, relations = convert_ext_examples( examples, negative_ratio, is_train=is_train) examples = entities + relations if shuffle: indexes = np.random.permutation(len(examples)) examples = [examples[i] for i in indexes] return examples def _create_cls_examples(examples, prompt_prefix, options, shuffle=False): examples = convert_cls_examples(examples, prompt_prefix, options) if shuffle: indexes = np.random.permutation(len(examples)) examples = [examples[i] for i in indexes] return examples def _save_examples(save_dir, file_name, examples): count = 0 save_path = os.path.join(save_dir, file_name) if not examples: logger.info("Skip saving %d examples to %s." % (0, save_path)) return with open(save_path, "w", encoding="utf-8") as f: for example in examples: f.write(json.dumps(example, ensure_ascii=False) + "\n") count += 1 logger.info("Save %d examples to %s." % (count, save_path)) if len(args.splits) == 0: if args.task_type == "ext": examples = _create_ext_examples(raw_examples, args.negative_ratio, args.is_shuffle) else: examples = _create_cls_examples(raw_examples, args.prompt_prefix, args.options, args.is_shuffle) _save_examples(args.save_dir, "train.txt", examples) else: if args.is_shuffle: indexes = np.random.permutation(len(raw_examples)) raw_examples = [raw_examples[i] for i in indexes] i1, i2, _ = args.splits p1 = int(len(raw_examples) * i1) p2 = int(len(raw_examples) * (i1 + i2)) if args.task_type == "ext": train_examples = _create_ext_examples( raw_examples[:p1], args.negative_ratio, args.is_shuffle) dev_examples = _create_ext_examples( raw_examples[p1:p2], -1, is_train=False) test_examples = _create_ext_examples( raw_examples[p2:], -1, is_train=False) else: train_examples = _create_cls_examples( raw_examples[:p1], args.prompt_prefix, args.options) dev_examples = _create_cls_examples( raw_examples[p1:p2], args.prompt_prefix, args.options) test_examples = _create_cls_examples( raw_examples[p2:], args.prompt_prefix, args.options) _save_examples(args.save_dir, "train.txt", train_examples) _save_examples(args.save_dir, "dev.txt", dev_examples) _save_examples(args.save_dir, "test.txt", test_examples) logger.info('Finished! It takes %.2f seconds' % (time.time() - tic_time)) if __name__ == "__main__": # yapf: disable parser = argparse.ArgumentParser() parser.add_argument("-d", "--doccano_file", default="./data/doccano.json", type=str, help="The doccano file exported from doccano platform.") parser.add_argument("-s", "--save_dir", default="./data", type=str, help="The path of data that you wanna save.") parser.add_argument("--negative_ratio", default=5, type=int, help="Used only for the extraction task, the ratio of positive and negative samples, number of negtive samples = negative_ratio * number of positive samples") parser.add_argument("--splits", default=[0.8, 0.1, 0.1], type=float, nargs="*", help="The ratio of samples in datasets. [0.6, 0.2, 0.2] means 60%% samples used for training, 20%% for evaluation and 20%% for test.") parser.add_argument("--task_type", choices=['ext', 'cls'], default="ext", type=str, help="Select task type, ext for the extraction task and cls for the classification task, defaults to ext.") parser.add_argument("--options", default=["正向", "负向"], type=str, nargs="+", help="Used only for the classification task, the options for classification") parser.add_argument("--prompt_prefix", default="情感倾向", type=str, help="Used only for the classification task, the prompt prefix for classification") parser.add_argument("--is_shuffle", default=True, type=bool, help="Whether to shuffle the labeled dataset, defaults to True.") parser.add_argument("--seed", type=int, default=1000, help="random seed for initialization") args = parser.parse_args() do_convert()