import torch import tilelang import tilelang.language as T from tilelang.utils.tensor import map_torch_type def calc_diff(x, y): x, y = x.double(), y.double() denominator = (x * x + y * y).sum() sim = 2 * (x * y).sum() / denominator return 1 - sim @tilelang.jit(out_idx=[-1]) def matmul(M, N, K, block_M, block_N, block_K, dtype, accum_dtype="float"): @T.prim_func def gemm_fp8( A: T.Tensor((M, K), dtype), B: T.Tensor((N, K), dtype), C: T.Tensor((M, N), dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by): A_shared = T.alloc_shared((block_M, block_K), dtype) B_shared = T.alloc_shared((block_N, block_K), dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=3): T.copy(A[by * block_M, k * block_K], A_shared) T.copy(B[bx * block_N, k * block_K], B_shared) T.gemm(A_shared, B_shared, C_local, transpose_B=True) T.copy(C_local, C[by * block_M, bx * block_N]) return gemm_fp8 def test_gemm_fp8(M, N, K, dtype): torch_dtype = map_torch_type(dtype) kernel = matmul(M, N, K, 128, 128, 64, dtype) a = torch.randn(M, K, dtype=torch.float16, device='cuda').to(dtype=torch_dtype) b = torch.randn(N, K, dtype=torch.float16, device='cuda').to(dtype=torch_dtype) c = kernel(a, b) ref_c = (a.half() @ b.half().T).to(dtype=torch_dtype) print(c) print(ref_c) diff = calc_diff(c, ref_c) print(f"diff: {diff}") assert diff < 1e-3 def main(): test_gemm_fp8(1024, 1024, 1024, 'float8_e4m3') test_gemm_fp8(1024, 1024, 1024, 'float8_e5m2') if __name__ == "__main__": main()