import tilelang import tilelang.language as T # @tilelang.jit(compile_flags=["-O3", "--use_fast_math", "--expt-relaxed-constexpr"]) def matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"): @T.prim_func def main( A: T.Tensor((M, K), dtype), B: T.Tensor((K, N), dtype), C: T.Tensor((M, N), dtype), ): # Initialize Kernel Context with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by): A_shared = T.alloc_shared((block_M, block_K), dtype) B_shared = T.alloc_shared((block_K, block_N), dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for ko in T.Pipelined(T.ceildiv(K, block_K), num_stages=3): T.copy(A[by * block_M, ko * block_K], A_shared) T.copy(B[ko * block_K, bx * block_N], B_shared) T.gemm(A_shared, B_shared, C_local) T.copy(C_local, C[by * block_M, bx * block_N]) return main M = 1024 N = 1024 K = 1024 block_M = 128 block_N = 128 block_K = 32 func = matmul(M, N, K, block_M, block_N, block_K) jit_kernel = tilelang.compile( func, out_idx=[2], target="cuda", compile_flags="-O3 --use_fast_math --expt-relaxed-constexpr") # or jit_kernel = tilelang.compile(func, out_idx=[2], target="cuda", compile_flags=["-O3", "--use_fast_math", "--expt-relaxed-constexpr"]) # or jit_kernel = tilelang.compile(func, out_idx=[2], target="cuda", compile_flags=["-O3 --use_fast_math --expt-relaxed-constexpr"]) import torch a = torch.randn(M, K, device="cuda", dtype=torch.float16) b = torch.randn(K, N, device="cuda", dtype=torch.float16) c = jit_kernel(a, b) print(c) ref_c = a @ b torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2) print("Kernel output matches PyTorch reference.")