#! -*- coding: utf-8 -*- # 基础测试:mlm测试roformer、roformer_v2模型 from bert4torch.models import build_transformer_model from bert4torch.tokenizers import Tokenizer import torch choice = 'roformer_v2' # roformer roformer_v2 if choice == 'roformer': args_model_path = "F:/Projects/pretrain_ckpt/roformer/[sushen_torch_base]--roformer_v1_base/" args_model = 'roformer' else: args_model_path = "F:/Projects/pretrain_ckpt/roformer/[sushen_torch_base]--roformer_v2_char_base/" args_model = 'roformer_v2' # 加载模型,请更换成自己的路径 root_model_path = args_model_path vocab_path = root_model_path + "/vocab.txt" config_path = root_model_path + "/config.json" checkpoint_path = root_model_path + '/pytorch_model.bin' # 建立分词器 tokenizer = Tokenizer(vocab_path, do_lower_case=True) model = build_transformer_model(config_path, checkpoint_path, model=args_model, with_mlm='softmax') # 建立模型,加载权重 token_ids, segments_ids = tokenizer.encode("今天M很好,我M去公园玩。") token_ids[3] = token_ids[8] = tokenizer._token_mask_id print(''.join(tokenizer.ids_to_tokens(token_ids))) tokens_ids_tensor = torch.tensor([token_ids]) segment_ids_tensor = torch.tensor([segments_ids]) # 需要传入参数with_mlm model.eval() with torch.no_grad(): _, logits = model([tokens_ids_tensor, segment_ids_tensor]) pred_str = 'Predict: ' for i, logit in enumerate(logits[0]): if token_ids[i] == tokenizer._token_mask_id: pred_str += tokenizer.id_to_token(torch.argmax(logit, dim=-1).item()) else: pred_str += tokenizer.id_to_token(token_ids[i]) print(pred_str)