import torch import tensorflow as tf tf_path = 'E:/Github/天池新闻分类/top1/pre_models/bert_model.ckpt' torch_state_dict = {} mapping = { 'bert/embeddings/word_embeddings': 'bert.embeddings.word_embeddings.weight', 'bert/embeddings/token_type_embeddings': 'bert.embeddings.token_type_embeddings.weight', 'bert/embeddings/position_embeddings': 'bert.embeddings.position_embeddings.weight', 'bert/embeddings/LayerNorm/beta': 'bert.embeddings.LayerNorm.bias', 'bert/embeddings/LayerNorm/gamma': 'bert.embeddings.LayerNorm.weight', # 'bert/pooler/dense/kernel': 'bert.pooler.dense.weight', # 'bert/pooler/dense/bias': 'bert.pooler.dense.bias', # 'cls/seq_relationship/output_weights': 'cls.seq_relationship.weight', # 'cls/seq_relationship/output_bias': 'cls.seq_relationship.bias', 'cls/predictions/transform/dense/kernel': 'cls.predictions.transform.dense.weight##T', 'cls/predictions/transform/dense/bias': 'cls.predictions.transform.dense.bias', 'cls/predictions/transform/LayerNorm/beta': 'cls.predictions.transform.LayerNorm.bias', 'cls/predictions/transform/LayerNorm/gamma': 'cls.predictions.transform.LayerNorm.weight', 'cls/predictions/output_bias': 'cls.predictions.bias', } for i in range(12): prefix = 'bert/encoder/layer_%d/' % i prefix_i = f'bert.encoder.layer.%d.' % i mapping.update({ prefix + 'attention/self/query/kernel': prefix_i + 'attention.self.query.weight##T', prefix + 'attention/self/query/bias': prefix_i + 'attention.self.query.bias', prefix + 'attention/self/key/kernel': prefix_i + 'attention.self.key.weight##T', prefix + 'attention/self/key/bias': prefix_i + 'attention.self.key.bias', prefix + 'attention/self/value/kernel': prefix_i + 'attention.self.value.weight##T', prefix + 'attention/self/value/bias': prefix_i + 'attention.self.value.bias', prefix + 'attention/output/dense/kernel': prefix_i + 'attention.output.dense.weight##T', prefix + 'attention/output/dense/bias': prefix_i + 'attention.output.dense.bias', prefix + 'attention/output/LayerNorm/beta': prefix_i + 'attention.output.LayerNorm.bias', prefix + 'attention/output/LayerNorm/gamma': prefix_i + 'attention.output.LayerNorm.weight', prefix + 'intermediate/dense/kernel': prefix_i + 'intermediate.dense.weight##T', prefix + 'intermediate/dense/bias': prefix_i + 'intermediate.dense.bias', prefix + 'output/dense/kernel': prefix_i + 'output.dense.weight##T', prefix + 'output/dense/bias': prefix_i + 'output.dense.bias', prefix + 'output/LayerNorm/beta': prefix_i + 'output.LayerNorm.bias', prefix + 'output/LayerNorm/gamma': prefix_i + 'output.LayerNorm.weight', }) for old_key, new_key in mapping.items(): try: ts = tf.train.load_variable(tf_path, old_key) if new_key.endswith('##T'): torch_state_dict[new_key.rstrip('##T')] = torch.from_numpy(ts).T else: torch_state_dict[new_key] = torch.from_numpy(ts) except: print('Missing ', old_key) torch.save(torch_state_dict, 'E:/Github/天池新闻分类/top1/pre_models/pytorch_model.bin')