import torch import tilelang from tilelang.autotuner import * import tilelang.language as T import argparse def check_hopper(): if not torch.cuda.is_available(): return None props = torch.cuda.get_device_properties(0) compute_capability = props.major, props.minor return compute_capability == (9, 0) def ref_program(stride, padding, dilation): def main(A, B): A = A.permute(0, 3, 1, 2) # N, H, W, C -> N, C, H, W B = B.permute(3, 2, 0, 1) # H, W, C, F -> F, C, H, W C = torch.conv2d(A, B, stride=stride, padding=padding, dilation=dilation) C = C.permute(0, 2, 3, 1) # N, C, H, W -> N, H, W, C return C return main @tilelang.jit(out_idx=[2]) def convolution(N, C, H, W, F, K, S, D, P, block_M, block_N, block_K, num_stages, threads, dtype="float16", accum_dtype="float"): KH, KW = K, K OH = (H + 2 * P - D * (K - 1) - 1) // S + 1 OW = (W + 2 * P - D * (K - 1) - 1) // S + 1 dtype = "float16" accum_dtype = "float" is_hopper = check_hopper() @T.prim_func def main( data: T.Tensor((N, H, W, C), dtype), kernel: T.Tensor((KH, KW, C, F), dtype), out: T.Tensor((N, OH, OW, F), dtype), ): with T.Kernel( T.ceildiv(F, block_N), T.ceildiv(N * OH * OW, block_M), threads=threads) as (bx, by): data_shared = T.alloc_shared((block_M, block_K), dtype) kernel_shared = T.alloc_shared((block_K, block_N), dtype) out_local = T.alloc_fragment((block_M, block_N), accum_dtype) out_shared = T.alloc_shared((block_M, block_N), dtype) kernel_flat = T.Tensor((KH * KW * C, F), dtype, kernel.data) out_flat = T.Tensor((N * OH * OW, F), dtype, out.data) T.annotate_layout({ out_shared: tilelang.layout.make_swizzled_layout(out_shared), data_shared: tilelang.layout.make_swizzled_layout(data_shared), kernel_shared: tilelang.layout.make_swizzled_layout(kernel_shared), }) T.clear(out_local) for k_iter in T.Pipelined(T.ceildiv(KH * KW * C, block_K), num_stages=num_stages): if is_hopper: T.c2d_im2col(data, data_shared, by, k_iter, KH, S, D, P) else: for i, j in T.Parallel(block_M, block_K): k = k_iter * block_K + j m = by * block_M + i access_h = m % (OH * OW) // OW * S + k // (KW * C) * D - P access_w = m % OW * S + k // C % KW * D - P in_bound = ((access_h >= 0) and (access_w >= 0) and (access_h < H) and (access_w < W)) data_shared[i, j] = T.if_then_else( in_bound, data[m // (OH * OW), access_h, access_w, k % C], 0) T.copy(kernel_flat[k_iter * block_K, bx * block_N], kernel_shared) T.gemm(data_shared, kernel_shared, out_local) T.copy(out_local, out_shared) T.copy(out_shared, out_flat[by * block_M, bx * block_N]) return main def main(argv=None): parser = argparse.ArgumentParser() parser.add_argument('--n', type=int, default=128, help='n') parser.add_argument('--c', type=int, default=128, help='c') parser.add_argument('--h', type=int, default=64, help='h') parser.add_argument('--w', type=int, default=64, help='w') parser.add_argument('--f', type=int, default=128, help='f') parser.add_argument('--k', type=int, default=3, help='k') parser.add_argument('--s', type=int, default=1, help='s') parser.add_argument('--d', type=int, default=1, help='d') parser.add_argument('--p', type=int, default=1, help='p') args = parser.parse_args(argv) N, C, H, W, F, K, S, D, P = args.n, args.c, args.h, args.w, args.f, args.k, args.s, args.d, args.p a = torch.randn(N, H, W, C).cuda().half() b = torch.randn(K, K, C, F).cuda().half() block_m = 64 block_n = 128 block_k = 32 num_stages = 3 threads = 256 kernel = convolution(N, C, H, W, F, K, S, D, P, block_m, block_n, block_k, num_stages, threads) out_c = kernel(a, b) ref_c = ref_program(S, P, D)(a, b) torch.testing.assert_close(out_c, ref_c, rtol=1e-2, atol=1e-2) print("All checks passed.✅") if __name__ == "__main__": main()