import tilelang import tilelang.language as T # add decorator @tilelang.jit if you want to return a torch function # @tilelang.jit def matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"): @T.prim_func def main( A: T.Tensor((M, K), dtype), B: T.Tensor((N, K), dtype), C: T.Tensor((M, N), dtype), ): # Initialize Kernel Context with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by): A_shared = T.alloc_shared((block_M, block_K), dtype) B_shared = T.alloc_shared((block_N, block_K), dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for ko in T.Pipelined(T.ceildiv(K, block_K), num_stages=0): # Copy tile of A # This is a sugar syntax for parallelized copy T.copy(A[by * block_M, ko * block_K], A_shared) T.clear(A_shared) # Demonstrate parallelized copy from global to shared for B T.copy(B[bx * block_N, ko * block_K], B_shared) # Perform a tile-level GEMM on the shared buffers # Currently we dispatch to the cute/hip on Nvidia/AMD GPUs T.gemm(A_shared, B_shared, C_local, transpose_B=True) # Copy result back to global memory T.copy(C_local, C[by * block_M, bx * block_N]) return main def run_matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"): program = matmul(M, N, K, block_M, block_N, block_K, dtype, accum_dtype) kernel = tilelang.compile( program, out_idx=[2], target="cuda", pass_configs={"tl.disable_tma_lower": True}) import torch from tilelang.utils import map_torch_type a = torch.randn((M, K), dtype=map_torch_type(dtype)).cuda() b = torch.randn((N, K), dtype=map_torch_type(dtype)).cuda() c = kernel(a, b) assert torch.allclose(c, torch.zeros_like(c)) def test_matmul(): run_matmul(1024, 1024, 1024, 128, 128, 32) if __name__ == "__main__": test_matmul()