import tilelang import tilelang.language as T from tilelang.autotuner import * from tvm import tir import itertools import torch import argparse def _tir_u8_to_f4_to_f16(nbit: int, val: tir.PrimExpr, pos: tir.PrimExpr, dtype: str): assert nbit == 4 assert dtype == "float16" assert val.dtype == "uint8" # e_f4 == 0 -> e_f16 = 0 # e_f4 != 0 -> e_f16 = e_f4 + ExponentialBias(f16, f4) = e_f4 + (2^4 - 2^1) = e_f4 + 14 # s1e2m1 mask = tir.const((1 << nbit) - 1, "uint16") f4 = (val >> (pos.astype("uint16") * tir.const(nbit, "uint16"))) & mask s = f4 >> tir.const(3, "uint16") e_f4 = (f4 & tir.const(6, "uint16")) >> tir.const(1, "uint16") e_f16 = e_f4 + tir.const(14, "uint16") m_f4 = f4 & tir.const(1, "uint16") m_f16 = m_f4 val_f16 = tir.reinterpret("float16", ((e_f16 | (s << tir.const(5, "uint16"))) << tir.const(10, "uint16") | m_f16 << tir.const(9, "uint16")).astype("uint16")) # return tir.Select(e_f4 == tir.const(0, "uint32"), tir.const(0, "float16"), val_f16) return val_f16 def torch_convert(tensor): def print_bit(name, val): val_cpu = val.cpu().item() binary_repr = f'{val_cpu:032b}' print(name, binary_repr) def _convert(val, pos): assert val.dtype == torch.uint8 val = val.view(torch.int8) mask = (1 << 4) - 1 f4 = ((val >> (pos * 4)) & mask).to(torch.int16) s = f4 >> 3 e_f4 = (f4 & 6) >> 1 e_f16 = e_f4 + 14 m_f4 = f4 & 1 m_f16 = m_f4 val_f16 = (((e_f16 | (s << 5)) << 10) | (m_f16 << 9)) & 0xFFFF lower_16_bits = (val_f16 & 0xFFFF).to(torch.uint16) return lower_16_bits.view(torch.float16) N = tensor.shape[0] K = tensor.shape[1] new_tensor = torch.empty(N, K * 2, dtype=torch.float16, device=tensor.device) for i in range(new_tensor.shape[0]): for j in range(new_tensor.shape[1]): new_tensor[i][j] = _convert(tensor[i][j // 2], j % 2) return new_tensor @tilelang.jit(out_idx=[1]) def test_convert(N, K, block_N, block_K, in_dtype, num_bits=4, threads=128): num_elems_per_byte = 8 // num_bits storage_dtype = "uint8" B_shape = (N, K // num_elems_per_byte) B_shared_shape = (block_N, block_K // num_elems_per_byte) B_dequantize_shared_shape = (block_N, block_K) @T.prim_func def main( B: T.Tensor(B_shape, storage_dtype), C: T.Tensor((N, K), in_dtype), ): with T.Kernel(T.ceildiv(N, block_N), threads=threads) as (bx): B_shared = T.alloc_shared(B_shared_shape, storage_dtype) B_local = T.alloc_fragment(B_shared_shape, storage_dtype) B_dequantize_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype) for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=1): T.copy(B[bx * block_N, k * block_K // num_elems_per_byte], B_shared) T.copy(B_shared, B_local) for i, j in T.Parallel(block_N, block_K): B_dequantize_local[i, j] = _tir_u8_to_f4_to_f16( num_bits, B_local[i, j // num_elems_per_byte], j % num_elems_per_byte, dtype=in_dtype, ) T.copy(B_dequantize_local, C[bx * block_N, k * block_K]) return main def test_fp4_fp16_convert_close(): N, K = 256, 256 block_N, block_K = 64, 64 kernel = test_convert( N, K, block_N, block_K, "float16", ) B = torch.randint(0, 16, (N, K // 2), dtype=torch.uint8, device="cuda").to(torch.uint8) tl_out = kernel(B) ref_out = torch_convert(B) assert torch.allclose(tl_out, ref_out, rtol=0.01, atol=0.01), (tl_out, ref_out) print("Pass") def get_configs(): block_M = [64, 128] block_N = [64, 128] block_K = [128, 256] num_stages = [1, 2] threads = [128, 256] splits = [1] _configs = list(itertools.product(block_M, block_N, block_K, num_stages, threads, splits)) configs = [{ 'block_M': c[0], 'block_N': c[1], 'block_K': c[2], 'num_stages': c[3], 'threads': c[4], 'split': c[5] } for c in _configs] return configs def matmul(M, N, K, in_dtype, out_dtype, accum_dtype, num_bits=4, tune=False): @tilelang.jit(out_idx=[2]) def kernel_func(block_M, block_N, block_K, num_stages, threads, split=1): num_elems_per_byte = 8 // num_bits storage_dtype = "uint8" A_shape = (M, K) B_shape = (N, K // num_elems_per_byte) A_shared_shape = (block_M, block_K) B_shared_shape = (block_N, block_K // num_elems_per_byte) B_dequantize_shared_shape = (block_N, block_K) assert K % (block_K * split) == 0 KK = K // split @T.prim_func def main_split( A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, storage_dtype), Ct: T.Tensor((N, M), out_dtype), ): SplitC = T.alloc_buffer([ split, (N + block_N - 1) // block_N * block_N, (M + block_M - 1) // block_M * block_M ], out_dtype) with T.Kernel( T.ceildiv(N, block_N), T.ceildiv(M, block_M), split, threads=threads) as (bx, by, bz): A_shared = T.alloc_shared(A_shared_shape, in_dtype) B_shared = T.alloc_shared(B_shared_shape, storage_dtype) B_local = T.alloc_fragment(B_shared_shape, storage_dtype) B_dequantize_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype) B_dequantize_prev_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype) Ct_local = T.alloc_fragment((block_N, block_M), accum_dtype) Ct_shared = T.alloc_shared((block_N, block_M), out_dtype) T.annotate_layout({ B_shared: tilelang.layout.make_swizzled_layout(B_shared), Ct_shared: tilelang.layout.make_swizzled_layout(Ct_shared), }) T.clear(Ct_local) for k in T.Pipelined(K // (block_K * split), num_stages=num_stages): T.copy(A[by * block_M, KK * bz + k * block_K], A_shared) T.copy(B[bx * block_N, (KK * bz + k * block_K) // num_elems_per_byte], B_shared) T.copy(B_shared, B_local) for i, j in T.Parallel(block_N, block_K): B_dequantize_local[i, j] = _tir_u8_to_f4_to_f16( num_bits, B_local[i, j // num_elems_per_byte], j % num_elems_per_byte, dtype=in_dtype, ) T.copy(B_dequantize_local, B_dequantize_prev_local) T.gemm(B_dequantize_prev_local, A_shared, Ct_local, transpose_B=True) T.copy(Ct_local, SplitC[bz, bx * block_N:(bx + 1) * block_N, by * block_M:(by + 1) * block_M]) with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M)) as (bx, by): acc = T.alloc_fragment((block_N, block_M), out_dtype) T.clear(acc) for k in range(split): for i, j in T.Parallel(block_N, block_M): acc[i, j] += SplitC[k, bx * block_N + i, by * block_M + j] T.copy(acc, Ct[bx * block_N, by * block_M]) @T.prim_func def main( A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, storage_dtype), Ct: T.Tensor((N, M), out_dtype), ): with T.Kernel( T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by): A_shared = T.alloc_shared(A_shared_shape, in_dtype) B_shared = T.alloc_shared(B_shared_shape, storage_dtype) B_local = T.alloc_fragment(B_shared_shape, storage_dtype) B_dequantize_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype) B_dequantize_prev_local = T.alloc_fragment(B_dequantize_shared_shape, in_dtype) Ct_local = T.alloc_fragment((block_N, block_M), accum_dtype) Ct_shared = T.alloc_shared((block_N, block_M), out_dtype) T.annotate_layout({ B_shared: tilelang.layout.make_swizzled_layout(B_shared), Ct_shared: tilelang.layout.make_swizzled_layout(Ct_shared), }) T.clear(Ct_local) for k in T.Pipelined(K // block_K, num_stages=num_stages): T.copy(A[by * block_M, k * block_K], A_shared) T.copy(B[bx * block_N, k * block_K // num_elems_per_byte], B_shared) T.copy(B_shared, B_local) for i, j in T.Parallel(block_N, block_K): B_dequantize_local[i, j] = _tir_u8_to_f4_to_f16( num_bits, B_local[i, j // num_elems_per_byte], j % num_elems_per_byte, dtype=in_dtype, ) T.copy(B_dequantize_local, B_dequantize_prev_local) T.gemm(B_dequantize_prev_local, A_shared, Ct_local, transpose_B=True) T.copy(Ct_local, Ct_shared) T.copy(Ct_shared, Ct[bx * block_N:(bx + 1) * block_N, by * block_M:(by + 1) * block_M]) if split == 1: return main else: return main_split if tune: @autotune(configs=get_configs(), warmup=10, rep=10) @tilelang.jit(out_idx=[2]) def kernel(block_M=None, block_N=None, block_K=None, num_stages=None, threads=None, split=None): return kernel_func(block_M, block_N, block_K, num_stages, threads, split).prim_func return kernel() else: def kernel(block_M, block_N, block_K, num_stages, threads, split=1): return kernel_func(block_M, block_N, block_K, num_stages, threads, split) return kernel def ref_program(A, qB): dtypeC = "float16" B = torch_convert(qB) C = torch.matmul(A.to(torch.float), B.T.to(torch.float)) C = C.to(torch.__getattribute__(dtypeC)) return C.transpose(0, 1) def main(m=256, n=256, k=256, tune=False): total_flops = 2 * m * n * k if (not tune): kernel = matmul( m, n, k, "float16", "float16", "float32", num_bits=4, tune=tune)( block_M=128, block_N=128, block_K=128, num_stages=2, threads=256, split=1) profiler = kernel.get_profiler(tilelang.TensorSupplyType.Integer) profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01) print("All checks pass.") latency = profiler.do_bench(ref_program, warmup=500) print("Ref: {:.2f} ms".format(latency)) print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9)) latency = profiler.do_bench(warmup=500) print("Tile-lang: {:.2f} ms".format(latency)) print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9)) else: best_result = matmul(m, n, k, "float16", "float16", "float32", num_bits=4, tune=tune) best_latency = best_result.latency best_config = best_result.config print(f"Best latency: {best_latency}") print(f"Best TFlops: {total_flops / best_latency * 1e-9}") print(f"Best config: {best_config}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--m', type=int, default=256, help='M') parser.add_argument('--n', type=int, default=256, help='N') parser.add_argument('--k', type=int, default=256, help='K') parser.add_argument('--tune', action='store_true', help='tune configs') args = parser.parse_args() M, N, K = args.m, args.n, args.k main(M, N, K, args.tune)