import argparse import itertools import torch import tilelang import tilelang.language as T from tilelang.autotuner import AutoTuner def ref_program(x, y): return x + y @tilelang.jit(out_idx=[-1]) def elementwise_add(M, N, block_M, block_N, in_dtype, out_dtype, threads): @T.prim_func def elem_add(A: T.Tensor((M, N), in_dtype), B: T.Tensor((M, N), in_dtype), C: T.Tensor( (M, N), out_dtype)): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by): A_shared = T.alloc_shared((block_M, block_N), in_dtype) B_shared = T.alloc_shared((block_M, block_N), in_dtype) C_local = T.alloc_fragment((block_M, block_N), out_dtype) C_shared = T.alloc_shared((block_M, block_N), out_dtype) T.copy(A[by * block_M, bx * block_N], A_shared) T.copy(B[by * block_M, bx * block_N], B_shared) for (local_y, local_x) in T.Parallel(block_M, block_N): C_local[local_y, local_x] = A_shared[local_y, local_x] + B_shared[local_y, local_x] T.copy(C_local, C_shared) T.copy(C_shared, C[by * block_M, bx * block_N]) return elem_add def get_configs(M, N): block_M = [64, 128, 256] block_N = [64, 128, 256] threads = [64, 128, 256] configs = list(itertools.product(block_M, block_N, threads)) return [{"block_M": bm, "block_N": bn, "threads": th} for bm, bn, th in configs] def get_best_config(M, N): def kernel(block_M=None, block_N=None, threads=None): return elementwise_add(M, N, block_M, block_N, "float32", "float32", threads) autotuner = AutoTuner.from_kernel( kernel=kernel, configs=get_configs(M, N)).set_compile_args( out_idx=[-1], target="cuda", ).set_profile_args( supply_type=tilelang.TensorSupplyType.Auto, ref_prog=ref_program, skip_check=False, ) return autotuner.run(warmup=3, rep=20) def main(): parser = argparse.ArgumentParser() parser.add_argument("--m", type=int, default=1024) parser.add_argument("--n", type=int, default=1024) parser.add_argument("--use_autotune", action="store_true", default=False) args, _ = parser.parse_known_args() M, N = args.m, args.n a = torch.randn(M, N, dtype=torch.float32, device="cuda") b = torch.randn(M, N, dtype=torch.float32, device="cuda") if args.use_autotune: result = get_best_config(M, N) kernel = result.kernel else: # Default config config = {"block_M": 32, "block_N": 32, "threads": 128} kernel = elementwise_add(M, N, **config, in_dtype="float32", out_dtype="float32") out = kernel(a, b) torch.testing.assert_close(out, ref_program(a, b), rtol=1e-2, atol=1e-2) if __name__ == "__main__": main()