from tilelang import tvm as tvm import tilelang.testing from tilelang import primitives as P def matmul_ssr( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads, ): A_shape = (K, M) if trans_A else (M, K) B_shape = (N, K) if trans_B else (K, N) A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K) B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N) shared_scope = "shared" # or "shared.dyn" for dynamic shared memory import tilelang.language as T @T.prim_func def main( A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor((M, N), out_dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by): A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope) B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for ko in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages): if trans_A: T.copy(A[ko * block_K, by * block_M], A_shared) else: T.copy(A[by * block_M, ko * block_K], A_shared) if trans_B: T.copy(B[bx * block_N, ko * block_K], B_shared) else: T.copy(B[ko * block_K, bx * block_N], B_shared) P.gemm(A_shared, B_shared, C_local, trans_A, trans_B) T.copy(C_local, C[by * block_M, bx * block_N]) return main def run_matmul_ssr( M, N, K, trans_A, trans_B, in_dtype, out_dtype, dtypeAccum, block_M, block_N, block_K, num_stages=3, num_threads=128, ): program = matmul_ssr( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, dtypeAccum, num_stages, num_threads, ) # TODO(lei): gemm_v2 with tma is not fully tested. kernel = tilelang.compile( program, out_idx=[2], pass_configs={ tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True, tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True, }) profiler = kernel.get_profiler() def ref_program(A, B): import torch if trans_A: A = A.T if trans_B: B = B.T C = torch.matmul(A.to(torch.float), B.to(torch.float)) C = C.to(torch.__getattribute__(out_dtype)) return C profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2, max_mismatched_ratio=0.05) def test_gemm_f16f16f16_nt_ssr(): run_matmul_ssr( 16, 16, 16, False, True, "float16", "float16", "float16", 16, 16, 16, 0, num_threads=32) run_matmul_ssr( 128, 128, 128, False, True, "float16", "float16", "float16", 32, 32, 32, 0, num_threads=64) run_matmul_ssr( 1024, 1024, 1024, False, True, "float16", "float16", "float16", 128, 128, 32, 2, num_threads=128) def matmul_rsr( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads, ): A_shape = (K, M) if trans_A else (M, K) B_shape = (N, K) if trans_B else (K, N) A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K) B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N) A_local_shape = A_shared_shape shared_scope = "shared" # or "shared.dyn" for dynamic shared memory import tilelang.language as T @T.prim_func def main( A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor((M, N), out_dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by): A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope) B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope) A_local = T.alloc_fragment(A_local_shape, in_dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for ko in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages): if trans_A: T.copy(A[ko * block_K, by * block_M], A_shared) else: T.copy(A[by * block_M, ko * block_K], A_shared) if trans_B: T.copy(B[bx * block_N, ko * block_K], B_shared) else: T.copy(B[ko * block_K, bx * block_N], B_shared) T.copy(A_shared, A_local) P.gemm(A_local, B_shared, C_local, trans_A, trans_B) # T.gemm(A_local, B_shared, C_local, trans_A, trans_B) T.copy(C_local, C[by * block_M, bx * block_N]) return main def run_matmul_rsr( M, N, K, trans_A, trans_B, in_dtype, out_dtype, dtypeAccum, block_M, block_N, block_K, num_stages=3, num_threads=128, ): program = matmul_rsr( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, dtypeAccum, num_stages, num_threads, ) kernel = tilelang.compile( program, out_idx=[2], pass_configs={ tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True, tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True, }) profiler = kernel.get_profiler() def ref_program(A, B): import torch if trans_A: A = A.T if trans_B: B = B.T C = torch.matmul(A.to(torch.float), B.to(torch.float)) C = C.to(torch.__getattribute__(out_dtype)) return C profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2) # TODO(lei): Fix the test case in future release # Now it has some bugs related to is_m_first # def test_gemm_f16f16f16_nt_rsr(): # run_matmul_rsr( # 1024, # 1024, # 1024, # False, # True, # "float16", # "float16", # "float16", # 128, # 128, # 32, # 0, # num_threads=128, # ) def matmul_rrr( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads, ): A_shape = (K, M) if trans_A else (M, K) B_shape = (N, K) if trans_B else (K, N) A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K) B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N) A_local_shape = A_shared_shape B_local_shape = B_shared_shape import tilelang.language as T @T.prim_func def main( A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor((M, N), out_dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by): A_shared = T.alloc_shared(A_shared_shape, in_dtype) A_local = T.alloc_fragment(A_local_shape, in_dtype) B_shared = T.alloc_shared(B_shared_shape, in_dtype) B_local = T.alloc_fragment(B_local_shape, in_dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages): if trans_A: T.copy(A[k * block_K, by * block_M], A_shared) T.copy(A_shared, A_local) else: T.copy(A[by * block_M, k * block_K], A_shared) T.copy(A_shared, A_local) if trans_B: T.copy(B[bx * block_N, k * block_K], B_shared) T.copy(B_shared, B_local) else: T.copy(B[k * block_K, bx * block_N], B_shared) T.copy(B_shared, B_local) P.gemm(A_local, B_local, C_local, trans_A, trans_B) T.copy(C_local, C[by * block_M, bx * block_N]) return main def run_matmul_rrr( M, N, K, trans_A, trans_B, in_dtype, out_dtype, dtypeAccum, block_M, block_N, block_K, num_stages=3, num_threads=128, ): program = matmul_rrr( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, dtypeAccum, num_stages, num_threads, ) kernel = tilelang.compile( program, out_idx=[2], pass_configs={ tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True, tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True, }) profiler = kernel.get_profiler() def ref_program(A, B): import torch if trans_A: A = A.T if trans_B: B = B.T C = torch.matmul(A.to(torch.float), B.to(torch.float)) C = C.to(torch.__getattribute__(out_dtype)) return C profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2) # def test_gemm_f16f16f16_nt_rrr(): # run_matmul_rrr( # 1024, # 1024, # 1024, # False, # True, # "float16", # "float16", # "float16", # 128, # 128, # 32, # 2, # ) if __name__ == "__main__": tilelang.testing.main()