import tilelang import tilelang.language as T @tilelang.jit(out_idx=[-1]) def matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"): @T.prim_func def gemm( A: T.Tensor((M, K), dtype), B: T.Tensor((K, N), dtype), C: T.Tensor((M, N), dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by): A_shared = T.alloc_shared((block_M, block_K), dtype) B_shared = T.alloc_shared((block_K, block_N), dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=3): T.copy(A[by * block_M, k * block_K], A_shared) T.copy(B[k * block_K, bx * block_N], B_shared) T.gemm(A_shared, B_shared, C_local) T.copy(C_local, C[by * block_M, bx * block_N]) return gemm def test_profiler(): kernel = matmul(1024, 1024, 1024, 128, 128, 32) import torch a = torch.randn(1024, 1024).cuda().half() b = torch.randn(1024, 1024).cuda().half() c = kernel(a, b) ref_c = a @ b torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2) # benchmark profiler = kernel.get_profiler() # use cupti backend cupti_latency = profiler.do_bench(backend="cupti") # use event backend event_latency = profiler.do_bench(backend="event") print(f"cupti Latency: {cupti_latency}ms") print(f"event Latency: {event_latency}ms") if __name__ == "__main__": tilelang.testing.main()