from tilelang import tvm as tvm import tilelang as tl import tilelang.language as T import tilelang.testing def matmul( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads, k_pack=1, ): A_shape = (K, M) if trans_A else (M, K) B_shape = (N, K) if trans_B else (K, N) A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K) B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N) vec_size = 4 * k_pack @T.prim_func def main(A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor( (M, N), out_dtype)): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by): A_shared = T.alloc_shared(A_shared_shape, in_dtype) B_shared = T.alloc_shared(B_shared_shape, in_dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages): if trans_A: T.copy(A[k * block_K, by * block_M], A_shared, coalesced_width=vec_size) else: T.copy(A[by * block_M, k * block_K], A_shared, coalesced_width=vec_size) if trans_B: T.copy(B[bx * block_N, k * block_K], B_shared, coalesced_width=vec_size) else: T.copy(B[k * block_K, bx * block_N], B_shared, coalesced_width=vec_size) T.gemm(A_shared, B_shared, C_local, trans_A, trans_B, k_pack=k_pack) T.copy(C_local, C[by * block_M, bx * block_N]) return main def run_gemm( M, N, K, trans_A, trans_B, in_dtype, out_dtype, dtypeAccum, block_M, block_N, block_K, num_stages=0, num_threads=128, k_pack=1, ): program = matmul( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, dtypeAccum, num_stages, num_threads, k_pack=k_pack, ) kernel = tl.compile(program, out_idx=[2]) profiler = kernel.get_profiler() def ref_program(A, B): import torch if trans_A: A = A.T if trans_B: B = B.T return (A @ B).to(torch.__getattribute__(out_dtype)) profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2) @tilelang.testing.requires_rocm def test_gemm_f16f32f32_nt(): run_gemm(1024, 1024, 1024, False, False, "float16", "float32", "float32", 128, 128, 32) run_gemm(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32) run_gemm(1024, 1024, 1024, True, True, "float16", "float32", "float32", 128, 128, 32) run_gemm(1024, 1024, 1024, True, False, "float16", "float32", "float32", 128, 128, 32) run_gemm(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32, k_pack=2) @tilelang.testing.requires_rocm def test_gemm_bf16f32f32_nt(): run_gemm(1024, 1024, 1024, False, False, "bfloat16", "float32", "float32", 128, 128, 32) run_gemm(1024, 1024, 1024, False, True, "bfloat16", "float32", "float32", 128, 128, 32) run_gemm(1024, 1024, 1024, True, True, "bfloat16", "float32", "float32", 128, 128, 32) run_gemm(1024, 1024, 1024, True, False, "bfloat16", "float32", "float32", 128, 128, 32) run_gemm( 1024, 1024, 1024, False, True, "bfloat16", "float32", "float32", 128, 128, 32, k_pack=2) @tilelang.testing.requires_rocm def test_gemm_bf16bf16f32(): run_gemm(1024, 1024, 1024, False, False, "bfloat16", "bfloat16", "float32", 128, 128, 32) run_gemm(1024, 1024, 1024, False, True, "bfloat16", "bfloat16", "float32", 128, 128, 32) run_gemm(1024, 1024, 1024, True, True, "bfloat16", "bfloat16", "float32", 128, 128, 32) run_gemm(1024, 1024, 1024, True, False, "bfloat16", "bfloat16", "float32", 128, 128, 32) run_gemm( 1024, 1024, 1024, False, True, "bfloat16", "bfloat16", "float32", 128, 128, 32, k_pack=2) def matmul_rs( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads, k_pack=1, ): A_shape = (K, M) if trans_A else (M, K) B_shape = (N, K) if trans_B else (K, N) A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K) B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N) vec_size = 4 * k_pack @T.prim_func def main( A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor((M, N), out_dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by): A_shared = T.alloc_shared(A_shared_shape, in_dtype) A_local = T.alloc_fragment(A_shared_shape, in_dtype) B_shared = T.alloc_shared(B_shared_shape, in_dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages): if trans_A: T.copy(A[k * block_K, by * block_M], A_shared, coalesced_width=vec_size) T.copy(A_shared, A_local) else: T.copy(A[by * block_M, k * block_K], A_shared, coalesced_width=vec_size) T.copy(A_shared, A_local) if trans_B: T.copy(B[bx * block_N, k * block_K], B_shared, coalesced_width=vec_size) else: T.copy(B[k * block_K, bx * block_N], B_shared, coalesced_width=vec_size) T.gemm(A_local, B_shared, C_local, trans_A, trans_B, k_pack=k_pack) T.copy(C_local, C[by * block_M, bx * block_N]) return main def run_gemm_rs( M, N, K, trans_A, trans_B, in_dtype, out_dtype, dtypeAccum, block_M, block_N, block_K, num_stages=0, num_threads=128, k_pack=1, ): program = matmul_rs( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, dtypeAccum, num_stages, num_threads, k_pack=k_pack, ) kernel = tl.compile(program, out_idx=[2]) profiler = kernel.get_profiler() def ref_program(A, B): import torch if trans_A: A = A.T if trans_B: B = B.T return (A @ B).to(torch.__getattribute__(out_dtype)) profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2) @tilelang.testing.requires_rocm def test_gemm_rs_f16f32f32_nt(): run_gemm_rs(1024, 1024, 1024, False, False, "float16", "float32", "float32", 128, 128, 32) run_gemm_rs(1024, 1024, 1024, False, True, "float16", "float32", "float32", 128, 128, 32) run_gemm_rs(1024, 1024, 1024, True, True, "float16", "float32", "float32", 128, 128, 32) run_gemm_rs(1024, 1024, 1024, True, False, "float16", "float32", "float32", 128, 128, 32) @tilelang.testing.requires_rocm def test_gemm_rs_bf16f32f32_nt(): run_gemm_rs(1024, 1024, 1024, False, False, "bfloat16", "float32", "float32", 128, 128, 32) run_gemm_rs(1024, 1024, 1024, False, True, "bfloat16", "float32", "float32", 128, 128, 32) run_gemm_rs(1024, 1024, 1024, True, True, "bfloat16", "float32", "float32", 128, 128, 32) run_gemm_rs(1024, 1024, 1024, True, False, "bfloat16", "float32", "float32", 128, 128, 32) @tilelang.testing.requires_rocm def test_gemm_rs_bf16bf16f32_nt(): run_gemm_rs(1024, 1024, 1024, False, False, "bfloat16", "bfloat16", "float32", 128, 128, 32) run_gemm_rs(1024, 1024, 1024, False, True, "bfloat16", "bfloat16", "float32", 128, 128, 32) run_gemm_rs(1024, 1024, 1024, True, True, "bfloat16", "bfloat16", "float32", 128, 128, 32) run_gemm_rs(1024, 1024, 1024, True, False, "bfloat16", "bfloat16", "float32", 128, 128, 32) if __name__ == "__main__": tilelang.testing.main()