Commit bc2d5632 authored by root's avatar root
Browse files

init

parents
Pipeline #3222 failed with stages
in 0 seconds
# This benchmark script is modified based on: https://github.com/deepseek-ai/FlashMLA/blob/main/benchmark/bench_flash_mla.py
# ruff: noqa
import argparse
import math
import random
import torch
import triton
import triton.language as tl
import tilelang
from tilelang.profiler import do_bench
def scaled_dot_product_attention(query, key, value, h_q, h_kv, is_causal=False):
query = query.float()
key = key.float()
value = value.float()
key = key.repeat_interleave(h_q // h_kv, dim=0)
value = value.repeat_interleave(h_q // h_kv, dim=0)
attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
if is_causal:
s_q = query.shape[-2]
s_k = key.shape[-2]
attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype)
temp_mask = torch.ones(s_q, s_k, dtype=torch.bool).tril(diagonal=s_k - s_q)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
attn_weight += attn_bias
lse = attn_weight.logsumexp(dim=-1)
attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
return attn_weight @ value, lse
@torch.inference_mode()
def run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
h_kv, d, dv, causal, dtype):
blocked_v = blocked_k[..., :dv]
def ref_mla():
out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32)
lse = torch.empty(b, h_q, s_q, dtype=torch.float32)
for i in range(b):
begin = i * max_seqlen_pad
end = begin + cache_seqlens[i]
O, LSE = scaled_dot_product_attention(
q[i].transpose(0, 1),
blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
h_q,
h_kv,
is_causal=causal,
)
out[i] = O.transpose(0, 1)
lse[i] = LSE
return out, lse
out_torch, lse_torch = ref_mla()
t = triton.testing.do_bench(ref_mla)
return out_torch, lse_torch, t
@triton.jit
def _mla_attn_kernel(
Q_nope,
Q_pe,
Kv_c_cache,
K_pe_cache,
Req_to_tokens,
B_seq_len,
O,
sm_scale,
stride_q_nope_bs,
stride_q_nope_h,
stride_q_pe_bs,
stride_q_pe_h,
stride_kv_c_bs,
stride_k_pe_bs,
stride_req_to_tokens_bs,
stride_o_b,
stride_o_h,
stride_o_s,
BLOCK_H: tl.constexpr,
BLOCK_N: tl.constexpr,
NUM_KV_SPLITS: tl.constexpr,
PAGE_SIZE: tl.constexpr,
HEAD_DIM_CKV: tl.constexpr,
HEAD_DIM_KPE: tl.constexpr,
):
cur_batch = tl.program_id(1)
cur_head_id = tl.program_id(0)
split_kv_id = tl.program_id(2)
cur_batch_seq_len = tl.load(B_seq_len + cur_batch)
offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)
cur_head = cur_head_id * BLOCK_H + tl.arange(0, BLOCK_H)
offs_q_nope = cur_batch * stride_q_nope_bs + cur_head[:, None] * stride_q_nope_h + offs_d_ckv[
None, :]
q_nope = tl.load(Q_nope + offs_q_nope)
offs_d_kpe = tl.arange(0, HEAD_DIM_KPE)
offs_q_pe = cur_batch * stride_q_pe_bs + cur_head[:, None] * stride_q_pe_h + offs_d_kpe[None, :]
q_pe = tl.load(Q_pe + offs_q_pe)
e_max = tl.zeros([BLOCK_H], dtype=tl.float32) - float("inf")
e_sum = tl.zeros([BLOCK_H], dtype=tl.float32)
acc = tl.zeros([BLOCK_H, HEAD_DIM_CKV], dtype=tl.float32)
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
split_kv_start = kv_len_per_split * split_kv_id
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)
for start_n in range(split_kv_start, split_kv_end, BLOCK_N):
offs_n = start_n + tl.arange(0, BLOCK_N)
kv_page_number = tl.load(
Req_to_tokens + stride_req_to_tokens_bs * cur_batch + offs_n // PAGE_SIZE,
mask=offs_n < split_kv_end,
other=0,
)
kv_loc = kv_page_number * PAGE_SIZE + offs_n % PAGE_SIZE
offs_k_c = kv_loc[None, :] * stride_kv_c_bs + offs_d_ckv[:, None]
k_c = tl.load(Kv_c_cache + offs_k_c, mask=offs_n[None, :] < split_kv_end, other=0.0)
qk = tl.dot(q_nope, k_c.to(q_nope.dtype))
offs_k_pe = kv_loc[None, :] * stride_k_pe_bs + offs_d_kpe[:, None]
k_pe = tl.load(K_pe_cache + offs_k_pe, mask=offs_n[None, :] < split_kv_end, other=0.0)
qk += tl.dot(q_pe, k_pe.to(q_pe.dtype))
qk *= sm_scale
qk = tl.where(offs_n[None, :] < split_kv_end, qk, float("-inf"))
v_c = tl.trans(k_c)
n_e_max = tl.maximum(tl.max(qk, 1), e_max)
re_scale = tl.exp(e_max - n_e_max)
p = tl.exp(qk - n_e_max[:, None])
acc *= re_scale[:, None]
acc += tl.dot(p.to(v_c.dtype), v_c)
e_sum = e_sum * re_scale + tl.sum(p, 1)
e_max = n_e_max
offs_o = cur_batch * stride_o_b + cur_head[:,
None] * stride_o_h + split_kv_id * stride_o_s + offs_d_ckv[
None, :]
tl.store(O + offs_o, acc / e_sum[:, None])
offs_o_1 = cur_batch * stride_o_b + cur_head * stride_o_h + split_kv_id * stride_o_s + HEAD_DIM_CKV
tl.store(O + offs_o_1, e_max + tl.log(e_sum))
def _mla_attn(
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
attn_logits,
req_to_tokens,
b_seq_len,
num_kv_splits,
sm_scale,
page_size,
):
batch_size, head_num = q_nope.shape[0], q_nope.shape[1]
head_dim_ckv = q_nope.shape[-1]
head_dim_kpe = q_pe.shape[-1]
BLOCK_H = 16
BLOCK_N = 64
grid = (
triton.cdiv(head_num, BLOCK_H),
batch_size,
num_kv_splits,
)
_mla_attn_kernel[grid](
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
req_to_tokens,
b_seq_len,
attn_logits,
sm_scale,
# stride
q_nope.stride(0),
q_nope.stride(1),
q_pe.stride(0),
q_pe.stride(1),
kv_c_cache.stride(-2),
k_pe_cache.stride(-2),
req_to_tokens.stride(0),
attn_logits.stride(0),
attn_logits.stride(1),
attn_logits.stride(2),
BLOCK_H=BLOCK_H,
BLOCK_N=BLOCK_N,
NUM_KV_SPLITS=num_kv_splits,
PAGE_SIZE=page_size,
HEAD_DIM_CKV=head_dim_ckv,
HEAD_DIM_KPE=head_dim_kpe,
num_stages=1, # 2 will oom in amd
)
@triton.jit
def _mla_softmax_reducev_kernel(
Logits,
B_seq_len,
O,
stride_l_b,
stride_l_h,
stride_l_s,
stride_o_b,
stride_o_h,
NUM_KV_SPLITS: tl.constexpr,
HEAD_DIM_CKV: tl.constexpr,
):
cur_batch = tl.program_id(0)
cur_head = tl.program_id(1)
cur_batch_seq_len = tl.load(B_seq_len + cur_batch)
offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)
e_sum = 0.0
e_max = -float("inf")
acc = tl.zeros([HEAD_DIM_CKV], dtype=tl.float32)
offs_l = cur_batch * stride_l_b + cur_head * stride_l_h + offs_d_ckv
offs_l_1 = cur_batch * stride_l_b + cur_head * stride_l_h + HEAD_DIM_CKV
for split_kv_id in range(0, NUM_KV_SPLITS):
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
split_kv_start = kv_len_per_split * split_kv_id
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)
if split_kv_end > split_kv_start:
logits = tl.load(Logits + offs_l + split_kv_id * stride_l_s)
logits_1 = tl.load(Logits + offs_l_1 + split_kv_id * stride_l_s)
n_e_max = tl.maximum(logits_1, e_max)
old_scale = tl.exp(e_max - n_e_max)
acc *= old_scale
exp_logic = tl.exp(logits_1 - n_e_max)
acc += exp_logic * logits
e_sum = e_sum * old_scale + exp_logic
e_max = n_e_max
tl.store(
O + cur_batch * stride_o_b + cur_head * stride_o_h + offs_d_ckv,
acc / e_sum,
)
def _mla_softmax_reducev(
logits,
o,
b_seq_len,
num_kv_splits,
):
batch_size, head_num, head_dim_ckv = o.shape[0], o.shape[1], o.shape[2]
grid = (batch_size, head_num)
_mla_softmax_reducev_kernel[grid](
logits,
b_seq_len,
o,
logits.stride(0),
logits.stride(1),
logits.stride(2),
o.stride(0),
o.stride(1),
NUM_KV_SPLITS=num_kv_splits,
HEAD_DIM_CKV=head_dim_ckv,
)
def mla_decode_triton(
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
o,
req_to_tokens,
b_seq_len,
attn_logits,
num_kv_splits,
sm_scale,
page_size,
):
assert num_kv_splits == attn_logits.shape[2]
_mla_attn(
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
attn_logits,
req_to_tokens,
b_seq_len,
num_kv_splits,
sm_scale,
page_size,
)
_mla_softmax_reducev(
attn_logits,
o,
b_seq_len,
num_kv_splits,
)
@torch.inference_mode()
def run_flash_mla_triton(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
blocked_v = blocked_k[..., :dv]
assert d > dv, "mla with rope dim should be larger than no rope dim"
q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
dv:].contiguous()
def flash_mla_triton():
num_kv_splits = 32
o = torch.empty([b * s_q, h_q, dv])
attn_logits = torch.empty([b * s_q, h_q, num_kv_splits, dv + 1])
mla_decode_triton(
q_nope.view(-1, h_q, dv), q_pe.view(-1, h_q, d - dv), blocked_k_nope.view(-1, dv),
blocked_k_pe.view(-1, d - dv), o, block_table, cache_seqlens, attn_logits,
num_kv_splits, 1 / math.sqrt(d), block_size)
return o.view([b, s_q, h_q, dv])
out_flash = flash_mla_triton()
t = triton.testing.do_bench(flash_mla_triton)
return out_flash, None, t
FUNC_TABLE = {
"torch": run_torch_mla,
"flash_mla_triton": run_flash_mla_triton,
}
def compare_ab(baseline, target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
print(
f"comparing {baseline} vs {target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}"
)
device = torch.device("cuda:0")
torch.set_default_dtype(dtype)
torch.set_default_device(device)
torch.cuda.set_device(device)
torch.manual_seed(0)
random.seed(0)
assert baseline in FUNC_TABLE
assert target in FUNC_TABLE
baseline_func = FUNC_TABLE[baseline]
target_func = FUNC_TABLE[target]
total_seqlens = cache_seqlens.sum().item()
max_seqlen = cache_seqlens.max().item()
max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
# print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")
q = torch.randn(b, s_q, h_q, d)
block_size = 64
block_table = torch.arange(
b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
out_a, lse_a, perf_a = baseline_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
torch.testing.assert_close(out_b.float(), out_a.float(), atol=1e-2, rtol=1e-2), "out"
if target not in ["flash_mla_triton"]:
# flash_mla_triton doesn't return lse
torch.testing.assert_close(lse_b.float(), lse_a.float(), atol=1e-2, rtol=1e-2), "lse"
FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
torch.finfo(dtype).bits // 8)
print(
f"perf {baseline}: {perf_a:.3f} ms, {FLOPS / 10 ** 9 / perf_a:.0f} TFLOPS, {bytes / 10 ** 6 / perf_a:.0f} GB/s"
)
print(
f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s"
)
return bytes / 10**6 / perf_a, bytes / 10**6 / perf_b
def compare_a(target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
print(
f"{target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}"
)
torch.set_default_dtype(dtype)
device = torch.device("cuda:0")
torch.set_default_device(device)
torch.cuda.set_device(device)
torch.manual_seed(0)
random.seed(0)
assert target in FUNC_TABLE, f"target {target} not in {FUNC_TABLE}"
target_func = FUNC_TABLE[target]
total_seqlens = cache_seqlens.sum().item()
max_seqlen = cache_seqlens.max().item()
max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
# print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")
q = torch.randn(b, s_q, h_q, d)
block_size = 64
block_table = torch.arange(
b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
torch.finfo(dtype).bits // 8)
print(
f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s"
)
return bytes / 10**6 / perf_b
available_targets = [
"torch",
"flash_mla_triton",
]
shape_configs = [{
"b":
batch,
"s_q":
1,
"cache_seqlens":
torch.tensor([seqlen + 2 * i for i in range(batch)], dtype=torch.int32, device="cuda"),
"h_q":
head,
"h_kv":
1,
"d":
512 + 64,
"dv":
512,
"causal":
True,
"dtype":
torch.float16
} for batch in [128] for seqlen in [1024, 2048, 4096, 8192, 16384] for head in [128]]
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--baseline", type=str, default="torch")
parser.add_argument("--target", type=str, default="torch")
parser.add_argument("--all", action="store_true")
parser.add_argument("--one", action="store_true")
parser.add_argument("--compare", action="store_true")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
benchmark_type = "all" if args.all else f"{args.baseline}_vs_{args.target}" if args.compare else args.target
with open(f"{benchmark_type}_perf.csv", "w") as fout:
fout.write("name,batch,seqlen,head,bw\n")
for shape in shape_configs:
if args.all:
for target in available_targets:
perf = compare_a(target, shape["b"], shape["s_q"], shape["cache_seqlens"],
shape["h_q"], shape["h_kv"], shape["d"], shape["dv"],
shape["causal"], shape["dtype"])
fout.write(
f'{target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n'
)
elif args.compare:
perfa, prefb = compare_ab(args.baseline, args.target, shape["b"], shape["s_q"],
shape["cache_seqlens"], shape["h_q"], shape["h_kv"],
shape["d"], shape["dv"], shape["causal"], shape["dtype"])
fout.write(
f'{args.baseline},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perfa:.0f}\n'
)
fout.write(
f'{args.target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{prefb:.0f}\n'
)
elif args.one:
perf = compare_a(args.target, shape["b"], shape["s_q"], shape["cache_seqlens"],
shape["h_q"], shape["h_kv"], shape["d"], shape["dv"],
shape["causal"], shape["dtype"])
fout.write(
f'{args.target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n'
)
# This benchmark script is modified based on: https://github.com/deepseek-ai/FlashMLA/blob/main/benchmark/bench_flash_mla.py
# ruff: noqa
import argparse
import math
import random
import torch
import triton
import triton.language as tl
def scaled_dot_product_attention(query, key, value, h_q, h_kv, is_causal=False):
query = query.float()
key = key.float()
value = value.float()
key = key.repeat_interleave(h_q // h_kv, dim=0)
value = value.repeat_interleave(h_q // h_kv, dim=0)
attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
if is_causal:
s_q = query.shape[-2]
s_k = key.shape[-2]
attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype)
temp_mask = torch.ones(s_q, s_k, dtype=torch.bool).tril(diagonal=s_k - s_q)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
attn_weight += attn_bias
lse = attn_weight.logsumexp(dim=-1)
attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
return attn_weight @ value, lse
@torch.inference_mode()
def run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
h_kv, d, dv, causal, dtype):
blocked_v = blocked_k[..., :dv]
def ref_mla():
out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32)
lse = torch.empty(b, h_q, s_q, dtype=torch.float32)
for i in range(b):
begin = i * max_seqlen_pad
end = begin + cache_seqlens[i]
O, LSE = scaled_dot_product_attention(
q[i].transpose(0, 1),
blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
h_q,
h_kv,
is_causal=causal,
)
out[i] = O.transpose(0, 1)
lse[i] = LSE
return out, lse
out_torch, lse_torch = ref_mla()
t = triton.testing.do_bench(ref_mla)
return out_torch, lse_torch, t
@triton.jit
def _mla_attn_kernel(
Q_nope,
Q_pe,
Kv_c_cache,
K_pe_cache,
Req_to_tokens,
B_seq_len,
O,
sm_scale,
stride_q_nope_bs,
stride_q_nope_h,
stride_q_pe_bs,
stride_q_pe_h,
stride_kv_c_bs,
stride_k_pe_bs,
stride_req_to_tokens_bs,
stride_o_b,
stride_o_h,
stride_o_s,
BLOCK_H: tl.constexpr,
BLOCK_N: tl.constexpr,
NUM_KV_SPLITS: tl.constexpr,
PAGE_SIZE: tl.constexpr,
HEAD_DIM_CKV: tl.constexpr,
HEAD_DIM_KPE: tl.constexpr,
):
cur_batch = tl.program_id(1)
cur_head_id = tl.program_id(0)
split_kv_id = tl.program_id(2)
cur_batch_seq_len = tl.load(B_seq_len + cur_batch)
offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)
cur_head = cur_head_id * BLOCK_H + tl.arange(0, BLOCK_H)
offs_q_nope = cur_batch * stride_q_nope_bs + cur_head[:, None] * stride_q_nope_h + offs_d_ckv[
None, :]
q_nope = tl.load(Q_nope + offs_q_nope)
offs_d_kpe = tl.arange(0, HEAD_DIM_KPE)
offs_q_pe = cur_batch * stride_q_pe_bs + cur_head[:, None] * stride_q_pe_h + offs_d_kpe[None, :]
q_pe = tl.load(Q_pe + offs_q_pe)
e_max = tl.zeros([BLOCK_H], dtype=tl.float32) - float("inf")
e_sum = tl.zeros([BLOCK_H], dtype=tl.float32)
acc = tl.zeros([BLOCK_H, HEAD_DIM_CKV], dtype=tl.float32)
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
split_kv_start = kv_len_per_split * split_kv_id
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)
for start_n in range(split_kv_start, split_kv_end, BLOCK_N):
offs_n = start_n + tl.arange(0, BLOCK_N)
kv_page_number = tl.load(
Req_to_tokens + stride_req_to_tokens_bs * cur_batch + offs_n // PAGE_SIZE,
mask=offs_n < split_kv_end,
other=0,
)
kv_loc = kv_page_number * PAGE_SIZE + offs_n % PAGE_SIZE
offs_k_c = kv_loc[None, :] * stride_kv_c_bs + offs_d_ckv[:, None]
k_c = tl.load(Kv_c_cache + offs_k_c, mask=offs_n[None, :] < split_kv_end, other=0.0)
qk = tl.dot(q_nope, k_c.to(q_nope.dtype))
offs_k_pe = kv_loc[None, :] * stride_k_pe_bs + offs_d_kpe[:, None]
k_pe = tl.load(K_pe_cache + offs_k_pe, mask=offs_n[None, :] < split_kv_end, other=0.0)
qk += tl.dot(q_pe, k_pe.to(q_pe.dtype))
qk *= sm_scale
qk = tl.where(offs_n[None, :] < split_kv_end, qk, float("-inf"))
v_c = tl.trans(k_c)
n_e_max = tl.maximum(tl.max(qk, 1), e_max)
re_scale = tl.exp(e_max - n_e_max)
p = tl.exp(qk - n_e_max[:, None])
acc *= re_scale[:, None]
acc += tl.dot(p.to(v_c.dtype), v_c)
e_sum = e_sum * re_scale + tl.sum(p, 1)
e_max = n_e_max
offs_o = cur_batch * stride_o_b + cur_head[:,
None] * stride_o_h + split_kv_id * stride_o_s + offs_d_ckv[
None, :]
tl.store(O + offs_o, acc / e_sum[:, None])
offs_o_1 = cur_batch * stride_o_b + cur_head * stride_o_h + split_kv_id * stride_o_s + HEAD_DIM_CKV
tl.store(O + offs_o_1, e_max + tl.log(e_sum))
def _mla_attn(
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
attn_logits,
req_to_tokens,
b_seq_len,
num_kv_splits,
sm_scale,
page_size,
):
batch_size, head_num = q_nope.shape[0], q_nope.shape[1]
head_dim_ckv = q_nope.shape[-1]
head_dim_kpe = q_pe.shape[-1]
BLOCK_H = 16
BLOCK_N = 64
grid = (
triton.cdiv(head_num, BLOCK_H),
batch_size,
num_kv_splits,
)
_mla_attn_kernel[grid](
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
req_to_tokens,
b_seq_len,
attn_logits,
sm_scale,
# stride
q_nope.stride(0),
q_nope.stride(1),
q_pe.stride(0),
q_pe.stride(1),
kv_c_cache.stride(-2),
k_pe_cache.stride(-2),
req_to_tokens.stride(0),
attn_logits.stride(0),
attn_logits.stride(1),
attn_logits.stride(2),
BLOCK_H=BLOCK_H,
BLOCK_N=BLOCK_N,
NUM_KV_SPLITS=num_kv_splits,
PAGE_SIZE=page_size,
HEAD_DIM_CKV=head_dim_ckv,
HEAD_DIM_KPE=head_dim_kpe,
num_stages=1, # 2 will oom in amd
)
@triton.jit
def _mla_softmax_reducev_kernel(
Logits,
B_seq_len,
O,
stride_l_b,
stride_l_h,
stride_l_s,
stride_o_b,
stride_o_h,
NUM_KV_SPLITS: tl.constexpr,
HEAD_DIM_CKV: tl.constexpr,
):
cur_batch = tl.program_id(0)
cur_head = tl.program_id(1)
cur_batch_seq_len = tl.load(B_seq_len + cur_batch)
offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)
e_sum = 0.0
e_max = -float("inf")
acc = tl.zeros([HEAD_DIM_CKV], dtype=tl.float32)
offs_l = cur_batch * stride_l_b + cur_head * stride_l_h + offs_d_ckv
offs_l_1 = cur_batch * stride_l_b + cur_head * stride_l_h + HEAD_DIM_CKV
for split_kv_id in range(0, NUM_KV_SPLITS):
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
split_kv_start = kv_len_per_split * split_kv_id
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)
if split_kv_end > split_kv_start:
logits = tl.load(Logits + offs_l + split_kv_id * stride_l_s)
logits_1 = tl.load(Logits + offs_l_1 + split_kv_id * stride_l_s)
n_e_max = tl.maximum(logits_1, e_max)
old_scale = tl.exp(e_max - n_e_max)
acc *= old_scale
exp_logic = tl.exp(logits_1 - n_e_max)
acc += exp_logic * logits
e_sum = e_sum * old_scale + exp_logic
e_max = n_e_max
tl.store(
O + cur_batch * stride_o_b + cur_head * stride_o_h + offs_d_ckv,
acc / e_sum,
)
def _mla_softmax_reducev(
logits,
o,
b_seq_len,
num_kv_splits,
):
batch_size, head_num, head_dim_ckv = o.shape[0], o.shape[1], o.shape[2]
grid = (batch_size, head_num)
_mla_softmax_reducev_kernel[grid](
logits,
b_seq_len,
o,
logits.stride(0),
logits.stride(1),
logits.stride(2),
o.stride(0),
o.stride(1),
NUM_KV_SPLITS=num_kv_splits,
HEAD_DIM_CKV=head_dim_ckv,
)
def mla_decode_triton(
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
o,
req_to_tokens,
b_seq_len,
attn_logits,
num_kv_splits,
sm_scale,
page_size,
):
assert num_kv_splits == attn_logits.shape[2]
_mla_attn(
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
attn_logits,
req_to_tokens,
b_seq_len,
num_kv_splits,
sm_scale,
page_size,
)
_mla_softmax_reducev(
attn_logits,
o,
b_seq_len,
num_kv_splits,
)
@torch.inference_mode()
def run_flash_mla_triton(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
blocked_v = blocked_k[..., :dv]
assert d > dv, "mla with rope dim should be larger than no rope dim"
q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
dv:].contiguous()
def flash_mla_triton():
num_kv_splits = 32
o = torch.empty([b * s_q, h_q, dv])
attn_logits = torch.empty([b * s_q, h_q, num_kv_splits, dv + 1])
mla_decode_triton(
q_nope.view(-1, h_q, dv), q_pe.view(-1, h_q, d - dv), blocked_k_nope.view(-1, dv),
blocked_k_pe.view(-1, d - dv), o, block_table, cache_seqlens, attn_logits,
num_kv_splits, 1 / math.sqrt(d), block_size)
return o.view([b, s_q, h_q, dv])
out_flash = flash_mla_triton()
t = triton.testing.do_bench(flash_mla_triton)
return out_flash, None, t
FUNC_TABLE = {
"torch": run_torch_mla,
"flash_mla_triton": run_flash_mla_triton,
}
def compare_ab(baseline, target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
print(
f"comparing {baseline} vs {target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}"
)
device = torch.device("cuda:0")
torch.set_default_dtype(dtype)
torch.set_default_device(device)
torch.cuda.set_device(device)
torch.manual_seed(0)
random.seed(0)
assert baseline in FUNC_TABLE
assert target in FUNC_TABLE
baseline_func = FUNC_TABLE[baseline]
target_func = FUNC_TABLE[target]
total_seqlens = cache_seqlens.sum().item()
max_seqlen = cache_seqlens.max().item()
max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
# print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")
q = torch.randn(b, s_q, h_q, d)
block_size = 64
block_table = torch.arange(
b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
out_a, lse_a, perf_a = baseline_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
torch.testing.assert_close(out_b.float(), out_a.float(), atol=1e-2, rtol=1e-2), "out"
if target not in ["flash_mla_triton"]:
# flash_mla_triton doesn't return lse
torch.testing.assert_close(lse_b.float(), lse_a.float(), atol=1e-2, rtol=1e-2), "lse"
FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
torch.finfo(dtype).bits // 8)
print(
f"perf {baseline}: {perf_a:.3f} ms, {FLOPS / 10 ** 9 / perf_a:.0f} TFLOPS, {bytes / 10 ** 6 / perf_a:.0f} GB/s"
)
print(
f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s"
)
return bytes / 10**6 / perf_a, bytes / 10**6 / perf_b
def compare_a(target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
print(
f"{target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}"
)
torch.set_default_dtype(dtype)
device = torch.device("cuda:0")
torch.set_default_device(device)
torch.cuda.set_device(device)
torch.manual_seed(0)
random.seed(0)
assert target in FUNC_TABLE, f"target {target} not in {FUNC_TABLE}"
target_func = FUNC_TABLE[target]
total_seqlens = cache_seqlens.sum().item()
max_seqlen = cache_seqlens.max().item()
max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
# print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")
q = torch.randn(b, s_q, h_q, d)
block_size = 64
block_table = torch.arange(
b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
torch.finfo(dtype).bits // 8)
print(
f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s"
)
return bytes / 10**6 / perf_b
available_targets = [
"torch",
"flash_mla_triton",
]
shape_configs = [{
"b":
batch,
"s_q":
1,
"cache_seqlens":
torch.tensor([seqlen + 2 * i for i in range(batch)], dtype=torch.int32, device="cuda"),
"h_q":
head,
"h_kv":
1,
"d":
512 + 64,
"dv":
512,
"causal":
True,
"dtype":
torch.float16
} for batch in [64, 128] for seqlen in [1024, 2048, 4096, 8192, 16384] for head in [128]]
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--baseline", type=str, default="torch")
parser.add_argument("--target", type=str, default="flash_mla_triton")
parser.add_argument("--all", action="store_true")
parser.add_argument("--one", action="store_true")
parser.add_argument("--compare", action="store_true")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
benchmark_type = "all" if args.all else f"{args.baseline}_vs_{args.target}" if args.compare else args.target
with open(f"{benchmark_type}_perf.csv", "w") as fout:
fout.write("name,batch,seqlen,head,bw\n")
for shape in shape_configs:
if args.all:
for target in available_targets:
perf = compare_a(target, shape["b"], shape["s_q"], shape["cache_seqlens"],
shape["h_q"], shape["h_kv"], shape["d"], shape["dv"],
shape["causal"], shape["dtype"])
fout.write(
f'{target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n'
)
elif args.compare:
perfa, prefb = compare_ab(args.baseline, args.target, shape["b"], shape["s_q"],
shape["cache_seqlens"], shape["h_q"], shape["h_kv"],
shape["d"], shape["dv"], shape["causal"], shape["dtype"])
fout.write(
f'{args.baseline},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perfa:.0f}\n'
)
fout.write(
f'{args.target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{prefb:.0f}\n'
)
elif args.one:
perf = compare_a(args.target, shape["b"], shape["s_q"], shape["cache_seqlens"],
shape["h_q"], shape["h_kv"], shape["d"], shape["dv"],
shape["causal"], shape["dtype"])
fout.write(
f'{args.target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n'
)
# This benchmark script is modified based on: https://github.com/deepseek-ai/FlashMLA/blob/main/benchmark/bench_flash_mla.py
# ruff: noqa
import argparse
import math
import random
import torch
import triton
import triton.language as tl
import tilelang
from tilelang.profiler import do_bench
from example_mla_decode_paged import mla_decode_tilelang
def scaled_dot_product_attention(query, key, value, h_q, h_kv, is_causal=False):
query = query.float()
key = key.float()
value = value.float()
key = key.repeat_interleave(h_q // h_kv, dim=0)
value = value.repeat_interleave(h_q // h_kv, dim=0)
attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
if is_causal:
s_q = query.shape[-2]
s_k = key.shape[-2]
attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype)
temp_mask = torch.ones(s_q, s_k, dtype=torch.bool).tril(diagonal=s_k - s_q)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
attn_weight += attn_bias
lse = attn_weight.logsumexp(dim=-1)
attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
return attn_weight @ value, lse
@torch.inference_mode()
def run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
h_kv, d, dv, causal, dtype):
blocked_v = blocked_k[..., :dv]
def ref_mla():
out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32)
lse = torch.empty(b, h_q, s_q, dtype=torch.float32)
for i in range(b):
begin = i * max_seqlen_pad
end = begin + cache_seqlens[i]
O, LSE = scaled_dot_product_attention(
q[i].transpose(0, 1),
blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
h_q,
h_kv,
is_causal=causal,
)
out[i] = O.transpose(0, 1)
lse[i] = LSE
return out, lse
out_torch, lse_torch = ref_mla()
t = triton.testing.do_bench(ref_mla)
return out_torch, lse_torch, t
@torch.inference_mode()
def run_flash_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
h_kv, d, dv, causal, dtype):
from flash_mla import flash_mla_with_kvcache, get_mla_metadata
blocked_v = blocked_k[..., :dv]
tile_scheduler_metadata, num_splits = get_mla_metadata(cache_seqlens, s_q * h_q // h_kv, h_kv)
def flash_mla():
return flash_mla_with_kvcache(
q,
blocked_k,
block_table,
cache_seqlens,
dv,
tile_scheduler_metadata,
num_splits,
causal=causal,
)
out_flash, lse_flash = flash_mla()
t = triton.testing.do_bench(flash_mla)
return out_flash, lse_flash, t
@torch.inference_mode()
def run_flashinfer(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens,
h_q, h_kv, d, dv, causal, dtype):
# pip install flashinfer-python
import flashinfer
assert d > dv, "mla with rope dim should be larger than no rope dim"
q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
dv:].contiguous()
kv_indptr = [0]
kv_indices = []
for i in range(b):
seq_len = cache_seqlens[i]
assert seq_len > 0
num_blocks = (seq_len + block_size - 1) // block_size
kv_indices.extend(block_table[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
for seq_len in cache_seqlens[1:]:
kv_indptr.append((seq_len + block_size - 1) // block_size + kv_indptr[-1])
q_indptr = torch.arange(0, b + 1).int() * s_q
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
mla_wrapper = flashinfer.mla.BatchMLAPagedAttentionWrapper(
torch.empty(128 * 1024 * 1024, dtype=torch.int8), backend="fa3")
mla_wrapper.plan(
q_indptr,
kv_indptr,
kv_indices,
cache_seqlens,
h_q,
dv,
d - dv,
block_size,
causal,
1 / math.sqrt(d),
q.dtype,
blocked_k.dtype,
)
def flashinfer():
output, lse = mla_wrapper.run(
q_nope.view(-1, h_q, dv),
q_pe.view(-1, h_q, d - dv),
blocked_k_nope,
blocked_k_pe,
return_lse=True)
return output.view(b, -1, h_q, dv), lse.view(b, h_q, 1)
out_flash, lse_flash = flashinfer()
t = triton.testing.do_bench(flashinfer)
return out_flash, lse_flash, t
@triton.jit
def _mla_attn_kernel(
Q_nope,
Q_pe,
Kv_c_cache,
K_pe_cache,
Req_to_tokens,
B_seq_len,
O,
sm_scale,
stride_q_nope_bs,
stride_q_nope_h,
stride_q_pe_bs,
stride_q_pe_h,
stride_kv_c_bs,
stride_k_pe_bs,
stride_req_to_tokens_bs,
stride_o_b,
stride_o_h,
stride_o_s,
BLOCK_H: tl.constexpr,
BLOCK_N: tl.constexpr,
NUM_KV_SPLITS: tl.constexpr,
PAGE_SIZE: tl.constexpr,
HEAD_DIM_CKV: tl.constexpr,
HEAD_DIM_KPE: tl.constexpr,
):
cur_batch = tl.program_id(1)
cur_head_id = tl.program_id(0)
split_kv_id = tl.program_id(2)
cur_batch_seq_len = tl.load(B_seq_len + cur_batch)
offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)
cur_head = cur_head_id * BLOCK_H + tl.arange(0, BLOCK_H)
offs_q_nope = cur_batch * stride_q_nope_bs + cur_head[:, None] * stride_q_nope_h + offs_d_ckv[
None, :]
q_nope = tl.load(Q_nope + offs_q_nope)
offs_d_kpe = tl.arange(0, HEAD_DIM_KPE)
offs_q_pe = cur_batch * stride_q_pe_bs + cur_head[:, None] * stride_q_pe_h + offs_d_kpe[None, :]
q_pe = tl.load(Q_pe + offs_q_pe)
e_max = tl.zeros([BLOCK_H], dtype=tl.float32) - float("inf")
e_sum = tl.zeros([BLOCK_H], dtype=tl.float32)
acc = tl.zeros([BLOCK_H, HEAD_DIM_CKV], dtype=tl.float32)
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
split_kv_start = kv_len_per_split * split_kv_id
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)
for start_n in range(split_kv_start, split_kv_end, BLOCK_N):
offs_n = start_n + tl.arange(0, BLOCK_N)
kv_page_number = tl.load(
Req_to_tokens + stride_req_to_tokens_bs * cur_batch + offs_n // PAGE_SIZE,
mask=offs_n < split_kv_end,
other=0,
)
kv_loc = kv_page_number * PAGE_SIZE + offs_n % PAGE_SIZE
offs_k_c = kv_loc[None, :] * stride_kv_c_bs + offs_d_ckv[:, None]
k_c = tl.load(Kv_c_cache + offs_k_c, mask=offs_n[None, :] < split_kv_end, other=0.0)
qk = tl.dot(q_nope, k_c.to(q_nope.dtype))
offs_k_pe = kv_loc[None, :] * stride_k_pe_bs + offs_d_kpe[:, None]
k_pe = tl.load(K_pe_cache + offs_k_pe, mask=offs_n[None, :] < split_kv_end, other=0.0)
qk += tl.dot(q_pe, k_pe.to(q_pe.dtype))
qk *= sm_scale
qk = tl.where(offs_n[None, :] < split_kv_end, qk, float("-inf"))
v_c = tl.trans(k_c)
n_e_max = tl.maximum(tl.max(qk, 1), e_max)
re_scale = tl.exp(e_max - n_e_max)
p = tl.exp(qk - n_e_max[:, None])
acc *= re_scale[:, None]
acc += tl.dot(p.to(v_c.dtype), v_c)
e_sum = e_sum * re_scale + tl.sum(p, 1)
e_max = n_e_max
offs_o = cur_batch * stride_o_b + cur_head[:,
None] * stride_o_h + split_kv_id * stride_o_s + offs_d_ckv[
None, :]
tl.store(O + offs_o, acc / e_sum[:, None])
offs_o_1 = cur_batch * stride_o_b + cur_head * stride_o_h + split_kv_id * stride_o_s + HEAD_DIM_CKV
tl.store(O + offs_o_1, e_max + tl.log(e_sum))
def _mla_attn(
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
attn_logits,
req_to_tokens,
b_seq_len,
num_kv_splits,
sm_scale,
page_size,
):
batch_size, head_num = q_nope.shape[0], q_nope.shape[1]
head_dim_ckv = q_nope.shape[-1]
head_dim_kpe = q_pe.shape[-1]
BLOCK_H = 16
BLOCK_N = 64
grid = (
triton.cdiv(head_num, BLOCK_H),
batch_size,
num_kv_splits,
)
_mla_attn_kernel[grid](
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
req_to_tokens,
b_seq_len,
attn_logits,
sm_scale,
# stride
q_nope.stride(0),
q_nope.stride(1),
q_pe.stride(0),
q_pe.stride(1),
kv_c_cache.stride(-2),
k_pe_cache.stride(-2),
req_to_tokens.stride(0),
attn_logits.stride(0),
attn_logits.stride(1),
attn_logits.stride(2),
BLOCK_H=BLOCK_H,
BLOCK_N=BLOCK_N,
NUM_KV_SPLITS=num_kv_splits,
PAGE_SIZE=page_size,
HEAD_DIM_CKV=head_dim_ckv,
HEAD_DIM_KPE=head_dim_kpe,
)
@triton.jit
def _mla_softmax_reducev_kernel(
Logits,
B_seq_len,
O,
stride_l_b,
stride_l_h,
stride_l_s,
stride_o_b,
stride_o_h,
NUM_KV_SPLITS: tl.constexpr,
HEAD_DIM_CKV: tl.constexpr,
):
cur_batch = tl.program_id(0)
cur_head = tl.program_id(1)
cur_batch_seq_len = tl.load(B_seq_len + cur_batch)
offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)
e_sum = 0.0
e_max = -float("inf")
acc = tl.zeros([HEAD_DIM_CKV], dtype=tl.float32)
offs_l = cur_batch * stride_l_b + cur_head * stride_l_h + offs_d_ckv
offs_l_1 = cur_batch * stride_l_b + cur_head * stride_l_h + HEAD_DIM_CKV
for split_kv_id in range(0, NUM_KV_SPLITS):
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
split_kv_start = kv_len_per_split * split_kv_id
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)
if split_kv_end > split_kv_start:
logits = tl.load(Logits + offs_l + split_kv_id * stride_l_s)
logits_1 = tl.load(Logits + offs_l_1 + split_kv_id * stride_l_s)
n_e_max = tl.maximum(logits_1, e_max)
old_scale = tl.exp(e_max - n_e_max)
acc *= old_scale
exp_logic = tl.exp(logits_1 - n_e_max)
acc += exp_logic * logits
e_sum = e_sum * old_scale + exp_logic
e_max = n_e_max
tl.store(
O + cur_batch * stride_o_b + cur_head * stride_o_h + offs_d_ckv,
acc / e_sum,
)
def _mla_softmax_reducev(
logits,
o,
b_seq_len,
num_kv_splits,
):
batch_size, head_num, head_dim_ckv = o.shape[0], o.shape[1], o.shape[2]
grid = (batch_size, head_num)
_mla_softmax_reducev_kernel[grid](
logits,
b_seq_len,
o,
logits.stride(0),
logits.stride(1),
logits.stride(2),
o.stride(0),
o.stride(1),
NUM_KV_SPLITS=num_kv_splits,
HEAD_DIM_CKV=head_dim_ckv,
num_warps=4,
num_stages=2,
)
def mla_decode_triton(
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
o,
req_to_tokens,
b_seq_len,
attn_logits,
num_kv_splits,
sm_scale,
page_size,
):
assert num_kv_splits == attn_logits.shape[2]
_mla_attn(
q_nope,
q_pe,
kv_c_cache,
k_pe_cache,
attn_logits,
req_to_tokens,
b_seq_len,
num_kv_splits,
sm_scale,
page_size,
)
_mla_softmax_reducev(
attn_logits,
o,
b_seq_len,
num_kv_splits,
)
@torch.inference_mode()
def run_flash_mla_triton(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
blocked_v = blocked_k[..., :dv]
assert d > dv, "mla with rope dim should be larger than no rope dim"
q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
dv:].contiguous()
def flash_mla_triton():
num_kv_splits = 32
o = torch.empty([b * s_q, h_q, dv])
attn_logits = torch.empty([b * s_q, h_q, num_kv_splits, dv + 1])
mla_decode_triton(
q_nope.view(-1, h_q, dv), q_pe.view(-1, h_q, d - dv), blocked_k_nope.view(-1, dv),
blocked_k_pe.view(-1, d - dv), o, block_table, cache_seqlens, attn_logits,
num_kv_splits, 1 / math.sqrt(d), block_size)
return o.view([b, s_q, h_q, dv])
out_flash = flash_mla_triton()
t = triton.testing.do_bench(flash_mla_triton)
return out_flash, None, t
@torch.inference_mode()
def run_flash_mla_tilelang(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
assert d > dv, "mla with rope dim should be larger than no rope dim"
q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
dv:].contiguous()
dpe = d - dv
num_kv_splits = 1
BLOCK_N = 64
BLOCK_H = 64
out_partial = torch.empty(b, h_q, num_kv_splits, dv, dtype=dtype, device=q.device)
glse = torch.empty(b, h_q, num_kv_splits, dtype=dtype, device=q.device)
kernel = mla_decode_tilelang(b, h_q, h_kv, max_seqlen_pad, dv, dpe, BLOCK_N, BLOCK_H,
num_kv_splits, block_size)
def flash_mla_tilelang():
out = kernel(
q_nope.view(-1, h_q, dv),
q_pe.view(-1, h_q, dpe),
blocked_k_nope.view(-1, h_kv, dv),
blocked_k_pe.view(-1, h_kv, dpe),
block_table,
cache_seqlens,
glse,
out_partial,
)
return out.view([b, s_q, h_q, dv])
out_flash = flash_mla_tilelang()
t = do_bench(flash_mla_tilelang)
return out_flash, None, t
FUNC_TABLE = {
"torch": run_torch_mla,
"tilelang": run_flash_mla_tilelang,
"flash_mla": run_flash_mla,
"flashinfer": run_flashinfer,
"flash_mla_triton": run_flash_mla_triton,
}
def compare_ab(baseline, target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
print(
f"comparing {baseline} vs {target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}"
)
device = torch.device("cuda:0")
torch.set_default_dtype(dtype)
torch.set_default_device(device)
torch.cuda.set_device(device)
torch.manual_seed(0)
random.seed(0)
assert baseline in FUNC_TABLE
assert target in FUNC_TABLE
baseline_func = FUNC_TABLE[baseline]
target_func = FUNC_TABLE[target]
total_seqlens = cache_seqlens.sum().item()
max_seqlen = cache_seqlens.max().item()
max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
# print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")
q = torch.randn(b, s_q, h_q, d)
block_size = 64
block_table = torch.arange(
b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
out_a, lse_a, perf_a = baseline_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
torch.testing.assert_close(out_b.float(), out_a.float(), atol=1e-2, rtol=1e-2), "out"
if target not in ["flashinfer", "flash_mla_triton", "tilelang"
] and baseline not in ["flashinfer", "flash_mla_triton", "tilelang"]:
# flashinfer has a different lse return value
# flash_mla_triton and flash_mla_tilelang doesn't return lse
torch.testing.assert_close(lse_b.float(), lse_a.float(), atol=1e-2, rtol=1e-2), "lse"
FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
torch.finfo(dtype).bits // 8)
print(
f"perf {baseline}: {perf_a:.3f} ms, {FLOPS / 10 ** 9 / perf_a:.0f} TFLOPS, {bytes / 10 ** 6 / perf_a:.0f} GB/s"
)
print(
f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s"
)
return bytes / 10**6 / perf_a, bytes / 10**6 / perf_b
def compare_a(target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
print(
f"{target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}"
)
torch.set_default_dtype(dtype)
device = torch.device("cuda:0")
torch.set_default_device(device)
torch.cuda.set_device(device)
torch.manual_seed(0)
random.seed(0)
assert target in FUNC_TABLE
target_func = FUNC_TABLE[target]
total_seqlens = cache_seqlens.sum().item()
max_seqlen = cache_seqlens.max().item()
max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
# print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")
q = torch.randn(b, s_q, h_q, d)
block_size = 64
block_table = torch.arange(
b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
torch.finfo(dtype).bits // 8)
print(
f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s"
)
return bytes / 10**6 / perf_b
available_targets = [
"torch",
"tilelang",
"flash_mla",
"flashinfer",
"flash_mla_triton",
]
shape_configs = [{
"b":
batch,
"s_q":
1,
"cache_seqlens":
torch.tensor([seqlen + 2 * i for i in range(batch)], dtype=torch.int32, device="cuda"),
"h_q":
head,
"h_kv":
1,
"d":
512 + 64,
"dv":
512,
"causal":
True,
"dtype":
torch.float16
} for batch in [128] for seqlen in [1024, 2048, 4096, 8192, 16384, 32768] for head in [128]]
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--baseline", type=str, default="torch")
parser.add_argument("--target", type=str, default="tilelang")
parser.add_argument("--all", action="store_true")
parser.add_argument("--one", action="store_true")
parser.add_argument("--compare", action="store_true")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
benchmark_type = "all" if args.all else f"{args.baseline}_vs_{args.target}" if args.compare else args.target
with open(f"{benchmark_type}_perf.csv", "w") as fout:
fout.write("name,batch,seqlen,head,bw\n")
for shape in shape_configs:
if args.all:
for target in available_targets:
perf = compare_a(target, shape["b"], shape["s_q"], shape["cache_seqlens"],
shape["h_q"], shape["h_kv"], shape["d"], shape["dv"],
shape["causal"], shape["dtype"])
fout.write(
f'{target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n'
)
elif args.compare:
perfa, prefb = compare_ab(args.baseline, args.target, shape["b"], shape["s_q"],
shape["cache_seqlens"], shape["h_q"], shape["h_kv"],
shape["d"], shape["dv"], shape["causal"], shape["dtype"])
fout.write(
f'{args.baseline},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perfa:.0f}\n'
)
fout.write(
f'{args.target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{prefb:.0f}\n'
)
elif args.one:
perf = compare_a(args.target, shape["b"], shape["s_q"], shape["cache_seqlens"],
shape["h_q"], shape["h_kv"], shape["d"], shape["dv"],
shape["causal"], shape["dtype"])
fout.write(
f'{args.target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n'
)
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, einsum
import argparse
@tilelang.jit(
out_idx=[6], pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def flashattn(batch, heads, kv_head_num, seqlen_kv, dim, pe_dim, block_N, block_H, num_split,
softmax_scale):
scale = float(softmax_scale * 1.44269504) # log2(e)
dtype = "float16"
accum_dtype = "float"
kv_group_num = heads // kv_head_num
VALID_BLOCK_H = min(block_H, kv_group_num)
assert kv_head_num == 1, "kv_head_num must be 1"
@T.macro
def flash_attn(
Q: T.Tensor([batch, heads, dim], dtype),
Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
Output: T.Tensor([batch, heads, dim], dtype),
):
with T.Kernel(heads // min(block_H, kv_group_num), batch, threads=256) as (hid, bid):
Q_shared = T.alloc_shared([block_H, dim], dtype)
S_shared = T.alloc_shared([block_H, block_N], dtype)
Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)
KV_shared = T.alloc_shared([block_N, dim], dtype)
K_pe_shared = T.alloc_shared([block_N, pe_dim], dtype)
O_shared = T.alloc_shared([block_H, dim], dtype)
acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
scores_max = T.alloc_fragment([block_H], accum_dtype)
scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
scores_scale = T.alloc_fragment([block_H], accum_dtype)
scores_sum = T.alloc_fragment([block_H], accum_dtype)
logsum = T.alloc_fragment([block_H], accum_dtype)
cur_kv_head = hid // (kv_group_num // block_H)
T.annotate_layout({
O_shared: tilelang.layout.make_swizzled_layout(O_shared),
})
T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_shared)
T.copy(Q_pe[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_pe_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
loop_range = T.ceildiv(seqlen_kv, block_N)
for k in T.Pipelined(loop_range, num_stages=2):
T.copy(KV[bid, k * block_N:(k + 1) * block_N, cur_kv_head, :], KV_shared)
T.copy(K_pe[bid, k * block_N:(k + 1) * block_N, cur_kv_head, :], K_pe_shared)
T.gemm(
Q_shared,
KV_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullCol,
clear_accum=True)
T.gemm(
Q_pe_shared,
K_pe_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=False)
for i in T.Parallel(block_H):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(block_H, block_N):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
T.copy(acc_s, S_shared)
for i in T.Parallel(block_H):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
for i, j in T.Parallel(block_H, dim):
acc_o[i, j] *= scores_scale[i]
T.gemm(S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
for i, j in T.Parallel(block_H, dim):
acc_o[i, j] /= logsum[i]
T.copy(acc_o, O_shared)
T.copy(O_shared, Output[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :])
@T.macro
def flash_attn_split(
Q: T.Tensor([batch, heads, dim], dtype),
Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
glse: T.Tensor([batch, heads, num_split], dtype),
Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
):
with T.Kernel(
batch, heads // min(block_H, kv_group_num), num_split,
threads=256) as (bid, hid, bz):
Q_shared = T.alloc_shared([block_H, dim], dtype)
S_shared = T.alloc_shared([block_H, block_N], dtype)
Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)
KV_shared = T.alloc_shared([block_N, dim], dtype)
K_pe_shared = T.alloc_shared([block_N, pe_dim], dtype)
O_shared = T.alloc_shared([block_H, dim], dtype)
acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
scores_max = T.alloc_fragment([block_H], accum_dtype)
scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
scores_scale = T.alloc_fragment([block_H], accum_dtype)
scores_sum = T.alloc_fragment([block_H], accum_dtype)
logsum = T.alloc_fragment([block_H], accum_dtype)
cur_kv_head = hid // (kv_group_num // block_H)
T.use_swizzle(10)
T.annotate_layout({
O_shared: tilelang.layout.make_swizzled_layout(O_shared),
S_shared: tilelang.layout.make_swizzled_layout(S_shared),
})
T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_shared)
T.copy(Q_pe[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_pe_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
loop_range = T.ceildiv((seqlen_kv // num_split), block_N)
for k in T.Pipelined(loop_range, num_stages=2):
kv_start = (seqlen_kv // num_split) * bz + k * block_N
kv_end = (seqlen_kv // num_split) * bz + (k + 1) * block_N
T.copy(KV[bid, kv_start:kv_end, cur_kv_head, :], KV_shared)
T.copy(K_pe[bid, kv_start:kv_end, cur_kv_head, :], K_pe_shared)
T.clear(acc_s)
T.gemm(
Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
T.gemm(
Q_pe_shared,
K_pe_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=False)
for i in T.Parallel(block_H):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(block_H, block_N):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
T.copy(acc_s, S_shared)
T.copy(S_shared, acc_s_cast)
for i in T.Parallel(block_H):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
for i, j in T.Parallel(block_H, dim):
acc_o[i, j] *= scores_scale[i]
T.gemm(acc_s_cast, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
for i, j in T.Parallel(block_H, dim):
acc_o[i, j] /= logsum[i]
for i in T.Parallel(block_H):
logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
T.copy(logsum, glse[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, bz])
T.copy(acc_o, O_shared)
T.copy(O_shared, Output_partial[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H,
bz, :])
@T.macro
def combine(
glse: T.Tensor([batch, heads, num_split], dtype),
Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
Output: T.Tensor([batch, heads, dim], dtype),
):
with T.Kernel(heads, batch, threads=128) as (hid, bz):
po_local = T.alloc_fragment([dim], dtype)
o_accum_local = T.alloc_fragment([dim], accum_dtype)
lse_local_split = T.alloc_local([1], accum_dtype)
lse_logsum_local = T.alloc_local([1], accum_dtype)
lse_max_local = T.alloc_local([1], accum_dtype)
scale_local = T.alloc_local([1], accum_dtype)
T.annotate_layout({
lse_logsum_local: T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
})
T.clear(lse_logsum_local)
T.clear(o_accum_local)
lse_max_local[0] = -T.infinity(accum_dtype)
for k in T.serial(num_split):
lse_max_local[0] = T.max(lse_max_local[0], glse[bz, hid, k])
for k in T.Pipelined(num_split, num_stages=1):
lse_local_split[0] = glse[bz, hid, k]
lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
for k in T.serial(num_split):
for i in T.Parallel(dim):
po_local[i] = Output_partial[bz, hid, k, i]
lse_local_split[0] = glse[bz, hid, k]
scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
for i in T.Parallel(dim):
o_accum_local[i] += po_local[i] * scale_local[0]
for i in T.Parallel(dim):
Output[bz, hid, i] = o_accum_local[i]
@T.prim_func
def main_split(
Q: T.Tensor([batch, heads, dim], dtype),
Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
glse: T.Tensor([batch, heads, num_split], dtype),
Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
Output: T.Tensor([batch, heads, dim], dtype),
):
flash_attn_split(Q, Q_pe, KV, K_pe, glse, Output_partial)
combine(glse, Output_partial, Output)
@T.prim_func
def main_no_split(
Q: T.Tensor([batch, heads, dim], dtype),
Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
glse: T.Tensor([batch, heads, num_split], dtype),
Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
Output: T.Tensor([batch, heads, dim], dtype),
):
flash_attn(Q, Q_pe, KV, K_pe, Output)
if num_split > 1:
return main_split
else:
return main_no_split
def ref_program(q, q_pe, kv, k_pe, glse, Output_partial):
# """
# Inputs:
# - q (Tensor): [batch, heads, dim]
# - q_pe (Tensor): [batch, heads, pe_dim]
# - kv (Tensor): [batch, seqlen_kv, kv_head_num, dim]
# - k_pe (Tensor): [batch, seqlen_kv, kv_head_num, pe_dim]
# - glse (Tensor): [batch, heads, num_split]
# - Output_partial (Tensor): [batch, heads, num_split, dim]
# Outputs:
# - output (Tensor): [batch, heads, dim]
# """
dim = q.shape[-1]
pe_dim = q_pe.shape[-1]
num_head_groups = q.shape[1] // kv.shape[2]
scale = (dim + pe_dim)**0.5
q = rearrange(
q, 'b (h g) d -> b g h d', g=num_head_groups) # [batch_size, num_head_groups, groups, dim]
q_pe = rearrange(
q_pe, 'b (h g) d -> b g h d',
g=num_head_groups) # [batch_size, num_head_groups, groups, pe_dim]
kv = rearrange(kv, 'b n h d -> b h n d') # [batch_size, groups, seqlen_kv, dim]
k_pe = rearrange(k_pe, 'b n h d -> b h n d') # [batch_size, num_head_groups, groups, pe_dim]
query = torch.concat([q, q_pe], dim=-1)
key = torch.concat([kv, k_pe], dim=-1)
scores = einsum(
query, key,
'b g h d, b h s d -> b g h s') # [batch_size, num_head_groups, groups, seqlen_kv]
attention = F.softmax(
scores / scale, dim=-1) # [batch_size, num_head_groups, groups, seqlen_kv]
out = einsum(attention, kv,
'b g h s, b h s d -> b g h d') # [batch_size, num_head_groups, groups, dim]
out = rearrange(out, 'b g h d -> b (h g) d') # [batch_size, heads, dim]
return out
def main(
batch=1,
heads=128,
kv_heads=1,
kv_ctx=8192,
dim=512,
pe_dim=64,
):
qk_flops = 2 * batch * heads * kv_ctx * (dim + pe_dim)
pv_flops = 2 * batch * heads * kv_ctx * dim
total_flops = qk_flops + pv_flops
BLOCK_N = 64
BLOCK_H = min(64, heads // kv_heads)
num_split = 1
softmax_scale = (dim + pe_dim)**-0.5
kernel = flashattn(batch, heads, kv_heads, kv_ctx, dim, pe_dim, BLOCK_N, BLOCK_H, num_split,
softmax_scale)
profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Randn)
profiler.assert_allclose(ref_program, rtol=1e-4, atol=1e-4)
latency = profiler.do_bench(warmup=500)
print(f"Latency: {latency} ms")
print(f"TFlops: {total_flops / latency * 1e-9} TFlops")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch', type=int, default=132, help='batch size')
parser.add_argument('--heads', type=int, default=128, help='q heads number')
parser.add_argument('--kv_heads', type=int, default=1, help='kv heads number')
parser.add_argument('--kv_ctx', type=int, default=8192, help='kv context length')
parser.add_argument('--dim', type=int, default=512, help='head dim')
parser.add_argument('--pe_dim', type=int, default=64, help='pe head dim')
args = parser.parse_args()
batch, heads, kv_heads, kv_ctx, dim, pe_dim = args.batch, args.heads, args.kv_heads, args.kv_ctx, args.dim, args.pe_dim
main(batch, heads, kv_heads, kv_ctx, dim, pe_dim)
import torch
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import argparse
from tilelang.profiler import do_bench
import math
@tilelang.jit(
out_idx=[8], pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def mla_decode_tilelang(batch,
h_q,
h_kv,
max_seqlen_pad,
dv,
dpe,
block_N,
block_H,
num_split,
block_size,
softmax_scale=None):
if softmax_scale is None:
softmax_scale = (dv + dpe)**-0.5
scale = float(softmax_scale * 1.44269504) # log2(e)
dtype = "float16"
accum_dtype = "float"
kv_group_num = h_q // h_kv
VALID_BLOCK_H = min(block_H, kv_group_num)
assert h_kv == 1, "h_kv must be 1"
assert block_size >= block_N and block_size % block_N == 0, "block_size must be larger than block_N and a multiple of block_N"
@T.macro
def flash_mla_kernel(
Q: T.Tensor([batch, h_q, dv], dtype),
Q_pe: T.Tensor([batch, h_q, dpe], dtype),
KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
BLOCK_TABLE: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
CACHE_SEQLENS: T.Tensor([batch], "int32"),
Output: T.Tensor([batch, h_q, dv], dtype),
):
with T.Kernel(batch, h_q // min(block_H, kv_group_num), threads=256) as (bx, by):
Q_shared = T.alloc_shared([block_H, dv], dtype)
S_shared = T.alloc_shared([block_H, block_N], dtype)
Q_pe_shared = T.alloc_shared([block_H, dpe], dtype)
KV_shared = T.alloc_shared([block_N, dv], dtype)
K_pe_shared = T.alloc_shared([block_N, dpe], dtype)
O_shared = T.alloc_shared([block_H, dv], dtype)
acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
acc_o = T.alloc_fragment([block_H, dv], accum_dtype)
scores_max = T.alloc_fragment([block_H], accum_dtype)
scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
scores_scale = T.alloc_fragment([block_H], accum_dtype)
scores_sum = T.alloc_fragment([block_H], accum_dtype)
logsum = T.alloc_fragment([block_H], accum_dtype)
cur_kv_head = by // (kv_group_num // block_H)
T.use_swizzle(10)
T.annotate_layout({
O_shared: tilelang.layout.make_swizzled_layout(O_shared),
S_shared: tilelang.layout.make_swizzled_layout(S_shared),
})
T.copy(Q[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_shared)
T.copy(Q_pe[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_pe_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
loop_range = T.ceildiv(CACHE_SEQLENS[bx], block_N)
for kr in T.Pipelined(loop_range, num_stages=2):
k = loop_range - 1 - kr
kv_start = BLOCK_TABLE[bx, (k * block_N) //
block_size] * block_size + (k * block_N) % block_size
T.copy(KV[kv_start:kv_start + block_N, cur_kv_head, :], KV_shared)
T.copy(K_pe[kv_start:kv_start + block_N, cur_kv_head, :], K_pe_shared)
T.clear(acc_s)
T.gemm(
Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
T.gemm(
Q_pe_shared,
K_pe_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
if kr == 0:
for i, j in T.Parallel(block_H, block_N):
acc_s[i, j] = T.if_then_else(k * block_N + j >= CACHE_SEQLENS[bx],
-T.infinity(accum_dtype), acc_s[i, j])
T.reduce_max(acc_s, scores_max, dim=1, clear=False)
for i in T.Parallel(block_H):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(block_H, block_N):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
T.copy(acc_s, S_shared)
for i in T.Parallel(block_H):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
for i, j in T.Parallel(block_H, dv):
acc_o[i, j] *= scores_scale[i]
T.gemm(S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
for i, j in T.Parallel(block_H, dv):
acc_o[i, j] /= logsum[i]
T.copy(acc_o, O_shared)
T.copy(O_shared, Output[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :])
@T.macro
def flash_mla_split_kv_kernel(
Q: T.Tensor([batch, h_q, dv], dtype),
Q_pe: T.Tensor([batch, h_q, dpe], dtype),
KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
BLOCK_TABLE: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
CACHE_SEQLENS: T.Tensor([batch], "int32"),
glse: T.Tensor([batch, h_q, num_split], dtype),
Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
):
with T.Kernel(
batch, h_q // min(block_H, kv_group_num), num_split, threads=256) as (bx, by, bz):
Q_shared = T.alloc_shared([block_H, dv], dtype)
S_shared = T.alloc_shared([block_H, block_N], dtype)
Q_pe_shared = T.alloc_shared([block_H, dpe], dtype)
KV_shared = T.alloc_shared([block_N, dv], dtype)
K_pe_shared = T.alloc_shared([block_N, dpe], dtype)
O_shared = T.alloc_shared([block_H, dv], dtype)
acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
acc_o = T.alloc_fragment([block_H, dv], accum_dtype)
scores_max = T.alloc_fragment([block_H], accum_dtype)
scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
scores_scale = T.alloc_fragment([block_H], accum_dtype)
scores_sum = T.alloc_fragment([block_H], accum_dtype)
logsum = T.alloc_fragment([block_H], accum_dtype)
cur_kv_head = by // (kv_group_num // block_H)
T.use_swizzle(10)
T.annotate_layout({
O_shared: tilelang.layout.make_swizzled_layout(O_shared),
S_shared: tilelang.layout.make_swizzled_layout(S_shared),
})
T.copy(Q[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_shared)
T.copy(Q_pe[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_pe_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
total_blocks = T.ceildiv(CACHE_SEQLENS[bx], block_N)
blocks_per_split = T.floordiv(total_blocks, num_split)
remaining_blocks = T.floormod(total_blocks, num_split)
loop_range = (blocks_per_split + T.if_then_else(bz < remaining_blocks, 1, 0))
start = (blocks_per_split * bz + T.min(bz, remaining_blocks)) * block_N
for k in T.Pipelined(loop_range, num_stages=2):
kv_start = BLOCK_TABLE[bx, (start + k * block_N) //
block_size] * block_size + (k * block_N) % block_size
T.copy(KV[kv_start:kv_start + block_N, cur_kv_head, :], KV_shared)
T.copy(K_pe[kv_start:kv_start + block_N, cur_kv_head, :], K_pe_shared)
T.clear(acc_s)
T.gemm(
Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
T.gemm(
Q_pe_shared,
K_pe_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
for i, j in T.Parallel(block_H, block_N):
acc_s[i, j] = T.if_then_else(start + k * block_N + j >= CACHE_SEQLENS[bx],
-T.infinity(accum_dtype), acc_s[i, j])
T.reduce_max(acc_s, scores_max, dim=1, clear=False)
for i in T.Parallel(block_H):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(block_H, block_N):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
T.copy(acc_s, S_shared)
T.copy(S_shared, acc_s_cast)
for i in T.Parallel(block_H):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
for i, j in T.Parallel(block_H, dv):
acc_o[i, j] *= scores_scale[i]
T.gemm(acc_s_cast, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
for i, j in T.Parallel(block_H, dv):
acc_o[i, j] /= logsum[i]
for i in T.Parallel(block_H):
logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
T.copy(logsum, glse[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, bz])
T.copy(acc_o, O_shared)
T.copy(O_shared, Output_partial[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, bz, :])
@T.macro
def combine(
glse: T.Tensor([batch, h_q, num_split], dtype),
Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
Output: T.Tensor([batch, h_q, dv], dtype),
):
with T.Kernel(h_q, batch, threads=128) as (by, bz):
po_local = T.alloc_fragment([dv], dtype)
o_accum_local = T.alloc_fragment([dv], accum_dtype)
lse_local_split = T.alloc_local([1], accum_dtype)
lse_logsum_local = T.alloc_local([1], accum_dtype)
lse_max_local = T.alloc_local([1], accum_dtype)
scale_local = T.alloc_local([1], accum_dtype)
T.annotate_layout({
lse_logsum_local: T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
})
T.clear(lse_logsum_local)
T.clear(o_accum_local)
lse_max_local[0] = -T.infinity(accum_dtype)
for k in T.serial(num_split):
lse_max_local[0] = T.max(lse_max_local[0], glse[bz, by, k])
for k in T.Pipelined(num_split, num_stages=1):
lse_local_split[0] = glse[bz, by, k]
lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
for k in T.serial(num_split):
for i in T.Parallel(dv):
po_local[i] = Output_partial[bz, by, k, i]
lse_local_split[0] = glse[bz, by, k]
scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
for i in T.Parallel(dv):
o_accum_local[i] += po_local[i] * scale_local[0]
for i in T.Parallel(dv):
Output[bz, by, i] = o_accum_local[i]
@T.prim_func
def main_split(
Q: T.Tensor([batch, h_q, dv], dtype),
Q_pe: T.Tensor([batch, h_q, dpe], dtype),
KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
block_table: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
cache_seqlens: T.Tensor([batch], "int32"),
glse: T.Tensor([batch, h_q, num_split], dtype),
Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
Output: T.Tensor([batch, h_q, dv], dtype),
):
flash_mla_split_kv_kernel(Q, Q_pe, KV, K_pe, block_table, cache_seqlens, glse,
Output_partial)
combine(glse, Output_partial, Output)
@T.prim_func
def main_no_split(
Q: T.Tensor([batch, h_q, dv], dtype),
Q_pe: T.Tensor([batch, h_q, dpe], dtype),
KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
block_table: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
cache_seqlens: T.Tensor([batch], "int32"),
glse: T.Tensor([batch, h_q, num_split], dtype),
Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
Output: T.Tensor([batch, h_q, dv], dtype),
):
flash_mla_kernel(Q, Q_pe, KV, K_pe, block_table, cache_seqlens, Output)
if num_split > 1:
return main_split
else:
return main_no_split
def scaled_dot_product_attention(query, key, value, h_q, h_kv, is_causal=False):
query = query.float()
key = key.float()
value = value.float()
key = key.repeat_interleave(h_q // h_kv, dim=0)
value = value.repeat_interleave(h_q // h_kv, dim=0)
attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
if is_causal:
s_q = query.shape[-2]
s_k = key.shape[-2]
attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype, device=query.device)
temp_mask = torch.ones(
s_q, s_k, dtype=torch.bool, device=query.device).tril(diagonal=s_k - s_q)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
attn_weight += attn_bias
lse = attn_weight.logsumexp(dim=-1)
attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
return attn_weight @ value, lse
@torch.inference_mode()
def run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
h_kv, d, dv, causal, dtype):
# q: [b, s_q, h_q, d]
# block_table: [b, max_seqlen_pad // block_size]
# blocked_k: [b * max_seqlen_pad // block_size, block_size, h_kv, d]
# cache_seqlens: [b]
blocked_v = blocked_k[..., :dv]
def ref_mla():
out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32, device=q.device)
lse = torch.empty(b, h_q, s_q, dtype=torch.float32, device=q.device)
for i in range(b):
begin = i * max_seqlen_pad
end = begin + cache_seqlens[i]
O, LSE = scaled_dot_product_attention(
q[i].transpose(0, 1),
blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
h_q,
h_kv,
is_causal=causal,
)
out[i] = O.transpose(0, 1)
lse[i] = LSE
return out.to(dtype), lse.to(dtype)
out_torch, _ = ref_mla()
return out_torch
def run_tilelang_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens,
h_q, h_kv, d, dv, causal, dtype):
assert d > dv, "mla with rope dim should be larger than no rope dim"
q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
dv:].contiguous()
dpe = d - dv
num_kv_splits = 1
BLOCK_N = 64
BLOCK_H = min(64, h_q // h_kv)
softmax_scale = d**-0.5
out_partial = torch.empty(b, h_q, num_kv_splits, dv, dtype=dtype, device=q.device)
glse = torch.empty(b, h_q, num_kv_splits, dtype=dtype, device=q.device)
kernel = mla_decode_tilelang(b, h_q, h_kv, max_seqlen_pad, dv, dpe, BLOCK_N, BLOCK_H,
num_kv_splits, block_size, softmax_scale)
profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Randn)
def flash_mla_tilelang():
out = profiler.func(
q_nope.view(-1, h_q, dv),
q_pe.view(-1, h_q, dpe),
blocked_k_nope.view(-1, h_kv, dv),
blocked_k_pe.view(-1, h_kv, dpe),
block_table,
cache_seqlens,
glse,
out_partial,
)
return out.view([b, s_q, h_q, dv])
out_flash = flash_mla_tilelang()
t = do_bench(flash_mla_tilelang)
out_ref = run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
torch.testing.assert_close(out_flash, out_ref, rtol=0.01, atol=0.01)
print("All close")
return out_flash, t
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch', type=int, default=128, help='batch size')
parser.add_argument('--h_q', type=int, default=128, help='q heads number')
parser.add_argument('--h_kv', type=int, default=1, help='kv heads number')
parser.add_argument('--cache_seqlen', type=int, default=8192, help='kv cache context length')
parser.add_argument('--d', type=int, default=576, help='query/key head dim, d = dv + dpe')
parser.add_argument('--dv', type=int, default=512, help='value head dim')
args = parser.parse_args()
b, h_q, h_kv, cache_seqlen, d, dv = args.batch, args.h_q, args.h_kv, args.cache_seqlen, args.d, args.dv
device = "cuda"
dtype = torch.float16
s_q = 1 # for decode, s_q = 1
block_size = 64
cache_seqlens = torch.tensor([cache_seqlen + 2 * i for i in range(b)],
dtype=torch.int32,
device=device)
dpe = d - dv
causal = True
total_seqlens = cache_seqlens.sum().item()
mean_seqlens = cache_seqlens.float().mean().int().item()
max_seqlen = cache_seqlens.max().item()
max_seqlen_pad = math.ceil(max_seqlen / 256) * 256
total_flops = s_q * total_seqlens * h_q * d * 2
q = torch.randn(b, s_q, h_q, d, dtype=dtype, device=device)
block_table = torch.arange(
b * max_seqlen_pad // block_size, dtype=torch.int32,
device=device).view(b, max_seqlen_pad // block_size)
blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d, dtype=dtype, device=device)
out_flash, latency = run_tilelang_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
print("Tile-lang: {:.2f} ms".format(latency))
print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from tilelang.carver.arch import driver
from einops import rearrange, einsum
import argparse
@tilelang.jit(
out_idx=[6], pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def flashattn(batch, heads, kv_head_num, seqlen_kv, dim, pe_dim, block_N, block_H, num_split):
scale = (1.0 / (dim + pe_dim))**0.5 * 1.44269504 # log2(e)
dtype = "float16"
accum_dtype = "float"
kv_group_num = heads // kv_head_num
VALID_BLOCK_H = min(block_H, kv_group_num)
assert kv_head_num == 1, "kv_head_num must be 1"
sm_num = driver.get_num_sms()
@T.prim_func
def main_split_persistent(
Q: T.Tensor([batch, heads, dim], dtype),
Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
glse: T.Tensor([batch, heads, num_split], dtype),
Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
Output: T.Tensor([batch, heads, dim], dtype),
):
with T.Kernel(sm_num, threads=256) as (block_id):
Q_shared = T.alloc_shared([block_H, dim], dtype)
S_shared = T.alloc_shared([block_H, block_N], dtype)
Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)
KV_shared = T.alloc_shared([block_N, dim], dtype)
K_pe_shared = T.alloc_shared([block_N, pe_dim], dtype)
# O_shared = T.alloc_shared([block_H, dim], dtype)
acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
scores_max = T.alloc_fragment([block_H], accum_dtype)
scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
scores_scale = T.alloc_fragment([block_H], accum_dtype)
scores_sum = T.alloc_fragment([block_H], accum_dtype)
logsum = T.alloc_fragment([block_H], accum_dtype)
po_local = T.alloc_fragment([dim], dtype)
o_accum_local = T.alloc_fragment([dim], accum_dtype)
lse_local_split = T.alloc_local([1], accum_dtype)
lse_logsum_local = T.alloc_local([1], accum_dtype)
lse_max_local = T.alloc_local([1], accum_dtype)
scale_local = T.alloc_local([1], accum_dtype)
T.annotate_layout({
# O_shared: tilelang.layout.make_swizzled_layout(O_shared),
S_shared: tilelang.layout.make_swizzled_layout(S_shared),
lse_logsum_local: T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
})
T.use_swizzle(10)
total_tiles = batch * (heads // min(block_H, kv_group_num)) * num_split
waves = T.ceildiv(total_tiles, sm_num)
for w in T.serial(waves):
tile_id = sm_num * w + block_id
bid = tile_id // ((heads // min(block_H, kv_group_num)) * num_split)
hid = tile_id // num_split % (heads // min(block_H, kv_group_num))
sid = tile_id % num_split
cur_kv_head = hid // (kv_group_num // block_H)
if bid < batch and hid * VALID_BLOCK_H < heads and sid < num_split:
T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_shared)
T.copy(Q_pe[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_pe_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
loop_range = T.ceildiv((seqlen_kv // num_split), block_N)
for k in T.Pipelined(loop_range, num_stages=2):
kv_start = (seqlen_kv // num_split) * sid + k * block_N
kv_end = (seqlen_kv // num_split) * sid + (k + 1) * block_N
T.copy(KV[bid, kv_start:kv_end, cur_kv_head, :], KV_shared)
T.copy(K_pe[bid, kv_start:kv_end, cur_kv_head, :], K_pe_shared)
T.clear(acc_s)
T.gemm(
Q_shared,
KV_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)
T.gemm(
Q_pe_shared,
K_pe_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=False)
for i in T.Parallel(block_H):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale -
scores_max[i] * scale)
for i, j in T.Parallel(block_H, block_N):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
T.copy(acc_s, S_shared)
T.copy(S_shared, acc_s_cast)
for i in T.Parallel(block_H):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
for i, j in T.Parallel(block_H, dim):
acc_o[i, j] *= scores_scale[i]
T.gemm(acc_s_cast, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
for i, j in T.Parallel(block_H, dim):
acc_o[i, j] /= logsum[i]
for i in T.Parallel(block_H):
logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
T.copy(logsum, glse[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, sid])
# T.copy(acc_o, O_shared)
T.copy(
acc_o, Output_partial[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H,
sid, :])
T.sync_grid()
waves = T.ceildiv(heads * batch, sm_num)
for w in T.serial(waves):
tile_id = sm_num * w + block_id
hid = tile_id // batch
bid = tile_id % batch
if bid < batch and hid < heads:
T.clear(lse_logsum_local)
T.clear(o_accum_local)
lse_max_local[0] = -T.infinity(accum_dtype)
for k in T.serial(num_split):
lse_max_local[0] = T.max(lse_max_local[0], glse[bid, hid, k])
for k in T.Pipelined(num_split, num_stages=1):
lse_local_split[0] = glse[bid, hid, k]
lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
for k in T.serial(num_split):
for i in T.Parallel(dim):
po_local[i] = Output_partial[bid, hid, k, i]
lse_local_split[0] = glse[bid, hid, k]
scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
for i in T.Parallel(dim):
o_accum_local[i] += po_local[i] * scale_local[0]
for i in T.Parallel(dim):
Output[bid, hid, i] = o_accum_local[i]
return main_split_persistent
def ref_program(q, q_pe, kv, k_pe, glse, Output_partial):
# """
# Inputs:
# - q (Tensor): [batch, heads, dim]
# - q_pe (Tensor): [batch, heads, pe_dim]
# - kv (Tensor): [batch, seqlen_kv, kv_head_num, dim]
# - k_pe (Tensor): [batch, seqlen_kv, kv_head_num, pe_dim]
# - glse (Tensor): [batch, heads, num_split]
# - Output_partial (Tensor): [batch, heads, num_split, dim]
# Outputs:
# - output (Tensor): [batch, heads, dim]
# """
dim = q.shape[-1]
pe_dim = q_pe.shape[-1]
num_head_groups = q.shape[1] // kv.shape[2]
scale = (dim + pe_dim)**0.5
q = rearrange(
q, 'b (h g) d -> b g h d', g=num_head_groups) # [batch_size, num_head_groups, groups, dim]
q_pe = rearrange(
q_pe, 'b (h g) d -> b g h d',
g=num_head_groups) # [batch_size, num_head_groups, groups, pe_dim]
kv = rearrange(kv, 'b n h d -> b h n d') # [batch_size, groups, seqlen_kv, dim]
k_pe = rearrange(k_pe, 'b n h d -> b h n d') # [batch_size, num_head_groups, groups, pe_dim]
query = torch.concat([q, q_pe], dim=-1)
key = torch.concat([kv, k_pe], dim=-1)
scores = einsum(
query, key,
'b g h d, b h s d -> b g h s') # [batch_size, num_head_groups, groups, seqlen_kv]
attention = F.softmax(
scores / scale, dim=-1) # [batch_size, num_head_groups, groups, seqlen_kv]
out = einsum(attention, kv,
'b g h s, b h s d -> b g h d') # [batch_size, num_head_groups, groups, dim]
out = rearrange(out, 'b g h d -> b (h g) d') # [batch_size, heads, dim]
return out
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--batch', type=int, default=128, help='batch size')
parser.add_argument('--heads', type=int, default=128, help='q heads number')
parser.add_argument('--kv_heads', type=int, default=1, help='kv heads number')
parser.add_argument('--kv_ctx', type=int, default=8192, help='kv context length')
parser.add_argument('--dim', type=int, default=512, help='head dim')
parser.add_argument('--pe_dim', type=int, default=64, help='pe head dim')
args = parser.parse_args()
batch, heads, kv_heads, kv_ctx, dim, pe_dim = args.batch, args.heads, args.kv_heads, args.kv_ctx, args.dim, args.pe_dim
qk_flops = 2 * batch * heads * kv_ctx * (dim + pe_dim)
pv_flops = 2 * batch * heads * kv_ctx * dim
total_flops = qk_flops + pv_flops
BLOCK_N = 64
BLOCK_H = 64
num_split = 2
kernel = flashattn(batch, heads, kv_heads, kv_ctx, dim, pe_dim, BLOCK_N, BLOCK_H, num_split)
print(kernel.get_kernel_source())
profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Randn)
profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
latency = profiler.do_bench(warmup=500)
print(f"Latency: {latency} ms")
print(f"TFlops: {total_flops / latency * 1e-9} TFlops")
if __name__ == "__main__":
main()
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, einsum
import argparse
@tilelang.jit(
out_idx=[6],
pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
},
compile_flags=[
"-O3", "-Wno-deprecated-declarations", "-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__", "-U__CUDA_NO_HALF2_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__", "--expt-relaxed-constexpr", "--expt-extended-lambda",
"--ptxas-options=-v,--register-usage-level=10", "-DNDEBUG"
],
)
def flashattn(batch, heads, kv_head_num, seqlen_kv, dim, pe_dim, block_N, block_H, num_split,
softmax_scale):
sm_scale = float(softmax_scale * 1.44269504) # log2(e)
dtype = "float16"
accum_dtype = "float"
kv_group_num = heads // kv_head_num
VALID_BLOCK_H = min(block_H, kv_group_num)
assert kv_head_num == 1, "kv_head_num must be 1"
@T.macro
def flash_attn(
Q: T.Tensor([batch, heads, dim], dtype),
Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
Output: T.Tensor([batch, heads, dim], dtype),
):
with T.Kernel(heads // min(block_H, kv_group_num), batch, threads=384) as (hid, bid):
Q_shared_l = T.alloc_shared([block_H, dim // 2], dtype)
Q_shared_r = T.alloc_shared([block_H, dim // 2], dtype)
Q_tail_shared = T.alloc_shared([block_H, pe_dim], dtype)
KV_shared_0_l = T.alloc_shared([block_N, dim // 2], dtype)
KV_shared_0_r = T.alloc_shared([block_N, dim // 2], dtype)
KV_shared_1_l = T.alloc_shared([block_N, dim // 2], dtype)
KV_shared_1_r = T.alloc_shared([block_N, dim // 2], dtype)
K_tail_shared_0 = T.alloc_shared([block_N, pe_dim], dtype)
K_tail_shared_1 = T.alloc_shared([block_N, pe_dim], dtype)
O_shared_l = Q_shared_l
O_shared_r = Q_shared_r
acc_o_l = T.alloc_fragment([block_H, dim // 2], accum_dtype)
acc_o_r = T.alloc_fragment([block_H, dim // 2], accum_dtype)
acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
S_shared = T.alloc_shared([block_H, block_N], dtype)
sumexp = T.alloc_fragment([block_H], accum_dtype)
sum_exp_shared = T.alloc_shared([block_H], accum_dtype)
sumexp_i = T.alloc_fragment([block_H], accum_dtype)
alpha_shared = T.alloc_shared([block_H], accum_dtype, scope="shared")
alpha_local = T.alloc_fragment([block_H], accum_dtype)
m_i = T.alloc_fragment([block_H], accum_dtype)
m_i_prev = T.alloc_fragment([block_H], accum_dtype)
# TODO: Multi buffer
bar_q = T.alloc_barrier(arrive_count=384)
bar_k_0_ready = T.alloc_barrier(arrive_count=128)
bar_k_1_ready = T.alloc_barrier(arrive_count=128)
bar_k_0_free = T.alloc_barrier(arrive_count=256)
bar_k_1_free = T.alloc_barrier(arrive_count=256)
bar_sScale_and_sS_ready = T.alloc_barrier(arrive_count=256)
bar_sScale_and_sS_free = T.alloc_barrier(arrive_count=256)
cur_kv_head = hid // (kv_group_num // block_H)
NI = T.ceildiv((seqlen_kv // num_split), block_N)
tx = T.get_thread_binding()
T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, 0:dim // 2], Q_shared_l)
T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, dim // 2:dim], Q_shared_r)
T.copy(Q_pe[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_tail_shared)
T.barrier_arrive(bar_q)
if tx < 128:
T.set_max_nreg(240, 1)
T.fill(sumexp, 0)
T.fill(m_i, -2**30) # avoid -inf - inf to cause nan
T.fill(acc_o_l, 0)
T.barrier_wait(bar_q, 0)
for i_i in T.serial(T.ceildiv(NI, 2)):
# Buffer 0
T.barrier_wait(bar_k_0_ready[0], (i_i & 1))
T.clear(acc_s)
T.gemm(Q_shared_l, KV_shared_0_l, acc_s, transpose_B=True, wg_wait=-1)
T.gemm(Q_shared_r, KV_shared_0_r, acc_s, transpose_B=True, wg_wait=-1)
T.gemm(Q_tail_shared, K_tail_shared_0, acc_s, transpose_B=True, wg_wait=-1)
T.wait_wgmma(0)
if i_i != 0:
T.barrier_arrive(bar_sScale_and_sS_free)
T.barrier_wait(bar_sScale_and_sS_free, ((i_i * 2) & 1) ^ 1)
T.copy(m_i, m_i_prev)
T.reduce_max(acc_s, m_i, dim=1, clear=False)
for h_i in T.Parallel(block_H):
alpha_local[h_i] = T.exp2((m_i_prev[h_i] - m_i[h_i]) * sm_scale)
for h_i, bi_i in T.Parallel(block_H, block_N):
acc_s[h_i, bi_i] = T.exp2(acc_s[h_i, bi_i] * sm_scale - m_i[h_i] * sm_scale)
T.reduce_sum(acc_s, sumexp_i, dim=1) # is this a accumulate operator?
for h_i in T.Parallel(block_H):
sumexp[h_i] = sumexp[h_i] * alpha_local[h_i] + sumexp_i[h_i]
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_l[h_i, d_i] *= alpha_local[h_i]
T.copy(alpha_local, alpha_shared)
T.copy(acc_s, S_shared)
T.gemm(S_shared, KV_shared_0_l, acc_o_l)
T.barrier_arrive(bar_sScale_and_sS_ready)
T.barrier_arrive(bar_k_0_free[0])
# Buffer 1
T.barrier_wait(bar_k_1_ready[0], (i_i & 1))
T.clear(acc_s)
T.gemm(Q_shared_l, KV_shared_1_l, acc_s, transpose_B=True, wg_wait=-1)
T.gemm(Q_shared_r, KV_shared_1_r, acc_s, transpose_B=True, wg_wait=-1)
T.gemm(Q_tail_shared, K_tail_shared_1, acc_s, transpose_B=True, wg_wait=-1)
T.wait_wgmma(0)
T.barrier_arrive(bar_sScale_and_sS_free)
T.barrier_wait(bar_sScale_and_sS_free, ((i_i * 2 + 1) & 1) ^ 1)
T.copy(m_i, m_i_prev)
T.reduce_max(acc_s, m_i, dim=1, clear=False)
for h_i in T.Parallel(block_H):
alpha_local[h_i] = T.exp2((m_i_prev[h_i] - m_i[h_i]) * sm_scale)
for h_i, bi_i in T.Parallel(block_H, block_N):
acc_s[h_i, bi_i] = T.exp2(acc_s[h_i, bi_i] * sm_scale - m_i[h_i] * sm_scale)
T.reduce_sum(acc_s, sumexp_i, dim=1) # is this a accumulate operator?
for h_i in T.Parallel(block_H):
sumexp[h_i] = sumexp[h_i] * alpha_local[h_i] + sumexp_i[h_i]
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_l[h_i, d_i] *= alpha_local[h_i]
T.copy(alpha_local, alpha_shared)
T.copy(acc_s, S_shared)
T.gemm(S_shared, KV_shared_1_l, acc_o_l)
T.barrier_arrive(bar_sScale_and_sS_ready)
T.barrier_arrive(bar_k_1_free[0])
# Rescale
for h_i in T.Parallel(block_H):
sum_exp_shared[h_i] = sumexp[h_i]
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_l[h_i, d_i] /= sumexp[h_i]
for h_i in T.Parallel(block_H):
sumexp[h_i] = T.log2(sumexp[h_i]) + m_i[h_i] * sm_scale
T.copy(acc_o_l, O_shared_l)
T.copy(O_shared_l, Output[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H,
0:dim // 2])
elif tx >= 128 and tx < 256:
T.set_max_nreg(168, 1)
T.fill(acc_o_r, 0)
for i_i in T.serial(T.ceildiv(NI, 2)):
# Buffer 0
T.barrier_arrive(bar_sScale_and_sS_ready)
T.barrier_wait(bar_sScale_and_sS_ready, ((i_i * 2) & 1))
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_r[h_i, d_i] *= alpha_shared[h_i]
T.gemm(S_shared, KV_shared_0_r, acc_o_r)
T.barrier_arrive(bar_k_0_free[0])
T.barrier_arrive(bar_sScale_and_sS_free)
# Buffer 1
T.barrier_arrive(bar_sScale_and_sS_ready)
T.barrier_wait(bar_sScale_and_sS_ready, ((i_i * 2 + 1) & 1))
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_r[h_i, d_i] *= alpha_shared[h_i]
T.gemm(S_shared, KV_shared_1_r, acc_o_r)
T.barrier_arrive(bar_k_1_free[0])
if i_i != T.ceildiv(NI, 2) - 1:
T.barrier_arrive(bar_sScale_and_sS_free)
# Rescale
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_r[h_i, d_i] /= sum_exp_shared[h_i]
T.copy(acc_o_r, O_shared_r)
T.copy(O_shared_r, Output[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H,
dim // 2:dim])
elif tx >= 256:
# producer
T.set_max_nreg(80, 0)
for i_i in T.serial(T.ceildiv(NI, 2)):
# Buffer 0
T.barrier_wait(bar_k_0_free[0], ((i_i & 1) ^ 1))
for r in T.serial(4):
kv_indices = (i_i * 2) * block_N + r * 16 + (tx - 256) // 8
with T.attr("default", "async_scope", 1):
for u in T.serial(4):
for v in T.vectorized(8):
KV_shared_0_l[r * 16 + (tx - 256) // 8,
64 * u + (tx - 256) % 8 * 8 +
v] = KV[bid, kv_indices, cur_kv_head,
64 * u + (tx - 256) % 8 * 8 + v]
KV_shared_0_r[r * 16 + (tx - 256) // 8,
64 * u + (tx - 256) % 8 * 8 +
v] = KV[bid, kv_indices, cur_kv_head, dim // 2 +
64 * u + (tx - 256) % 8 * 8 + v]
with T.attr("default", "async_scope", 1):
for v in T.vectorized(8):
K_tail_shared_0[r * 16 + (tx - 256) // 8, (tx - 256) % 8 * 8 +
v] = K_pe[bid, kv_indices, cur_kv_head,
(tx - 256) % 8 * 8 + v]
T.cp_async_barrier_noinc(bar_k_0_ready[0])
# Buffer 1
T.barrier_wait(bar_k_1_free[0], ((i_i & 1) ^ 1))
for r in T.serial(4):
kv_indices = (i_i * 2 + 1) * block_N + r * 16 + (tx - 256) // 8
with T.attr("default", "async_scope", 1):
for u in T.serial(4):
for v in T.vectorized(8):
KV_shared_1_l[r * 16 + (tx - 256) // 8,
64 * u + (tx - 256) % 8 * 8 +
v] = KV[bid, kv_indices, cur_kv_head,
64 * u + (tx - 256) % 8 * 8 + v]
KV_shared_1_r[r * 16 + (tx - 256) // 8,
64 * u + (tx - 256) % 8 * 8 +
v] = KV[bid, kv_indices, cur_kv_head, dim // 2 +
64 * u + (tx - 256) % 8 * 8 + v]
with T.attr("default", "async_scope", 1):
for v in T.vectorized(8):
K_tail_shared_1[r * 16 + (tx - 256) // 8, (tx - 256) % 8 * 8 +
v] = K_pe[bid, kv_indices, cur_kv_head,
(tx - 256) % 8 * 8 + v]
T.cp_async_barrier_noinc(bar_k_1_ready[0])
@T.macro
def flash_attn_split(
Q: T.Tensor([batch, heads, dim], dtype),
Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
glse: T.Tensor([batch, heads, num_split], dtype),
Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
):
with T.Kernel(
batch, heads // min(block_H, kv_group_num), num_split,
threads=384) as (bid, hid, bz):
Q_shared_l = T.alloc_shared([block_H, dim // 2], dtype)
Q_shared_r = T.alloc_shared([block_H, dim // 2], dtype)
Q_tail_shared = T.alloc_shared([block_H, pe_dim], dtype)
KV_shared_0_l = T.alloc_shared([block_N, dim // 2], dtype)
KV_shared_0_r = T.alloc_shared([block_N, dim // 2], dtype)
KV_shared_1_l = T.alloc_shared([block_N, dim // 2], dtype)
KV_shared_1_r = T.alloc_shared([block_N, dim // 2], dtype)
K_tail_shared_0 = T.alloc_shared([block_N, pe_dim], dtype)
K_tail_shared_1 = T.alloc_shared([block_N, pe_dim], dtype)
O_shared_l = Q_shared_l
O_shared_r = Q_shared_r
acc_o_l = T.alloc_fragment([block_H, dim // 2], accum_dtype)
acc_o_r = T.alloc_fragment([block_H, dim // 2], accum_dtype)
acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
S_shared = T.alloc_shared([block_H, block_N], dtype)
sumexp = T.alloc_fragment([block_H], accum_dtype)
sum_exp_shared = T.alloc_shared([block_H], accum_dtype)
sumexp_i = T.alloc_fragment([block_H], accum_dtype)
alpha_shared = T.alloc_shared([block_H], accum_dtype, scope="shared")
alpha_local = T.alloc_fragment([block_H], accum_dtype)
m_i = T.alloc_fragment([block_H], accum_dtype)
m_i_prev = T.alloc_fragment([block_H], accum_dtype)
# TODO: Multi buffer
bar_q = T.alloc_barrier(arrive_count=384)
bar_k_0_ready = T.alloc_barrier(arrive_count=128)
bar_k_1_ready = T.alloc_barrier(arrive_count=128)
bar_k_0_free = T.alloc_barrier(arrive_count=256)
bar_k_1_free = T.alloc_barrier(arrive_count=256)
bar_sScale_and_sS_ready = T.alloc_barrier(arrive_count=256)
bar_sScale_and_sS_free = T.alloc_barrier(arrive_count=256)
cur_kv_head = hid // (kv_group_num // block_H)
NI = T.ceildiv((seqlen_kv // num_split), block_N)
tx = T.get_thread_binding()
T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, 0:dim // 2], Q_shared_l)
T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, dim // 2:dim], Q_shared_r)
T.copy(Q_pe[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_tail_shared)
T.barrier_arrive(bar_q)
if tx < 128:
T.set_max_nreg(240, 1)
T.fill(sumexp, 0)
T.fill(m_i, -2**30) # avoid -inf - inf to cause nan
T.fill(acc_o_l, 0)
T.barrier_wait(bar_q, 0)
for i_i in T.serial(T.ceildiv(NI, 2)):
# Buffer 0
T.barrier_wait(bar_k_0_ready[0], (i_i & 1))
T.clear(acc_s)
T.gemm(Q_shared_l, KV_shared_0_l, acc_s, transpose_B=True, wg_wait=-1)
T.gemm(Q_shared_r, KV_shared_0_r, acc_s, transpose_B=True, wg_wait=-1)
T.gemm(Q_tail_shared, K_tail_shared_0, acc_s, transpose_B=True, wg_wait=-1)
T.wait_wgmma(0)
if i_i != 0:
T.barrier_arrive(bar_sScale_and_sS_free)
T.barrier_wait(bar_sScale_and_sS_free, ((i_i * 2) & 1) ^ 1)
T.copy(m_i, m_i_prev)
T.reduce_max(acc_s, m_i, dim=1, clear=False)
for h_i in T.Parallel(block_H):
alpha_local[h_i] = T.exp2((m_i_prev[h_i] - m_i[h_i]) * sm_scale)
for h_i, bi_i in T.Parallel(block_H, block_N):
acc_s[h_i, bi_i] = T.exp2(acc_s[h_i, bi_i] * sm_scale - m_i[h_i] * sm_scale)
T.reduce_sum(acc_s, sumexp_i, dim=1) # is this a accumulate operator?
for h_i in T.Parallel(block_H):
sumexp[h_i] = sumexp[h_i] * alpha_local[h_i] + sumexp_i[h_i]
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_l[h_i, d_i] *= alpha_local[h_i]
T.copy(alpha_local, alpha_shared)
T.copy(acc_s, S_shared)
T.gemm(S_shared, KV_shared_0_l, acc_o_l)
T.barrier_arrive(bar_sScale_and_sS_ready)
T.barrier_arrive(bar_k_0_free[0])
# Buffer 1
T.barrier_wait(bar_k_1_ready[0], (i_i & 1))
T.clear(acc_s)
T.gemm(Q_shared_l, KV_shared_1_l, acc_s, transpose_B=True, wg_wait=-1)
T.gemm(Q_shared_r, KV_shared_1_r, acc_s, transpose_B=True, wg_wait=-1)
T.gemm(Q_tail_shared, K_tail_shared_1, acc_s, transpose_B=True, wg_wait=-1)
T.wait_wgmma(0)
T.barrier_arrive(bar_sScale_and_sS_free)
T.barrier_wait(bar_sScale_and_sS_free, ((i_i * 2 + 1) & 1) ^ 1)
T.copy(m_i, m_i_prev)
T.reduce_max(acc_s, m_i, dim=1, clear=False)
for h_i in T.Parallel(block_H):
alpha_local[h_i] = T.exp2((m_i_prev[h_i] - m_i[h_i]) * sm_scale)
for h_i, bi_i in T.Parallel(block_H, block_N):
acc_s[h_i, bi_i] = T.exp2(acc_s[h_i, bi_i] * sm_scale - m_i[h_i] * sm_scale)
T.reduce_sum(acc_s, sumexp_i, dim=1) # is this a accumulate operator?
for h_i in T.Parallel(block_H):
sumexp[h_i] = sumexp[h_i] * alpha_local[h_i] + sumexp_i[h_i]
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_l[h_i, d_i] *= alpha_local[h_i]
T.copy(alpha_local, alpha_shared)
T.copy(acc_s, S_shared)
T.gemm(S_shared, KV_shared_1_l, acc_o_l)
T.barrier_arrive(bar_sScale_and_sS_ready)
T.barrier_arrive(bar_k_1_free[0])
# Rescale
for h_i in T.Parallel(block_H):
sum_exp_shared[h_i] = sumexp[h_i]
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_l[h_i, d_i] /= sumexp[h_i]
for h_i in T.Parallel(block_H):
sumexp[h_i] = T.log2(sumexp[h_i]) + m_i[h_i] * sm_scale
T.copy(acc_o_l, O_shared_l)
T.copy(
O_shared_l, Output_partial[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H,
bz, 0:dim // 2])
T.copy(sumexp, glse[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, bz])
elif tx >= 128 and tx < 256:
T.set_max_nreg(168, 1)
T.fill(acc_o_r, 0)
for i_i in T.serial(T.ceildiv(NI, 2)):
# Buffer 0
T.barrier_arrive(bar_sScale_and_sS_ready)
T.barrier_wait(bar_sScale_and_sS_ready, ((i_i * 2) & 1))
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_r[h_i, d_i] *= alpha_shared[h_i]
T.gemm(S_shared, KV_shared_0_r, acc_o_r)
T.barrier_arrive(bar_k_0_free[0])
T.barrier_arrive(bar_sScale_and_sS_free)
# Buffer 1
T.barrier_arrive(bar_sScale_and_sS_ready)
T.barrier_wait(bar_sScale_and_sS_ready, ((i_i * 2 + 1) & 1))
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_r[h_i, d_i] *= alpha_shared[h_i]
T.gemm(S_shared, KV_shared_1_r, acc_o_r)
T.barrier_arrive(bar_k_1_free[0])
if i_i != T.ceildiv(NI, 2) - 1:
T.barrier_arrive(bar_sScale_and_sS_free)
# Rescale
for h_i, d_i in T.Parallel(block_H, dim // 2):
acc_o_r[h_i, d_i] /= sum_exp_shared[h_i]
T.copy(acc_o_r, O_shared_r)
T.copy(
O_shared_r, Output_partial[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H,
bz, dim // 2:dim])
elif tx >= 256:
# producer
T.set_max_nreg(80, 0)
for i_i in T.serial(T.ceildiv(NI, 2)):
# Buffer 0
T.barrier_wait(bar_k_0_free[0], ((i_i & 1) ^ 1))
for r in T.serial(4):
kv_indices = (seqlen_kv // num_split) * bz + (
i_i * 2) * block_N + r * 16 + (tx - 256) // 8
with T.attr("default", "async_scope", 1):
for u in T.serial(4):
for v in T.vectorized(8):
KV_shared_0_l[r * 16 + (tx - 256) // 8,
64 * u + (tx - 256) % 8 * 8 +
v] = KV[bid, kv_indices, cur_kv_head,
64 * u + (tx - 256) % 8 * 8 + v]
KV_shared_0_r[r * 16 + (tx - 256) // 8,
64 * u + (tx - 256) % 8 * 8 +
v] = KV[bid, kv_indices, cur_kv_head, dim // 2 +
64 * u + (tx - 256) % 8 * 8 + v]
with T.attr("default", "async_scope", 1):
for v in T.vectorized(8):
K_tail_shared_0[r * 16 + (tx - 256) // 8, (tx - 256) % 8 * 8 +
v] = K_pe[bid, kv_indices, cur_kv_head,
(tx - 256) % 8 * 8 + v]
T.cp_async_barrier_noinc(bar_k_0_ready[0])
# Buffer 1
T.barrier_wait(bar_k_1_free[0], ((i_i & 1) ^ 1))
for r in T.serial(4):
kv_indices = (seqlen_kv // num_split) * bz + (
i_i * 2 + 1) * block_N + r * 16 + (tx - 256) // 8
with T.attr("default", "async_scope", 1):
for u in T.serial(4):
for v in T.vectorized(8):
KV_shared_1_l[r * 16 + (tx - 256) // 8,
64 * u + (tx - 256) % 8 * 8 +
v] = KV[bid, kv_indices, cur_kv_head,
64 * u + (tx - 256) % 8 * 8 + v]
KV_shared_1_r[r * 16 + (tx - 256) // 8,
64 * u + (tx - 256) % 8 * 8 +
v] = KV[bid, kv_indices, cur_kv_head, dim // 2 +
64 * u + (tx - 256) % 8 * 8 + v]
with T.attr("default", "async_scope", 1):
for v in T.vectorized(8):
K_tail_shared_1[r * 16 + (tx - 256) // 8, (tx - 256) % 8 * 8 +
v] = K_pe[bid, kv_indices, cur_kv_head,
(tx - 256) % 8 * 8 + v]
T.cp_async_barrier_noinc(bar_k_1_ready[0])
@T.macro
def combine(
glse: T.Tensor([batch, heads, num_split], dtype),
Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
Output: T.Tensor([batch, heads, dim], dtype),
):
with T.Kernel(heads, batch, threads=128) as (hid, bz):
po_local = T.alloc_fragment([dim], dtype)
o_accum_local = T.alloc_fragment([dim], accum_dtype)
lse_local_split = T.alloc_local([1], accum_dtype)
lse_logsum_local = T.alloc_local([1], accum_dtype)
lse_max_local = T.alloc_local([1], accum_dtype)
scale_local = T.alloc_local([1], accum_dtype)
T.annotate_layout({
lse_logsum_local: T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
})
T.clear(lse_logsum_local)
T.clear(o_accum_local)
lse_max_local[0] = -T.infinity(accum_dtype)
for k in T.serial(num_split):
lse_max_local[0] = T.max(lse_max_local[0], glse[bz, hid, k])
for k in T.Pipelined(num_split, num_stages=1):
lse_local_split[0] = glse[bz, hid, k]
lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
for k in T.serial(num_split):
for i in T.Parallel(dim):
po_local[i] = Output_partial[bz, hid, k, i]
lse_local_split[0] = glse[bz, hid, k]
scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
for i in T.Parallel(dim):
o_accum_local[i] += po_local[i] * scale_local[0]
for i in T.Parallel(dim):
Output[bz, hid, i] = o_accum_local[i]
@T.prim_func
def main_split(
Q: T.Tensor([batch, heads, dim], dtype),
Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
glse: T.Tensor([batch, heads, num_split], dtype),
Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
Output: T.Tensor([batch, heads, dim], dtype),
):
flash_attn_split(Q, Q_pe, KV, K_pe, glse, Output_partial)
combine(glse, Output_partial, Output)
@T.prim_func
def main_no_split(
Q: T.Tensor([batch, heads, dim], dtype),
Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
glse: T.Tensor([batch, heads, num_split], dtype),
Output_partial: T.Tensor([batch, heads, num_split, dim], dtype),
Output: T.Tensor([batch, heads, dim], dtype),
):
flash_attn(Q, Q_pe, KV, K_pe, Output)
if num_split > 1:
return main_split
else:
return main_no_split
def ref_program(q, q_pe, kv, k_pe, glse, Output_partial):
# """
# Inputs:
# - q (Tensor): [batch, heads, dim]
# - q_pe (Tensor): [batch, heads, pe_dim]
# - kv (Tensor): [batch, seqlen_kv, kv_head_num, dim]
# - k_pe (Tensor): [batch, seqlen_kv, kv_head_num, pe_dim]
# - glse (Tensor): [batch, heads, num_split]
# - Output_partial (Tensor): [batch, heads, num_split, dim]
# Outputs:
# - output (Tensor): [batch, heads, dim]
# """
dim = q.shape[-1]
pe_dim = q_pe.shape[-1]
num_head_groups = q.shape[1] // kv.shape[2]
scale = (dim + pe_dim)**0.5
q = rearrange(
q, 'b (h g) d -> b g h d', g=num_head_groups) # [batch_size, num_head_groups, groups, dim]
q_pe = rearrange(
q_pe, 'b (h g) d -> b g h d',
g=num_head_groups) # [batch_size, num_head_groups, groups, pe_dim]
kv = rearrange(kv, 'b n h d -> b h n d') # [batch_size, groups, seqlen_kv, dim]
k_pe = rearrange(k_pe, 'b n h d -> b h n d') # [batch_size, num_head_groups, groups, pe_dim]
query = torch.concat([q, q_pe], dim=-1)
key = torch.concat([kv, k_pe], dim=-1)
scores = einsum(
query, key,
'b g h d, b h s d -> b g h s') # [batch_size, num_head_groups, groups, seqlen_kv]
attention = F.softmax(
scores / scale, dim=-1) # [batch_size, num_head_groups, groups, seqlen_kv]
out = einsum(attention, kv,
'b g h s, b h s d -> b g h d') # [batch_size, num_head_groups, groups, dim]
out = rearrange(out, 'b g h d -> b (h g) d') # [batch_size, heads, dim]
return out
def main(
batch=1,
heads=128,
kv_heads=1,
kv_ctx=8192,
dim=512,
pe_dim=64,
):
qk_flops = 2 * batch * heads * kv_ctx * (dim + pe_dim)
pv_flops = 2 * batch * heads * kv_ctx * dim
total_flops = qk_flops + pv_flops
BLOCK_N = 64
BLOCK_H = min(64, heads // kv_heads)
num_split = 1
softmax_scale = (dim + pe_dim)**-0.5
kernel = flashattn(batch, heads, kv_heads, kv_ctx, dim, pe_dim, BLOCK_N, BLOCK_H, num_split,
softmax_scale)
profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Randn)
profiler.assert_allclose(ref_program, rtol=1e-4, atol=1e-4)
latency = profiler.do_bench(warmup=500)
print(f"Latency: {latency} ms")
print(f"TFlops: {total_flops / latency * 1e-9} TFlops")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch', type=int, default=132, help='batch size')
parser.add_argument('--heads', type=int, default=128, help='q heads number')
parser.add_argument('--kv_heads', type=int, default=1, help='kv heads number')
parser.add_argument('--kv_ctx', type=int, default=8192, help='kv context length')
parser.add_argument('--dim', type=int, default=512, help='head dim')
parser.add_argument('--pe_dim', type=int, default=64, help='pe head dim')
args = parser.parse_args()
batch, heads, kv_heads, kv_ctx, dim, pe_dim = args.batch, args.heads, args.kv_heads, args.kv_ctx, args.dim, args.pe_dim
main(batch, heads, kv_heads, kv_ctx, dim, pe_dim)
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, einsum
import argparse
@tilelang.jit(
out_idx=[-1], pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def flashattn(batch, heads, kv_head_num, seqlen_kv, dim, pe_dim, block_N, block_H):
scale = (1.0 / (dim + pe_dim))**0.5 * 1.44269504 # log2(e)
dtype = "float16"
q_dtype = "float8_e4m3"
accum_dtype = "float"
kv_group_num = heads // kv_head_num
VALID_BLOCK_H = min(block_H, kv_group_num)
assert kv_head_num == 1, "kv_head_num must be 1"
@T.prim_func
def main_no_split(
Q: T.Tensor([batch, heads, dim], dtype),
Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], q_dtype),
K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
Output: T.Tensor([batch, heads, dim], dtype),
):
with T.Kernel(batch, heads // min(block_H, kv_group_num), threads=256) as (bx, by):
Q_shared = T.alloc_shared([block_H, dim], dtype)
S_shared = T.alloc_shared([block_H, block_N], dtype)
Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)
qKV_shared = T.alloc_shared([block_N, dim], q_dtype)
KV_shared = T.alloc_shared([block_N, dim], dtype)
K_pe_shared = T.alloc_shared([block_N, pe_dim], dtype)
O_shared = T.alloc_shared([block_H, dim], dtype)
acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
scores_max = T.alloc_fragment([block_H], accum_dtype)
scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
scores_scale = T.alloc_fragment([block_H], accum_dtype)
scores_sum = T.alloc_fragment([block_H], accum_dtype)
logsum = T.alloc_fragment([block_H], accum_dtype)
cur_kv_head = by // (kv_group_num // block_H)
T.use_swizzle(10)
T.annotate_layout({
O_shared: tilelang.layout.make_swizzled_layout(O_shared),
})
T.copy(Q[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_shared)
T.copy(Q_pe[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_pe_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
T.disable_warp_group_reg_alloc()
loop_range = T.ceildiv(seqlen_kv, block_N)
for k in T.Pipelined(loop_range, num_stages=2):
T.copy(KV[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], qKV_shared)
T.copy(K_pe[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], K_pe_shared)
T.copy(qKV_shared, KV_shared)
T.clear(acc_s)
T.gemm(
Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
T.gemm(
Q_pe_shared,
K_pe_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=False)
for i in T.Parallel(block_H):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(block_H, block_N):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
T.copy(acc_s, S_shared)
for i in T.Parallel(block_H):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
for i, j in T.Parallel(block_H, dim):
acc_o[i, j] *= scores_scale[i]
T.gemm(S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
for i, j in T.Parallel(block_H, dim):
acc_o[i, j] /= logsum[i]
T.copy(acc_o, O_shared)
T.copy(O_shared, Output[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :])
return main_no_split
def ref_program(q, q_pe, kv, k_pe):
# """
# Inputs:
# - q (Tensor): [batch, heads, dim]
# - q_pe (Tensor): [batch, heads, pe_dim]
# - kv (Tensor): [batch, seqlen_kv, kv_head_num, dim]
# - k_pe (Tensor): [batch, seqlen_kv, kv_head_num, pe_dim]
# Outputs:
# - output (Tensor): [batch, heads, dim]
# """
dim = q.shape[-1]
pe_dim = q_pe.shape[-1]
num_head_groups = q.shape[1] // kv.shape[2]
scale = (dim + pe_dim)**0.5
q = rearrange(
q, 'b (h g) d -> b g h d', g=num_head_groups) # [batch_size, num_head_groups, groups, dim]
q_pe = rearrange(
q_pe, 'b (h g) d -> b g h d',
g=num_head_groups) # [batch_size, num_head_groups, groups, pe_dim]
kv = rearrange(kv, 'b n h d -> b h n d') # [batch_size, groups, seqlen_kv, dim]
k_pe = rearrange(k_pe, 'b n h d -> b h n d') # [batch_size, num_head_groups, groups, pe_dim]
query = torch.concat([q, q_pe], dim=-1)
key = torch.concat([kv, k_pe], dim=-1)
scores = einsum(
query, key,
'b g h d, b h s d -> b g h s') # [batch_size, num_head_groups, groups, seqlen_kv]
attention = F.softmax(
scores / scale, dim=-1) # [batch_size, num_head_groups, groups, seqlen_kv]
out = einsum(attention, kv,
'b g h s, b h s d -> b g h d') # [batch_size, num_head_groups, groups, dim]
out = rearrange(out, 'b g h d -> b (h g) d') # [batch_size, heads, dim]
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch', type=int, default=128, help='batch size')
parser.add_argument('--heads', type=int, default=128, help='q heads number')
parser.add_argument('--kv_heads', type=int, default=1, help='kv heads number')
parser.add_argument('--kv_ctx', type=int, default=8192, help='kv context length')
parser.add_argument('--dim', type=int, default=512, help='head dim')
parser.add_argument('--pe_dim', type=int, default=64, help='pe head dim')
args = parser.parse_args()
batch, heads, kv_heads, kv_ctx, dim, pe_dim = args.batch, args.heads, args.kv_heads, args.kv_ctx, args.dim, args.pe_dim
qk_flops = 2 * batch * heads * kv_ctx * (dim + pe_dim)
pv_flops = 2 * batch * heads * kv_ctx * dim
total_flops = qk_flops + pv_flops
BLOCK_N = 64
BLOCK_H = 64
kernel = flashattn(batch, heads, kv_heads, kv_ctx, dim, pe_dim, BLOCK_N, BLOCK_H)
profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Randn)
latency = profiler.do_bench(warmup=500)
print(f"Latency: {latency} ms")
print(f"TFlops: {total_flops / latency * 1e-9} TFlops")
import tilelang.testing
import example_mla_decode
@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version_ge(9, 0)
def test_example_mla_decode():
example_mla_decode.main()
if __name__ == "__main__":
tilelang.testing.main()
import torch
num_split = 1
def flash_split_ref(Q, Q_pe, KV, K_pe):
dim = Q.shape[-1]
pe_dim = Q_pe.shape[-1]
batch = Q.size(0)
nheads = Q.size(1)
block_N = 64
seqlen_kv = KV.size(1)
scale = (1.0 / (dim + pe_dim))**0.5 * 1.44269504 # log2(e)
acc_s = torch.empty((batch, nheads, block_N), device="cuda", dtype=torch.float)
acc_s_cast = torch.empty((batch, nheads, block_N), device="cuda", dtype=torch.float16)
acc_o = torch.empty((batch, nheads, dim), device="cuda", dtype=torch.float)
scores_max = torch.empty((batch, nheads), device="cuda", dtype=torch.float)
scores_max_prev = torch.empty((batch, nheads), device="cuda", dtype=torch.float)
scores_scale = torch.empty((batch, nheads), device="cuda", dtype=torch.float)
scores_sum = torch.empty((batch, nheads), device="cuda", dtype=torch.float)
logsum = torch.empty((batch, nheads), device="cuda", dtype=torch.float)
gacc_o = torch.empty((num_split, batch, nheads, dim), device="cuda", dtype=torch.float)
glogsum = torch.empty((num_split, batch, nheads), device="cuda", dtype=torch.float)
Q_ = Q * scale
Q_pe_ = Q_pe * scale
KV_ = KV.expand(-1, -1, nheads, -1)
K_pe_ = K_pe.expand(-1, -1, nheads, -1)
for ks in range(num_split):
acc_o.fill_(0)
logsum.fill_(0)
scores_max.fill_(float('-inf'))
scores_max_prev.fill_(float('-inf'))
for i in range(int((seqlen_kv // num_split) / block_N)):
acc_s.fill_(0)
acc_s = torch.einsum('bhd,bkhd->bhk', Q_,
KV_[:, (seqlen_kv // num_split) * ks +
i * block_N:(seqlen_kv // num_split) * ks +
(i + 1) * block_N, :, :]) # [batch, nheads, block_N]
acc_s += torch.einsum(
'bhd,bkhd->bhk', Q_pe_,
K_pe_[:, (seqlen_kv // num_split) * ks + i * block_N:(seqlen_kv // num_split) * ks +
(i + 1) * block_N, :, :])
scores_max_prev = scores_max
scores_max = acc_s.max(dim=-1, keepdim=False).values # [batch, nheads]
scores_scale = torch.exp2(scores_max_prev - scores_max) # [batch, nheads]
acc_o *= scores_scale[:, :, None]
acc_s = torch.exp2(acc_s - scores_max[:, :, None])
acc_s_cast = acc_s.to(torch.float16) # [batch, nheads, block_N]
acc_o += torch.einsum(
'bhk,bkhd->bhd', acc_s_cast,
KV_[:, (seqlen_kv // num_split) * ks + i * block_N:(seqlen_kv // num_split) * ks +
(i + 1) * block_N, :, :])
scores_sum = acc_s.sum(dim=-1, keepdim=False)
logsum = logsum * scores_scale + scores_sum
acc_o /= logsum[:, :, None]
logsum = torch.log2(logsum) + scores_max
gacc_o[ks, :, :, :] = acc_o
glogsum[ks, :, :] = logsum
return glogsum.to(torch.float16).permute(1, 2, 0), gacc_o.to(torch.float16).permute(1, 2, 0, 3)
def reduce_ref(Q, Q_pe, KV, K_pe, glse, Output_partial):
o = torch.empty_like(Output_partial[:, :, 0, :]).fill_(0)
lse_logsum = torch.empty_like(glse[:, :, 0]).fill_(0)
lse_max = glse.max(dim=2, keepdim=False).values
for ks in range(num_split):
lse = glse[:, :, ks]
lse_logsum += torch.exp2(lse - lse_max)
lse_logsum = torch.log2(lse_logsum) + lse_max
for ks in range(num_split):
lse = glse[:, :, ks]
scale = torch.exp2(lse - lse_logsum)
o += Output_partial[:, :, ks, :] * scale[:, :, None]
return o.to(torch.float16)
# ruff: noqa
import torch
import time
import argparse
import tilelang
from tilelang import language as T
import tilelang.testing
from typing import Optional, Union
from einops import rearrange, repeat
import triton
import triton.language as tl
from fla.ops.utils import prepare_token_indices
from fla.utils import autocast_custom_fwd, contiguous
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None,
'USE_BLOCK_COUNTS': lambda args: isinstance(args['block_counts'], torch.Tensor),
})
@triton.autotune(
configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1]],
key=['BS', 'BK', 'BV'],
)
@triton.jit
def parallel_nsa_fwd_kernel(q, k, v, o_slc, o_swa, lse_slc, lse_swa, scale, block_indices,
block_counts, offsets, token_indices, T, H: tl.constexpr,
HQ: tl.constexpr, G: tl.constexpr, K: tl.constexpr, V: tl.constexpr,
S: tl.constexpr, BS: tl.constexpr, WS: tl.constexpr, BK: tl.constexpr,
BV: tl.constexpr, USE_OFFSETS: tl.constexpr,
USE_BLOCK_COUNTS: tl.constexpr):
i_t, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
bos, eos = i_b * T, i_b * T + T
k += (bos * H + i_h) * K
v += (bos * H + i_h) * V
block_indices += (bos + i_t) * H * S + i_h * S
NS = S
p_q = tl.make_block_ptr(q + (bos + i_t) * HQ * K, (HQ, K), (K, 1), (i_h * G, 0), (G, BK),
(1, 0))
# the Q block is kept in the shared memory throughout the whole kernel
# [G, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
p_o_slc = tl.make_block_ptr(o_slc + (bos + i_t) * HQ * V, (HQ, V), (V, 1), (i_h * G, i_v * BV),
(G, BV), (1, 0))
p_lse_slc = lse_slc + (bos + i_t) * HQ + i_h * G + tl.arange(0, G)
# [G, BV]
b_o_slc = tl.zeros([G, BV], dtype=tl.float32)
b_m_slc = tl.full([G], float('-inf'), dtype=tl.float32)
b_acc_slc = tl.zeros([G], dtype=tl.float32)
for i in range(NS):
i_s = tl.load(block_indices + i).to(tl.int32) * BS
if i_s <= i_t and i_s >= 0:
p_k_slc = tl.make_block_ptr(k, (K, T), (1, H * K), (0, i_s), (BK, BS), (0, 1))
p_v_slc = tl.make_block_ptr(v, (T, V), (H * V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
# [BK, BS]
b_k_slc = tl.load(p_k_slc, boundary_check=(0, 1))
# [BS, BV]
b_v_slc = tl.load(p_v_slc, boundary_check=(0, 1))
# [G, BS]
b_s_slc = tl.dot(b_q, b_k_slc)
b_s_slc = tl.where((i_t >= (i_s + tl.arange(0, BS)))[None, :], b_s_slc, float('-inf'))
# [G]
b_m_slc, b_mp_slc = tl.maximum(b_m_slc, tl.max(b_s_slc, 1)), b_m_slc
b_r_slc = tl.exp(b_mp_slc - b_m_slc)
# [G, BS]
b_p_slc = tl.exp(b_s_slc - b_m_slc[:, None])
# [G]
b_acc_slc = b_acc_slc * b_r_slc + tl.sum(b_p_slc, 1)
# [G, BV]
b_o_slc = b_o_slc * b_r_slc[:, None] + tl.dot(b_p_slc.to(b_q.dtype), b_v_slc)
b_mp_slc = b_m_slc
b_o_slc = b_o_slc / b_acc_slc[:, None]
b_m_slc += tl.log(b_acc_slc)
tl.store(p_o_slc, b_o_slc.to(p_o_slc.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_lse_slc, b_m_slc.to(p_lse_slc.dtype.element_ty))
class ParallelNSAFunction(torch.autograd.Function):
@staticmethod
@contiguous
@autocast_custom_fwd
def forward(ctx, q, k, v, block_indices, block_size, scale, offsets):
ctx.dtype = q.dtype
# 2-d sequence indices denoting the offsets of tokens in each sequence
# for example, if the passed `offsets` is [0, 2, 6],
# then there are 2 and 4 tokens in the 1st and 2nd sequences respectively, and `token_indices` will be
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
token_indices = prepare_token_indices(offsets) if offsets is not None else None
o, lse = parallel_nsa_fwd(
q=q, k=k, v=v, block_indices=block_indices, block_size=block_size, scale=scale)
ctx.save_for_backward(q, k, v, o, lse)
ctx.block_indices = block_indices
ctx.block_size = block_size
ctx.scale = scale
return o.to(q.dtype)
def parallel_nsa_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
o_slc: torch.Tensor,
o_swa: Optional[torch.Tensor],
lse_slc: torch.Tensor,
lse_swa: Optional[torch.Tensor],
block_indices: torch.LongTensor,
block_counts: Union[torch.LongTensor, int],
block_size: int,
window_size: int,
scale: float,
offsets: Optional[torch.LongTensor] = None,
token_indices: Optional[torch.LongTensor] = None,
):
B, T, H, K, V, S = *k.shape, v.shape[-1], block_indices.shape[-1]
HQ = q.shape[2]
G = HQ // H
BS = block_size
WS = window_size
if torch.cuda.get_device_capability()[0] >= 9:
BK = min(256, triton.next_power_of_2(K))
BV = min(256, triton.next_power_of_2(V))
else:
BK = min(128, triton.next_power_of_2(K))
BV = min(128, triton.next_power_of_2(V))
NK = triton.cdiv(K, BK)
NV = triton.cdiv(V, BV)
assert NK == 1, "The key dimension can not be larger than 256"
grid = (T, NV, B * H)
parallel_nsa_fwd_kernel[grid](
q=q,
k=k,
v=v,
o_slc=o_slc,
o_swa=o_swa,
lse_slc=lse_slc,
lse_swa=lse_swa,
scale=scale,
block_indices=block_indices,
block_counts=block_counts,
offsets=offsets,
token_indices=token_indices,
T=T,
H=H,
HQ=HQ,
G=G,
K=K,
V=V,
S=S,
BS=BS,
WS=WS,
BK=BK,
BV=BV,
)
return o_slc, lse_slc, o_swa, lse_swa
@torch.compile
class ParallelNSAFunction(torch.autograd.Function):
@staticmethod
@contiguous
@autocast_custom_fwd
def forward(ctx, q, k, v, block_indices, block_counts, block_size, window_size, scale, offsets):
ctx.dtype = q.dtype
# 2-d sequence indices denoting the offsets of tokens in each sequence
# for example, if the passed `offsets` is [0, 2, 6],
# then there are 2 and 4 tokens in the 1st and 2nd sequences respectively, and `token_indices` will be
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
token_indices = prepare_token_indices(offsets) if offsets is not None else None
o_slc, lse_slc, o_swa, lse_swa = parallel_nsa_fwd(
q=q,
k=k,
v=v,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
window_size=window_size,
scale=scale,
offsets=offsets,
token_indices=token_indices)
ctx.save_for_backward(q, k, v, o_slc, lse_slc, o_swa, lse_swa)
ctx.block_indices = block_indices
ctx.block_counts = block_counts
ctx.offsets = offsets
ctx.token_indices = token_indices
ctx.block_size = block_size
ctx.window_size = window_size
ctx.scale = scale
return o_slc.to(q.dtype), o_swa.to(q.dtype) if o_swa is not None else o_swa
def parallel_nsa(q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g_slc: torch.Tensor,
g_swa: torch.Tensor,
block_indices: torch.LongTensor,
block_counts: Optional[Union[torch.LongTensor, int]] = None,
block_size: int = 64,
window_size: int = 0,
scale: Optional[float] = None,
cu_seqlens: Optional[torch.LongTensor] = None,
head_first: bool = False) -> torch.Tensor:
r"""
Args:
q (torch.Tensor):
queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
k (torch.Tensor):
keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
v (torch.Tensor):
values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
g_slc (torch.Tensor):
Gate score for selected attention of shape `[B, T, HQ]` if `head_first=False` else `[B, HQ, T]`.
g_swa (torch.Tensor):
Gate score for sliding attentionof shape `[B, T, HQ]` if `head_first=False` else `[B, HQ, T]`.
block_indices (torch.LongTensor):
Block indices of shape `[B, T, H, S]` if `head_first=False` else `[B, H, T, S]`.
`S` is the number of selected blocks for each query token, which is set to 16 in the paper.
block_counts (Union[torch.LongTensor, int]):
Number of selected blocks for each token.
If a tensor is provided, with shape `[B, T, H]` if `head_first=True` else `[B, T, H]`,
each token can select the same number of blocks.
If not provided, it will default to `S`, Default: `None`
block_size (int):
Selected block size. Default: 64.
window_size (int):
Sliding window size. Default: 0.
scale (Optional[int]):
Scale factor for attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
head_first (Optional[bool]):
Whether the inputs are in the head-first format. Default: `False`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
Returns:
o (torch.Tensor):
Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
"""
if scale is None:
scale = k.shape[-1]**-0.5
if cu_seqlens is not None:
assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
if head_first:
q, k, v, block_indices = map(lambda x: rearrange(x, 'b h t d -> b t h d'),
(q, k, v, block_indices))
g_slc, g_swa = map(lambda x: rearrange(x, 'b h t -> b t h'), (g_slc, g_swa))
if isinstance(block_counts, torch.Tensor):
block_counts = rearrange(block_counts, 'b h t -> b t h')
assert q.shape[2] % (k.shape[2] * 16) == 0, "Group size must be a multiple of 16 in NSA"
if isinstance(block_counts, int):
block_indices = block_indices[:, :, :, :block_counts]
block_counts = None
o_slc, o_swa = ParallelNSAFunction.apply(q, k, v, block_indices, block_counts, block_size,
window_size, scale, cu_seqlens)
if window_size > 0:
o = torch.addcmul(o_slc * g_slc.unsqueeze(-1), o_swa, g_swa.unsqueeze(-1))
else:
o = o_slc * g_slc.unsqueeze(-1)
if head_first:
o = rearrange(o, 'b t h d -> b h t d')
return o
def naive_nsa(q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g_slc: torch.Tensor,
g_swa: torch.Tensor,
block_indices: torch.LongTensor,
block_counts: Optional[Union[torch.LongTensor, int]] = None,
block_size: int = 64,
window_size: int = 0,
scale: Optional[float] = None,
cu_seqlens: Optional[torch.LongTensor] = None,
head_first: bool = False) -> torch.Tensor:
r"""
Args:
q (torch.Tensor):
Queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
k (torch.Tensor):
Keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
v (torch.Tensor):
Values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
g_slc (torch.Tensor):
Gate score for selected attention of shape `[B, T, HQ]` if `head_first=False` else `[B, HQ, T]`.
g_swa (torch.Tensor):
Gate score for sliding attentionof shape `[B, T, HQ]` if `head_first=False` else `[B, HQ, T]`.
block_indices (torch.LongTensor):
Block indices of shape `[B, T, H, S]` if `head_first=False` else `[B, H, T, S]`.
`S` is the maximum number of selected blocks for each query token, which is set to 16 in the paper.
block_counts (Union[torch.LongTensor, int]):
Number of selected blocks for each token.
If a tensor is provided, with shape `[B, T, H]` if `head_first=True` else `[B, T, H]`,
each token can select the same number of blocks.
If not provided, it will default to `S`, Default: `None`.
block_size (int):
Selected block size. Default: 64.
window_size (int):
Sliding window size. Default: 0.
scale (Optional[int]):
Scale factor for attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
head_first (Optional[bool]):
Whether the inputs are in the head-first format. Default: `False`.
Returns:
o (torch.Tensor):
Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
"""
if scale is None:
scale = k.shape[-1]**-0.5
if cu_seqlens is not None:
assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
if head_first:
raise RuntimeError(
"Sequences with variable lengths are not supported for head-first mode")
if head_first:
q, k, v, block_indices = map(lambda x: rearrange(x, 'b h t d -> b t h d'),
(q, k, v, block_indices))
g_slc, g_swa = map(lambda x: rearrange(x, 'b h t -> b t h'), (g_slc, g_swa))
if isinstance(block_counts, torch.Tensor):
block_counts = rearrange(block_counts, 'b h t -> b t h')
dtype = q.dtype
G = q.shape[2] // k.shape[2]
BS = block_size
S = block_indices.shape[-1]
k, v, block_indices = (repeat(x, 'b t h d -> b t (h g) d', g=G) for x in (k, v, block_indices))
if isinstance(block_counts, torch.Tensor):
block_counts = repeat(block_counts, 'b t h -> b t (h g)', g=G)
c = torch.arange(S).repeat_interleave(BS).unsqueeze(1).expand(-1, q.shape[2]).to(q.device)
q, k, v = map(lambda x: x.float(), (q, k, v))
o_slc = torch.zeros_like(v)
o_swa = torch.zeros_like(v) if window_size > 0 else None
varlen = True
if cu_seqlens is None:
varlen = False
B, T = q.shape[:2]
cu_seqlens = torch.cat(
[block_indices.new_tensor(range(0, B * T, T)),
block_indices.new_tensor([B * T])])
for i in range(len(cu_seqlens) - 1):
if not varlen:
q_b, k_b, v_b, g_slc_b, g_swa_b, i_b = q[i], k[i], v[i], g_slc[i], g_swa[
i], block_indices[i]
if isinstance(block_counts, torch.Tensor):
s_b = block_counts[i]
else:
s_b = block_counts
else:
T = cu_seqlens[i + 1] - cu_seqlens[i]
q_b, k_b, v_b, g_slc_b, g_swa_b, i_b = map(
lambda x: x[0][cu_seqlens[i]:cu_seqlens[i + 1]],
(q, k, v, g_slc, g_swa, block_indices))
if isinstance(block_counts, torch.Tensor):
s_b = block_counts[0][cu_seqlens[i]:cu_seqlens[i + 1]]
else:
s_b = block_counts
i_b = i_b.unsqueeze(-1) * BS + i_b.new_tensor(range(BS))
# [T, S*BS, HQ]
i_b = i_b.view(T, block_indices.shape[2], -1).transpose(1, 2)
for i_q in range(T):
# [HQ, D]
q_i = q_b[i_q] * scale
# [HQ]
g_slc_i = g_slc_b[i_q]
# [HQ]
g_swa_i = g_swa_b[i_q]
# [S*BS, HQ]
i_i = i_b[i_q]
# [HQ]
if isinstance(block_counts, torch.Tensor):
s_i = s_b[i_q]
else:
s_i = s_b
# [S*BS, HQ, -1]
k_i_slc, v_i_slc = map(
lambda x: x.gather(
0,
i_i.clamp(0, T - 1).unsqueeze(-1).expand(*i_i.shape, x.shape[-1])), (k_b, v_b))
# [S*BS, HQ]
attn_slc = torch.einsum('h d, n h d -> n h', q_i, k_i_slc).masked_fill(
torch.logical_or(i_i < 0, i_i > i_q) |
(c >= s_i if block_counts is not None else False), float('-inf')).softmax(0)
if not varlen:
o_slc[i, i_q] = torch.einsum('n h, n h v -> h v', attn_slc,
v_i_slc) * g_slc_i.unsqueeze(-1)
else:
o_slc[0][cu_seqlens[i] + i_q] = torch.einsum('n h, n h v -> h v', attn_slc,
v_i_slc) * g_slc_i.unsqueeze(-1)
if window_size > 0:
k_i_swa, v_i_swa = map(lambda x: x[max(0, i_q - window_size + 1):i_q + 1],
(k_b, v_b))
attn_swa = torch.einsum('h d, n h d -> n h', q_i, k_i_swa).softmax(0)
if not varlen:
o_swa[i, i_q] = torch.einsum('n h, n h v -> h v', attn_swa,
v_i_swa) * g_swa_i.unsqueeze(-1)
else:
o_swa[0][cu_seqlens[i] + i_q] = torch.einsum('n h, n h v -> h v', attn_swa,
v_i_swa) * g_swa_i.unsqueeze(-1)
if head_first:
o_slc = rearrange(o_slc, 'b t h d -> b h t d')
o_swa = rearrange(o_swa, 'b t h d -> b h t d')
return o_slc.to(dtype) + o_swa.to(dtype) if o_swa is not None else o_slc.to(dtype)
def get_configs():
import itertools
iter_params = dict(
block_T=[128, 256, 512],
num_stages=[0, 1, 2, 4, 5],
threads=[32, 64, 128, 256, 512],
)
return [{
k: v for k, v in zip(iter_params, values)
} for values in itertools.product(*iter_params.values())]
@tilelang.autotune(configs=get_configs(),)
@tilelang.jit(
pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
})
def tilelang_sparse_attention(batch,
heads,
seq_len,
dim,
is_causal,
scale=None,
block_size=64,
groups=1,
selected_blocks=16,
block_T=128,
num_stages=2,
threads=32):
if scale is None:
scale = (1.0 / dim)**0.5 * 1.44269504 # log2(e)
else:
scale = scale * 1.44269504 # log2(e)
head_kv = heads // groups
q_shape = [batch, seq_len, heads, dim]
kv_shape = [batch, seq_len, head_kv, dim]
block_indices_shape = [batch, seq_len, head_kv, selected_blocks]
block_indices_dtype = "int32"
dtype = "float16"
accum_dtype = "float"
block_S = block_size
block_T = min(block_T, tilelang.math.next_power_of_2(dim))
NK = tilelang.cdiv(dim, block_T)
NV = tilelang.cdiv(dim, block_T)
assert NK == 1, "The key dimension can not be larger than 256"
S = selected_blocks
G = groups
BS = block_S
BK = BV = block_T
@T.prim_func
def tilelang_sparse_attention(
Q: T.Tensor(q_shape, dtype),
K: T.Tensor(kv_shape, dtype),
V: T.Tensor(kv_shape, dtype),
BlockIndices: T.Tensor(block_indices_shape, block_indices_dtype),
Output: T.Tensor(q_shape, dtype),
):
with T.Kernel(seq_len, NV, batch * head_kv, threads=threads) as (bx, by, bz):
Q_shared = T.alloc_shared([G, BK], dtype)
K_shared = T.alloc_shared([BS, BK], dtype)
V_shared = T.alloc_shared([BS, BV], dtype)
O_shared = T.alloc_shared([G, BV], dtype)
acc_s = T.alloc_fragment([G, BS], accum_dtype)
acc_s_cast = T.alloc_shared([G, BS], dtype)
acc_o = T.alloc_fragment([G, BV], accum_dtype)
scores_max = T.alloc_fragment([G], accum_dtype)
scores_max_prev = T.alloc_fragment([G], accum_dtype)
scores_scale = T.alloc_fragment([G], accum_dtype)
scores_sum = T.alloc_fragment([G], accum_dtype)
logsum = T.alloc_fragment([G], accum_dtype)
T.annotate_layout({O_shared: tilelang.layout.make_swizzled_layout(O_shared)})
i_t, i_v, i_bh = bx, by, bz
i_b, i_h = i_bh // head_kv, i_bh % head_kv
NS = S
T.copy(Q[i_b, i_t, i_h * G:(i_h + 1) * G, :], Q_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
for i in T.Pipelined(NS, num_stages=num_stages):
i_s = BlockIndices[i_b, i_t, i_h, i] * BS
if i_s <= i_t and i_s >= 0:
# [BS, BK]
T.copy(K[i_b, i_s:i_s + BS, i_h, :], K_shared)
if is_causal:
for i, j in T.Parallel(G, BS):
acc_s[i, j] = T.if_then_else(i_t >= (i_s + j), 0,
-T.infinity(acc_s.dtype))
else:
T.clear(acc_s)
T.gemm(
Q_shared,
K_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullRow)
# Softmax
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=True)
for i in T.Parallel(G):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(G, BS):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
for i in T.Parallel(G):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
T.copy(acc_s, acc_s_cast)
# Rescale
for i, j in T.Parallel(G, BV):
acc_o[i, j] *= scores_scale[i]
# V * softmax(Q * K)
T.copy(V[i_b, i_s:i_s + BS, i_h, i_v * BV:(i_v + 1) * BV], V_shared)
T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
for i, j in T.Parallel(G, BV):
acc_o[i, j] /= logsum[i]
T.copy(acc_o, O_shared)
T.copy(O_shared, Output[i_b, i_t, i_h * G:(i_h + 1) * G, i_v * BV:(i_v + 1) * BV])
return tilelang_sparse_attention
def generate_block_indices(batch, seq_len, heads, selected_blocks, block_size):
"""Generate random block indices for the benchmark."""
block_indices = torch.full((batch, seq_len, heads, selected_blocks),
seq_len,
dtype=torch.long,
device='cuda')
for b in range(batch):
for t in range(seq_len):
for h in range(heads):
i_i = torch.randperm(max(1, (t // block_size)))[:selected_blocks]
block_indices[b, t, h, :len(i_i)] = i_i
return block_indices.sort(-1)[0]
def benchmark_nsa(batch_size,
seq_len,
heads,
head_query,
dim,
selected_blocks,
block_size,
dtype,
scale,
warmup=10,
iterations=100,
validate=False):
"""Benchmark the TileLang Sparse Attention implementation."""
# Set random seed for reproducibility
tilelang.testing.set_random_seed(0)
torch.random.manual_seed(0)
# Compile the NSA kernel
kernel = tilelang_sparse_attention(
batch=batch_size,
heads=head_query,
seq_len=seq_len,
dim=dim,
is_causal=True,
block_size=block_size,
groups=head_query // heads,
selected_blocks=selected_blocks,
scale=scale,
)
profiler = kernel.get_profiler()
profiler_latency = profiler.do_bench()
print(f"Profiler latency: {profiler_latency} ms")
# Create input tensors
Q = torch.randn((batch_size, seq_len, head_query, dim), dtype=dtype, device='cuda')
K = torch.randn((batch_size, seq_len, heads, dim), dtype=dtype, device='cuda')
V = torch.randn((batch_size, seq_len, heads, dim), dtype=dtype, device='cuda')
out = torch.empty((batch_size, seq_len, head_query, dim), dtype=dtype, device='cuda')
# Generate block indices
block_indices = generate_block_indices(batch_size, seq_len, heads, selected_blocks,
block_size).to(torch.int32)
# Warmup
for _ in range(warmup):
kernel(Q, K, V, block_indices, out)
# Synchronize before timing
torch.cuda.synchronize()
# Benchmark
start_time = time.time()
for _ in range(iterations):
kernel(Q, K, V, block_indices, out)
torch.cuda.synchronize()
end_time = time.time()
# Calculate metrics
elapsed_time = end_time - start_time
avg_time = elapsed_time / iterations * 1000 # ms
# Calculate FLOPs (approximate for NSA)
# Each token attends to selected_blocks * block_size tokens
# Each attention calculation involves 2*dim FLOPs for QK
# And another 2*dim FLOPs for attention * V
flops_per_token = 4 * dim * selected_blocks * block_size
total_flops = batch_size * seq_len * head_query * flops_per_token
flops_per_sec = total_flops / (elapsed_time / iterations)
tflops = flops_per_sec / 1e12
# Validate result against reference if requested
if validate:
g_slc = torch.ones((batch_size, seq_len, head_query), dtype=dtype, device='cuda')
g_swa = torch.ones((batch_size, seq_len, head_query), dtype=dtype, device='cuda')
block_counts = torch.randint(
1, selected_blocks + 1, (batch_size, seq_len, heads), device='cuda')
ref = naive_nsa(
q=Q,
k=K,
v=V,
g_slc=g_slc,
g_swa=g_swa,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
scale=scale,
)
is_valid = torch.allclose(ref, out, atol=1e-2, rtol=1e-2)
if is_valid:
print("Validation: PASSED")
else:
print("Validation: FAILED")
print(f"Max difference: {(ref - out).abs().max().item()}")
# Return benchmark results
return {
"avg_time_ms": avg_time,
"tflops": tflops,
"batch_size": batch_size,
"seq_len": seq_len,
"heads": heads,
"head_query": head_query,
"dim": dim,
"selected_blocks": selected_blocks,
"block_size": block_size
}
def benchmark_triton_nsa(batch_size,
seq_len,
heads,
head_query,
dim,
selected_blocks,
block_size,
dtype,
scale,
warmup=10,
iterations=100,
validate=False):
"""Benchmark the Triton-based TileLang Sparse Attention implementation."""
# Set random seed for reproducibility
tilelang.testing.set_random_seed(0)
torch.random.manual_seed(0)
# Create input tensors
Q = torch.randn((batch_size, seq_len, head_query, dim), dtype=dtype, device='cuda')
K = torch.randn((batch_size, seq_len, heads, dim), dtype=dtype, device='cuda')
V = torch.randn((batch_size, seq_len, heads, dim), dtype=dtype, device='cuda')
g_slc = torch.ones((batch_size, seq_len, head_query), dtype=dtype, device='cuda')
g_swa = torch.ones((batch_size, seq_len, head_query), dtype=dtype, device='cuda')
# Generate block indices
block_indices = generate_block_indices(batch_size, seq_len, heads, selected_blocks, block_size)
block_counts = torch.randint(
1, selected_blocks + 1, (batch_size, seq_len, heads), device='cuda')
o_slc = torch.empty((batch_size, seq_len, head_query, dim), dtype=dtype, device='cuda')
lse_slc = torch.empty((batch_size, seq_len, head_query), dtype=torch.float, device='cuda')
# Warmup
for _ in range(warmup):
out = parallel_nsa_fwd(
q=Q,
k=K,
v=V,
o_slc=o_slc,
o_swa=None,
lse_slc=lse_slc,
lse_swa=None,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
window_size=0,
scale=scale)
# Synchronize before timing
torch.cuda.synchronize()
# Benchmark
start_time = time.time()
for _ in range(iterations):
out = parallel_nsa_fwd(
q=Q,
k=K,
v=V,
o_slc=o_slc,
o_swa=None,
lse_slc=lse_slc,
lse_swa=None,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
window_size=0,
scale=scale)
torch.cuda.synchronize()
end_time = time.time()
# Calculate metrics
elapsed_time = end_time - start_time
avg_time = elapsed_time / iterations * 1000 # ms
# Calculate FLOPs (approximate for NSA)
flops_per_token = 4 * dim * selected_blocks * block_size
total_flops = batch_size * seq_len * head_query * flops_per_token
flops_per_sec = total_flops / (elapsed_time / iterations)
tflops = flops_per_sec / 1e12
# Validate result against reference if requested
if validate:
ref = naive_nsa(
q=Q,
k=K,
v=V,
g_slc=g_slc,
g_swa=g_swa,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
scale=scale,
)
is_valid = torch.allclose(ref, out, atol=1e-2, rtol=1e-2)
if is_valid:
print("Validation: PASSED")
else:
print("Validation: FAILED")
print(f"Max difference: {(ref - out).abs().max().item()}")
# Return benchmark results
return {
"avg_time_ms": avg_time,
"tflops": tflops,
"batch_size": batch_size,
"seq_len": seq_len,
"heads": heads,
"head_query": head_query,
"dim": dim,
"selected_blocks": selected_blocks,
"block_size": block_size
}
def run_benchmark_suite(impl='all'):
"""Run a suite of benchmarks with different configurations."""
# Define configurations to benchmark
configs = [
# Small model config - Note: head_query must be a multiple of heads*16 for Triton
{
"batch_size": 2,
"seq_len": 1024,
"heads": 8,
"head_query": 8 * 16,
"dim": 64,
"selected_blocks": 8,
"block_size": 32
},
# Medium model config
{
"batch_size": 2,
"seq_len": 2048,
"heads": 16,
"head_query": 16 * 16,
"dim": 64,
"selected_blocks": 16,
"block_size": 64
},
# Large model config
{
"batch_size": 1,
"seq_len": 4096,
"heads": 32,
"head_query": 32 * 16,
"dim": 128,
"selected_blocks": 32,
"block_size": 128
},
]
results = []
for config in configs:
print(f"Running benchmark with config: {config}")
if impl in ['all', 'tilelang']:
print("Benchmarking TileLang implementation:")
result = benchmark_nsa(
batch_size=config["batch_size"],
seq_len=config["seq_len"],
heads=config["heads"],
head_query=config["head_query"],
dim=config["dim"],
selected_blocks=config["selected_blocks"],
block_size=config["block_size"],
dtype=torch.float16,
scale=0.1,
validate=False)
results.append({"impl": "tilelang", **result})
print(f"Average time: {result['avg_time_ms']:.2f} ms")
print(f"Performance: {result['tflops']:.2f} TFLOPs")
if impl in ['all', 'triton']:
print("Benchmarking Triton implementation:")
result = benchmark_triton_nsa(
batch_size=config["batch_size"],
seq_len=config["seq_len"],
heads=config["heads"],
head_query=config["head_query"],
dim=config["dim"],
selected_blocks=config["selected_blocks"],
block_size=config["block_size"],
dtype=torch.float16,
scale=0.1,
validate=False)
results.append({"impl": "triton", **result})
print(f"Average time: {result['avg_time_ms']:.2f} ms")
print(f"Performance: {result['tflops']:.2f} TFLOPs")
if impl in ['all']:
# Print comparison if both implementations were run
tilelang_result = next(
r for r in results if r["impl"] == "tilelang" and
r["batch_size"] == config["batch_size"] and r["seq_len"] == config["seq_len"])
triton_result = next(
r for r in results if r["impl"] == "triton" and
r["batch_size"] == config["batch_size"] and r["seq_len"] == config["seq_len"])
speedup = tilelang_result["avg_time_ms"] / triton_result["avg_time_ms"]
print(f"Speedup (Triton vs TileLang): {speedup:.2f}x")
print("-" * 50)
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Benchmark TileLang Sparse Attention")
parser.add_argument("--batch", type=int, default=32, help="Batch size")
parser.add_argument("--seq_len", type=int, default=1024, help="Sequence length")
parser.add_argument("--heads", type=int, default=1, help="Number of heads")
parser.add_argument("--head_query", type=int, default=16, help="Number of query heads")
parser.add_argument("--dim", type=int, default=128, help="Head dimension")
parser.add_argument("--selected_blocks", type=int, default=16, help="Number of selected blocks")
parser.add_argument("--block_size", type=int, default=32, help="Block size")
parser.add_argument(
"--dtype", type=str, default="float16", help="Data type (float16 or float32)")
parser.add_argument("--scale", type=float, default=0.1, help="Attention scale factor")
parser.add_argument("--iterations", type=int, default=100, help="Number of iterations")
parser.add_argument("--warmup", type=int, default=10, help="Warmup iterations")
parser.add_argument("--validate", action="store_true", help="Validate against reference")
parser.add_argument("--suite", action="store_true", help="Run benchmark suite")
parser.add_argument(
"--impl",
type=str,
default="all",
choices=["tilelang", "triton", "all"],
help="Implementation to benchmark (tilelang, triton, or all)")
args = parser.parse_args()
# For Triton impl, ensure head_query is a multiple of heads*16
if args.impl in ["triton", "all"] and args.head_query % (args.heads * 16) != 0:
# Adjust head_query to nearest valid value
args.head_query = ((args.head_query // (args.heads * 16)) + 1) * (args.heads * 16)
print(
f"Adjusted head_query to {args.head_query} to be compatible with Triton implementation")
if args.suite:
run_benchmark_suite(impl=args.impl)
else:
dtype = torch.float16 if args.dtype == "float16" else torch.float32
if args.impl in ["tilelang", "all"]:
print("Benchmarking TileLang implementation:")
result = benchmark_nsa(
batch_size=args.batch,
seq_len=args.seq_len,
heads=args.heads,
head_query=args.head_query,
dim=args.dim,
selected_blocks=args.selected_blocks,
block_size=args.block_size,
dtype=dtype,
scale=args.scale,
warmup=args.warmup,
iterations=args.iterations,
validate=args.validate)
print("\nBenchmark Results (TileLang):")
print(
f"Configuration: batch={args.batch}, seq_len={args.seq_len}, heads={args.heads}, " +
f"head_query={args.head_query}, dim={args.dim}, blocks={args.selected_blocks}, " +
f"block_size={args.block_size}")
print(f"Average time: {result['avg_time_ms']:.2f} ms")
print(f"Performance: {result['tflops']:.2f} TFLOPs")
if args.impl in ["triton", "all"]:
print("Benchmarking Triton implementation:")
result = benchmark_triton_nsa(
batch_size=args.batch,
seq_len=args.seq_len,
heads=args.heads,
head_query=args.head_query,
dim=args.dim,
selected_blocks=args.selected_blocks,
block_size=args.block_size,
dtype=dtype,
scale=args.scale,
warmup=args.warmup,
iterations=args.iterations,
validate=args.validate)
print("\nBenchmark Results (Triton):")
print(
f"Configuration: batch={args.batch}, seq_len={args.seq_len}, heads={args.heads}, " +
f"head_query={args.head_query}, dim={args.dim}, blocks={args.selected_blocks}, " +
f"block_size={args.block_size}")
print(f"Average time: {result['avg_time_ms']:.2f} ms")
print(f"Performance: {result['tflops']:.2f} TFLOPs")
# ruff: noqa
import torch
from typing import Optional, Union
from packaging.version import parse
import torch
import triton
import fla
if parse(fla.__version__) < parse("0.2.1"):
from fla.ops.common.utils import prepare_token_indices
else:
from fla.ops.utils import prepare_token_indices
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, contiguous
from reference import naive_nsa
from einops import rearrange
import tilelang
@tilelang.jit(
pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
})
def tilelang_kernel_fwd(
batch,
heads,
seq_len,
dim,
is_causal,
scale=None,
block_size=64,
groups=1,
selected_blocks=16,
):
from tilelang import language as T
if scale is None:
scale = (1.0 / dim)**0.5 * 1.44269504 # log2(e)
else:
scale = scale * 1.44269504 # log2(e)
head_kv = heads // groups
q_shape = [batch, seq_len, heads, dim]
kv_shape = [batch, seq_len, head_kv, dim]
o_slc_shape = [batch, seq_len, heads, dim]
lse_slc_shape = [batch, seq_len, heads]
block_indices_shape = [batch, seq_len, head_kv, selected_blocks]
block_indices_dtype = "int32"
dtype = "float16"
accum_dtype = "float"
block_S = block_size
block_T = min(128, tilelang.math.next_power_of_2(dim))
NK = tilelang.cdiv(dim, block_T)
NV = tilelang.cdiv(dim, block_T)
assert NK == 1, "The key dimension can not be larger than 256"
S = selected_blocks
G = groups
BS = block_S
BK = BV = block_T
num_stages = 0
threads = 32
@T.prim_func
def native_sparse_attention(
Q: T.Tensor(q_shape, dtype),
K: T.Tensor(kv_shape, dtype),
V: T.Tensor(kv_shape, dtype),
BlockIndices: T.Tensor(block_indices_shape, block_indices_dtype),
O_slc: T.Tensor(o_slc_shape, dtype),
LSE_slc: T.Tensor(lse_slc_shape, accum_dtype),
):
with T.Kernel(seq_len, NV, batch * head_kv, threads=threads) as (bx, by, bz):
Q_shared = T.alloc_shared([G, BK], dtype)
K_shared = T.alloc_shared([BS, BK], dtype)
V_shared = T.alloc_shared([BS, BV], dtype)
O_shared = T.alloc_shared([G, BV], dtype)
acc_s = T.alloc_fragment([G, BS], accum_dtype)
acc_s_cast = T.alloc_fragment([G, BS], dtype)
acc_o = T.alloc_fragment([G, BV], accum_dtype)
scores_max = T.alloc_fragment([G], accum_dtype)
scores_max_prev = T.alloc_fragment([G], accum_dtype)
scores_scale = T.alloc_fragment([G], accum_dtype)
scores_sum = T.alloc_fragment([G], accum_dtype)
logsum = T.alloc_fragment([G], accum_dtype)
i_t, i_v, i_bh = bx, by, bz
i_b, i_h = i_bh // head_kv, i_bh % head_kv
NS = S
T.copy(Q[i_b, i_t, i_h * G:(i_h + 1) * G, :], Q_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
for i in T.Pipelined(NS, num_stages=num_stages):
i_s = BlockIndices[i_b, i_t, i_h, i] * BS
if i_s <= i_t and i_s >= 0:
# [BS, BK]
T.copy(K[i_b, i_s:i_s + BS, i_h, :], K_shared)
if is_causal:
for i, j in T.Parallel(G, BS):
acc_s[i, j] = T.if_then_else(i_t >= (i_s + j), 0,
-T.infinity(acc_s.dtype))
else:
T.clear(acc_s)
T.gemm(
Q_shared,
K_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullRow,
)
# Softmax
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=True)
for i in T.Parallel(G):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(G, BS):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
for i in T.Parallel(G):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
T.copy(acc_s, acc_s_cast)
# Rescale
for i, j in T.Parallel(G, BV):
acc_o[i, j] *= scores_scale[i]
# V * softmax(Q * K)
T.copy(V[i_b, i_s:i_s + BS, i_h, i_v * BV:(i_v + 1) * BV], V_shared)
T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
for i, j in T.Parallel(G, BV):
acc_o[i, j] /= logsum[i]
T.copy(acc_o, O_shared)
T.copy(
O_shared,
O_slc[i_b, i_t, i_h * G:(i_h + 1) * G, i_v * BV:(i_v + 1) * BV],
)
for i in T.Parallel(G):
logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
T.copy(logsum, LSE_slc[i_b, i_t, i_h * G:(i_h + 1) * G])
return native_sparse_attention
@tilelang.jit(pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def tilelang_kernel_bwd_dkv(
batch,
heads,
seq_len,
dim,
is_causal,
scale=None,
block_size=64,
groups=1,
selected_blocks=16,
dtype="float16",
accum_dtype="float",
):
if scale is None:
sm_scale = (1.0 / dim)**0.5
else:
sm_scale = scale
scale = sm_scale * 1.44269504
from tilelang import language as T
B = batch
BS = block_size
G = groups
V = dim
K = dim
BK = tilelang.next_power_of_2(K)
BV = min(128, tilelang.next_power_of_2(dim))
NS = tilelang.cdiv(seq_len, BS)
NV = tilelang.cdiv(V, BV)
heads_kv = heads // groups
q_shape = [batch, seq_len, heads, dim]
k_shape = [batch, seq_len, heads_kv, dim]
v_shape = [batch, seq_len, heads_kv, dim]
lse_slc_shape = [batch, seq_len, heads]
delta_slc_shape = [batch, seq_len, heads]
o_shape = [batch, heads, seq_len, dim]
do_slc_shape = [batch, seq_len, heads, dim]
dk_shape = [NV, batch, seq_len, heads_kv, dim]
dv_shape = [batch, seq_len, heads_kv, dim]
block_mask_shape = [batch, seq_len, heads_kv, NS]
num_threads = 32
print("NV", NV, "NS", NS, "B", B, "H", H)
@T.prim_func
def flash_bwd_dkv(
Q: T.Tensor(q_shape, dtype),
K: T.Tensor(k_shape, dtype),
V: T.Tensor(v_shape, dtype),
LSE_slc: T.Tensor(lse_slc_shape, accum_dtype),
Delta_slc: T.Tensor(delta_slc_shape, accum_dtype),
DO_slc: T.Tensor(do_slc_shape, dtype),
DK: T.Tensor(dk_shape, dtype),
DV: T.Tensor(dv_shape, dtype),
BlockMask: T.Tensor(block_mask_shape, "int32"),
):
with T.Kernel(NV, NS, B * H, threads=num_threads) as (i_v, i_s, i_bh):
K_shared = T.alloc_shared([BS, BK], dtype)
V_shared = T.alloc_shared([BS, BV], dtype)
Q_shared = T.alloc_shared([G, BK], dtype)
qkT = T.alloc_fragment([BS, G], accum_dtype)
qkT_cast = T.alloc_fragment([BS, G], dtype)
dsT = T.alloc_fragment([BS, G], accum_dtype)
dsT_cast = T.alloc_fragment([BS, G], dtype)
lse_shared = T.alloc_shared([G], accum_dtype)
delta = T.alloc_shared([G], accum_dtype)
do = T.alloc_shared([G, BV], dtype)
dv = T.alloc_fragment([BS, BV], accum_dtype)
dk = T.alloc_fragment([BS, BK], accum_dtype)
dq = T.alloc_fragment([BS, G], accum_dtype)
dv_shared = T.alloc_shared([BS, BV], dtype)
dk_shared = T.alloc_shared([BS, BK], dtype)
i_b, i_h = i_bh // H, i_bh % H
T.copy(K[i_b, i_s * BS:(i_s + 1) * BS, i_h, :BK], K_shared)
T.copy(V[i_b, i_s * BS:(i_s + 1) * BS, i_h, :BV], V_shared)
# [BS, BK]
T.clear(dk)
# [BS, BV]
T.clear(dv)
T.annotate_layout({
K_shared: tilelang.layout.make_swizzled_layout(K_shared),
dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
})
loop_st = i_s * BS
loop_ed = seq_len
for i in T.Pipelined(
start=loop_st,
stop=loop_ed,
num_stages=0,
):
b_m_slc = BlockMask[i_b, i, i_h, i_s]
if b_m_slc != 0:
# [G, BK]
T.copy(Q[i_b, i, i_h * G:(i_h + 1) * G, :BK], Q_shared)
T.clear(qkT)
# [BS, BK] @ [G, BK] -> [BS, G]
T.gemm(
K_shared,
Q_shared,
qkT,
transpose_B=True,
policy=T.GemmWarpPolicy.FullRow,
)
# [G]
T.copy(LSE_slc[i_b, i, i_h * G:(i_h + 1) * G], lse_shared)
for _i, _j in T.Parallel(BS, G):
qkT[_i, _j] = T.exp2(qkT[_i, _j] * scale - lse_shared[_j])
for _i, _j in T.Parallel(BS, G):
qkT[_i, _j] = T.if_then_else(i >= (i_s * BS + _i), qkT[_i, _j], 0)
# [G, BV]
T.copy(DO_slc[i_b, i, i_h * G:(i_h + 1) * G, :BV], do)
T.clear(dsT)
# [BS, BV] @ [G, BV] -> [BS, G]
T.gemm(
V_shared,
do,
dsT,
transpose_B=True,
policy=T.GemmWarpPolicy.FullRow,
)
T.copy(qkT, qkT_cast)
# [BS, G] @ [G, BV] -> [BS, BV]
T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)
# [G]
T.copy(Delta_slc[i_b, i, i_h * G:(i_h + 1) * G], delta)
for i, j in T.Parallel(BS, G):
dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
# [BS, G] @ [G, BK] -> [BS, BK]
T.gemm(dsT_cast, Q_shared, dk, policy=T.GemmWarpPolicy.FullRow)
T.copy(dv, dv_shared)
T.copy(dk, dk_shared)
T.copy(dv_shared, DV[i_b, i_s * BS:(i_s + 1) * BS, i_h, :BV])
T.copy(dk_shared, DK[i_v, i_b, i_s * BS:(i_s + 1) * BS, i_h, :BK])
return flash_bwd_dkv
def make_dq_layout(dQ):
from tilelang import language as T
# atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
return T.Layout(
dQ.shape,
lambda b, l, h, d: [b, l // 8, h, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2],
)
@tilelang.jit(pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def tilelang_kernel_bwd_dqkv(
batch,
heads,
seq_len,
dim,
is_causal,
scale=None,
block_size=64,
groups=1,
selected_blocks=16,
dtype="float16",
accum_dtype="float",
):
if scale is None:
sm_scale = (1.0 / dim)**0.5
else:
sm_scale = scale
scale = sm_scale * 1.44269504
from tilelang import language as T
B = batch
BS = block_size
G = groups
V = dim
K = dim
BK = tilelang.next_power_of_2(K)
BV = min(128, tilelang.next_power_of_2(dim))
NS = tilelang.cdiv(seq_len, BS)
NV = tilelang.cdiv(V, BV)
heads_kv = heads // groups
q_shape = [batch, seq_len, heads, dim]
k_shape = [batch, seq_len, heads_kv, dim]
v_shape = [batch, seq_len, heads_kv, dim]
lse_slc_shape = [batch, seq_len, heads]
delta_slc_shape = [batch, seq_len, heads]
o_shape = [batch, heads, seq_len, dim]
do_slc_shape = [batch, seq_len, heads, dim]
dq_shape = [NV, batch, seq_len, heads, dim]
dk_shape = [NV, batch, seq_len, heads_kv, dim]
dv_shape = [batch, seq_len, heads_kv, dim]
block_mask_shape = [batch, seq_len, heads_kv, NS]
num_threads = 32
@T.prim_func
def flash_bwd_dqkv(
Q: T.Tensor(q_shape, dtype),
K: T.Tensor(k_shape, dtype),
V: T.Tensor(v_shape, dtype),
LSE_slc: T.Tensor(lse_slc_shape, accum_dtype),
Delta_slc: T.Tensor(delta_slc_shape, accum_dtype),
DO_slc: T.Tensor(do_slc_shape, dtype),
DQ: T.Tensor(dq_shape, dtype),
DK: T.Tensor(dk_shape, dtype),
DV: T.Tensor(dv_shape, dtype),
BlockMask: T.Tensor(block_mask_shape, "int32"),
):
with T.Kernel(NV, NS, B * H, threads=num_threads) as (i_v, i_s, i_bh):
K_shared = T.alloc_shared([BS, BK], dtype)
dsT_shared = T.alloc_shared([BS, G], dtype)
V_shared = T.alloc_shared([BS, BV], dtype)
Q_shared = T.alloc_shared([G, BK], dtype)
qkT = T.alloc_fragment([BS, G], accum_dtype)
qkT_cast = T.alloc_fragment([BS, G], dtype)
dsT = T.alloc_fragment([BS, G], accum_dtype)
dsT_cast = T.alloc_fragment([BS, G], dtype)
lse_shared = T.alloc_shared([G], accum_dtype)
delta = T.alloc_shared([G], accum_dtype)
do = T.alloc_shared([G, BV], dtype)
dv = T.alloc_fragment([BS, BV], accum_dtype)
dk = T.alloc_fragment([BS, BK], accum_dtype)
dq = T.alloc_fragment([G, BK], accum_dtype)
dv_shared = T.alloc_shared([BS, BV], dtype)
dk_shared = T.alloc_shared([BS, BK], dtype)
i_b, i_h = i_bh // H, i_bh % H
T.copy(K[i_b, i_s * BS:(i_s + 1) * BS, i_h, :BK], K_shared)
T.copy(V[i_b, i_s * BS:(i_s + 1) * BS, i_h, :BV], V_shared)
# [BS, BK]
T.clear(dk)
# [BS, BV]
T.clear(dv)
T.annotate_layout({
K_shared: tilelang.layout.make_swizzled_layout(K_shared),
dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
})
loop_st = i_s * BS
loop_ed = seq_len
for i in T.Pipelined(
start=loop_st,
stop=loop_ed,
num_stages=0,
):
b_m_slc = BlockMask[i_b, i, i_h, i_s]
if b_m_slc != 0:
# [G, BK]
T.copy(Q[i_b, i, i_h * G:(i_h + 1) * G, :BK], Q_shared)
T.clear(qkT)
# [BS, BK] @ [G, BK] -> [BS, G]
T.gemm(
K_shared,
Q_shared,
qkT,
transpose_B=True,
policy=T.GemmWarpPolicy.FullRow,
)
# [G]
T.copy(LSE_slc[i_b, i, i_h * G:(i_h + 1) * G], lse_shared)
for _i, _j in T.Parallel(BS, G):
qkT[_i, _j] = T.exp2(qkT[_i, _j] * scale - lse_shared[_j])
for _i, _j in T.Parallel(BS, G):
qkT[_i, _j] = T.if_then_else(i >= (i_s * BS + _i), qkT[_i, _j], 0)
# [G, BV]
T.copy(DO_slc[i_b, i, i_h * G:(i_h + 1) * G, :BV], do)
T.clear(dsT)
# [BS, BV] @ [G, BV] -> [BS, G]
T.gemm(
V_shared,
do,
dsT,
transpose_B=True,
policy=T.GemmWarpPolicy.FullRow,
)
T.copy(qkT, qkT_cast)
# [BS, G] @ [G, BV] -> [BS, BV]
T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)
# [G]
T.copy(Delta_slc[i_b, i, i_h * G:(i_h + 1) * G], delta)
for i, j in T.Parallel(BS, G):
dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
# [BS, G] @ [G, BK] -> [BS, BK]
T.gemm(dsT_cast, Q_shared, dk, policy=T.GemmWarpPolicy.FullRow)
T.copy(dsT_cast, dsT_shared)
T.clear(dq)
# [BS, G] * [BS, BK] -> [G, BK]
T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
for _i, _j in T.Parallel(G, BK):
T.atomic_add(DQ[i_v, i_b, i, i_h * G + _i, _j], dq[_i, _j])
T.copy(dv, dv_shared)
T.copy(dk, dk_shared)
T.copy(dv_shared, DV[i_b, i_s * BS:(i_s + 1) * BS, i_h, :BV])
T.copy(dk_shared, DK[i_v, i_b, i_s * BS:(i_s + 1) * BS, i_h, :BK])
return flash_bwd_dqkv
@tilelang.jit(
out_idx=[2], pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def tilelang_kernel_preprocess(
batch,
heads,
seq_len,
dim,
dtype="float16",
accum_dtype="float",
blk=32,
):
from tilelang import language as T
shape = [batch, seq_len, heads, dim]
@T.prim_func
def flash_bwd_prep(
O: T.Tensor(shape, dtype), # type: ignore
dO: T.Tensor(shape, dtype), # type: ignore
Delta: T.Tensor([batch, seq_len, heads], accum_dtype), # type: ignore
):
with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
o = T.alloc_fragment([blk, blk], dtype)
do = T.alloc_fragment([blk, blk], dtype)
acc = T.alloc_fragment([blk, blk], accum_dtype)
delta = T.alloc_fragment([blk], accum_dtype)
T.clear(acc)
for k in range(T.ceildiv(dim, blk)):
T.copy(O[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], o)
T.copy(dO[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], do)
for i, j in T.Parallel(blk, blk):
acc[i, j] += o[i, j] * do[i, j]
T.reduce_sum(acc, delta, 1)
T.copy(delta, Delta[bz, by * blk:(by + 1) * blk, bx])
return flash_bwd_prep
@tilelang.jit(
out_idx=[2], pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def tilelang_kernel_block_mask(
batch,
heads,
seq_len,
selected_blocks,
block_size,
dtype="int32",
):
from tilelang import language as T
block_indices_shape = [batch, seq_len, heads, selected_blocks]
block_counts_shape = [batch, seq_len, heads]
S = selected_blocks
BS = block_size
NS = tilelang.cdiv(seq_len, BS)
block_mask_shape = [batch, seq_len, heads, NS]
USE_BLOCK_COUNTS = block_counts is not None
@T.prim_func
def flash_bwd_block_mask(
BlockIndices: T.Tensor(block_indices_shape, dtype), # type: ignore
BlockCounts: T.Tensor(block_counts_shape, dtype), # type: ignore
BlockMask: T.Tensor(block_mask_shape, dtype), # type: ignore
):
with T.Kernel(seq_len, batch, heads * S) as (bx, by, bz):
i_t, i_b, i_hs = bx, by, bz
i_h, i_s = i_hs // S, i_hs % S
b_i = BlockIndices[i_b, i_t, i_h, i_s]
if USE_BLOCK_COUNTS:
b_m = b_i * BS <= i_t and i_s < BlockCounts[i_b, i_t, i_h].astype(i_s.dtype)
BlockMask[i_b, i_t, i_h, i_s] = b_m
else:
b_m = b_i * BS <= i_t
BlockMask[i_b, i_t, i_h, i_s] = b_m
return flash_bwd_block_mask
def parallel_nsa_bwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
o_slc: torch.Tensor,
lse_slc: torch.Tensor,
do_slc: torch.Tensor,
o_swa: torch.Tensor,
lse_swa: torch.Tensor,
do_swa: torch.Tensor,
block_indices: torch.Tensor,
block_counts: Union[torch.LongTensor, int],
block_size: int = 64,
window_size: int = 0,
scale: float = None,
offsets: Optional[torch.LongTensor] = None,
token_indices: Optional[torch.LongTensor] = None,
):
B, T, H, K, V, S = *k.shape, v.shape[-1], block_indices.shape[-1]
HQ = q.shape[2]
G = HQ // H
BS = block_size
WS = window_size
BK = triton.next_power_of_2(K)
BV = min(128, triton.next_power_of_2(v.shape[-1]))
NV = triton.cdiv(V, BV)
assert window_size == 0, "Window size is not supported yet"
delta_slc = tilelang_kernel_preprocess(B, HQ, T, K)(o_slc, do_slc)
dq = torch.zeros(NV, *q.shape, dtype=q.dtype if NV == 1 else torch.float, device=q.device)
dk = torch.empty(NV, *k.shape, dtype=k.dtype, device=q.device)
dv = torch.empty(v.shape, dtype=v.dtype, device=q.device)
block_mask = tilelang_kernel_block_mask(B, H, T, S,
BS)(block_indices.to(torch.int32),
block_counts.to(torch.int32)).to(torch.bool)
fused_qkv_bwd_kernel = tilelang_kernel_bwd_dqkv(
batch=B,
heads=HQ,
seq_len=T,
dim=K,
is_causal=True,
block_size=BS,
groups=G,
selected_blocks=S,
scale=scale,
)
fused_qkv_bwd_kernel(q, k, v, lse_slc, delta_slc, do_slc, dq, dk, dv,
block_mask.to(torch.int32))
dq = dq.sum(0)
dk = dk.sum(0)
return dq, dk, dv
@torch.compile
class ParallelNSAFunction(torch.autograd.Function):
@staticmethod
@contiguous
@autocast_custom_fwd
def forward(
ctx,
q,
k,
v,
block_indices,
block_counts,
block_size,
window_size,
scale,
offsets,
):
ctx.dtype = q.dtype
assert offsets is None, "Offsets are not supported yet"
# 2-d sequence indices denoting the offsets of tokens in each sequence
# for example, if the passed `offsets` is [0, 2, 6],
# then there are 2 and 4 tokens in the 1st and 2nd sequences respectively, and `token_indices` will be
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
token_indices = prepare_token_indices(offsets) if offsets is not None else None
B, SEQLEN, HQ, D = q.shape
H = k.shape[2]
G = HQ // H
S = block_indices.shape[-1]
V = v.shape[-1]
kernel = tilelang_kernel_fwd(
batch=B,
heads=HQ,
seq_len=SEQLEN,
dim=D,
is_causal=True,
scale=scale,
block_size=block_size,
groups=G,
selected_blocks=S,
)
o_slc = torch.empty(B, SEQLEN, HQ, D, dtype=v.dtype, device=q.device)
lse_slc = torch.empty(B, SEQLEN, HQ, dtype=torch.float, device=q.device)
kernel(q, k, v, block_indices.to(torch.int32), o_slc, lse_slc)
ctx.save_for_backward(q, k, v, o_slc, lse_slc)
ctx.block_indices = block_indices
ctx.block_counts = block_counts
ctx.offsets = offsets
ctx.token_indices = token_indices
ctx.block_size = block_size
ctx.window_size = window_size
ctx.scale = scale
return o_slc.to(q.dtype), lse_slc.to(torch.float)
@staticmethod
@contiguous
@autocast_custom_bwd
def backward(ctx, do_slc, do_swa):
q, k, v, o_slc, lse_slc = ctx.saved_tensors
dq, dk, dv = parallel_nsa_bwd(
q=q,
k=k,
v=v,
o_slc=o_slc,
o_swa=None,
lse_slc=lse_slc,
lse_swa=None,
do_slc=do_slc,
do_swa=do_swa,
block_indices=ctx.block_indices,
block_counts=ctx.block_counts,
block_size=ctx.block_size,
window_size=ctx.window_size,
scale=ctx.scale,
offsets=ctx.offsets,
token_indices=ctx.token_indices,
)
return (
dq.to(q),
dk.to(k),
dv.to(v),
None,
None,
None,
None,
None,
None,
None,
None,
)
def parallel_nsa(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g_slc: torch.Tensor,
g_swa: torch.Tensor,
block_indices: torch.LongTensor,
block_counts: Optional[Union[torch.LongTensor, int]] = None,
block_size: int = 64,
window_size: int = 0,
scale: Optional[float] = None,
cu_seqlens: Optional[torch.LongTensor] = None,
head_first: bool = False,
) -> torch.Tensor:
r"""
Args:
q (torch.Tensor):
queries of shape `[B, SEQLEN, HQ, K]` if `head_first=False` else `[B, HQ, SEQLEN, K]`.
k (torch.Tensor):
keys of shape `[B, SEQLEN, H, K]` if `head_first=False` else `[B, H, SEQLEN, K]`.
GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
v (torch.Tensor):
values of shape `[B, SEQLEN, H, V]` if `head_first=False` else `[B, H, SEQLEN, V]`.
g_slc (torch.Tensor):
Gate score for selected attention of shape `[B, SEQLEN, HQ]` if `head_first=False` else `[B, HQ, SEQLEN]`.
g_swa (torch.Tensor):
Gate score for sliding attention of shape `[B, SEQLEN, HQ]` if `head_first=False` else `[B, HQ, SEQLEN]`.
block_indices (torch.LongTensor):
Block indices of shape `[B, SEQLEN, H, S]` if `head_first=False` else `[B, H, SEQLEN, S]`.
`S` is the number of selected blocks for each query token, which is set to 16 in the paper.
block_counts (Union[torch.LongTensor, int]):
Number of selected blocks for each token.
If a tensor is provided, with shape `[B, SEQLEN, H]` if `head_first=True` else `[B, SEQLEN, H]`,
each token can select the same number of blocks.
If not provided, it will default to `S`, Default: `None`
block_size (int):
Selected block size. Default: 64.
window_size (int):
Sliding window size. Default: 0.
scale (Optional[int]):
Scale factor for attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
head_first (Optional[bool]):
Whether the inputs are in the head-first format. Default: `False`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
Returns:
o (torch.Tensor):
Outputs of shape `[B, SEQLEN, HQ, V]` if `head_first=False` else `[B, HQ, SEQLEN, V]`.
"""
if scale is None:
scale = k.shape[-1]**-0.5
if cu_seqlens is not None:
assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
if head_first:
q, k, v, block_indices = map(lambda x: rearrange(x, "b h t d -> b t h d"),
(q, k, v, block_indices))
g_slc, g_swa = map(lambda x: rearrange(x, "b h t -> b t h"), (g_slc, g_swa))
if isinstance(block_counts, torch.Tensor):
block_counts = rearrange(block_counts, "b h t -> b t h")
assert (q.shape[2] % (k.shape[2] * 16) == 0), "Group size must be a multiple of 16 in NSA"
if isinstance(block_counts, int):
block_indices = block_indices[:, :, :, :block_counts]
block_counts = None
o_slc, o_swa = ParallelNSAFunction.apply(q, k, v, block_indices, block_counts, block_size,
window_size, scale, cu_seqlens)
if window_size > 0:
o = torch.addcmul(o_slc * g_slc.unsqueeze(-1), o_swa, g_swa.unsqueeze(-1))
else:
o = o_slc * g_slc.unsqueeze(-1)
if head_first:
o = rearrange(o, "b t h d -> b h t d")
return o
if __name__ == "__main__":
B, T, H, HQ, D, S, block_size, dtype = 1, 32, 1, 16, 32, 1, 32, torch.float16
torch.random.manual_seed(0)
q = torch.randn((B, T, HQ, D), dtype=dtype, device="cuda").requires_grad_(True)
k = torch.randn((B, T, H, D), dtype=dtype, device="cuda").requires_grad_(True)
v = torch.randn((B, T, H, D), dtype=dtype, device="cuda").requires_grad_(True)
g_slc = torch.ones((B, T, HQ), dtype=dtype, device="cuda").requires_grad_(True)
g_swa = torch.ones((B, T, HQ), dtype=dtype, device="cuda").requires_grad_(True)
do = torch.randn((B, T, HQ, D), dtype=dtype, device="cuda")
block_indices = torch.full((B, T, H, S), T, dtype=torch.long, device="cuda")
for b in range(B):
for t in range(T):
for h in range(H):
i_i = torch.randperm(max(1, (t // block_size)))[:S]
block_indices[b, t, h, :len(i_i)] = i_i
block_indices = block_indices.sort(-1)[0]
block_counts = torch.randint(1, S + 1, (B, T, H), device="cuda")
ref = naive_nsa(
q=q,
k=k,
v=v,
g_slc=g_slc,
g_swa=g_swa,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
)
ref.backward(do)
ref_dq, q.grad = q.grad.clone(), None
ref_dk, k.grad = k.grad.clone(), None
ref_dv, v.grad = v.grad.clone(), None
ref_dg_slc, g_slc.grad = g_slc.grad.clone(), None
tri = parallel_nsa(
q=q,
k=k,
v=v,
g_slc=g_slc,
g_swa=g_swa,
block_indices=block_indices,
block_size=block_size,
block_counts=block_counts,
)
tri.backward(do)
tri_dq, q.grad = q.grad.clone(), None
tri_dk, k.grad = k.grad.clone(), None
tri_dv, v.grad = v.grad.clone(), None
tri_dg_slc, g_slc.grad = g_slc.grad.clone(), None
# assert_close(" o", ref, tri, 0.004)
torch.testing.assert_close(ref, tri, atol=1e-2, rtol=1e-2)
torch.testing.assert_close(ref_dq, tri_dq, atol=1e-2, rtol=1e-2)
torch.testing.assert_close(ref_dk, tri_dk, atol=1e-2, rtol=1e-2)
torch.testing.assert_close(ref_dv, tri_dv, atol=1e-2, rtol=1e-2)
torch.testing.assert_close(ref_dg_slc, tri_dg_slc, atol=1e-2, rtol=1e-2)
# ruff: noqa
import torch
from reference import naive_nsa_simple_inference
import tilelang
from tilelang import language as T
import tilelang.testing
tilelang.testing.set_random_seed(42)
# TODO(lei): workaround, as threads is not divisible by warp group size,
# auto warp specialization may have some bugs.
@tilelang.jit(
out_idx=[-1],
pass_configs={
tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def native_sparse_attention(
batch,
heads,
seq_len, # Length of K/V sequences (context window size)
dim, # Embedding dimension per head
scale=None,
block_size=64, # Tile size for attention computation
groups=1, # Grouped query attention (GQA) groups
selected_blocks=16 # Number of blocks to select per attention head
):
if scale is None:
scale = (1.0 / dim)**0.5 * 1.44269504 # log2(e)
head_kv = heads // groups
# Modified shapes for inference (q has seq_len=1)a
q_shape = [batch, 1, heads, dim] # Changed seq_len to 1
kv_shape = [batch, seq_len, head_kv, dim]
block_indices_shape = [batch, 1, head_kv, selected_blocks] # Changed seq_len to 1
block_indices_dtype = "int32"
dtype = "float16"
accum_dtype = "float"
block_S = block_size
block_T = min(128, tilelang.math.next_power_of_2(dim))
NK = tilelang.cdiv(dim, block_T)
NV = tilelang.cdiv(dim, block_T)
assert NK == 1, "The key dimension can not be larger than 256"
S = selected_blocks
G = groups
BS = block_S
BK = BV = block_T
num_stages = 0
threads = 32
@T.prim_func
def native_sparse_attention(
Q: T.Tensor(q_shape, dtype), # [batch, 1, heads, dim]
K: T.Tensor(kv_shape, dtype), # [batch, seq_len, head_kv, dim]
V: T.Tensor(kv_shape, dtype), # Same shape as K
BlockIndices: T.Tensor(block_indices_shape,
block_indices_dtype), # Selected block indices
Output: T.Tensor(q_shape, dtype), # Output attention tensor
):
with T.Kernel(1, NV, batch * head_kv, threads=threads) as (bx, by, bz):
# Shared memory allocations for tile storage
Q_shared = T.alloc_shared([G, BK], dtype) # Current query block
K_shared = T.alloc_shared([BS, BK], dtype) # Current key block
V_shared = T.alloc_shared([BS, BV], dtype) # Current value block
O_shared = T.alloc_shared([G, BV], dtype) # Output accumulator
# Attention computation buffers
acc_s = T.alloc_fragment([G, BS], accum_dtype) # QK^T scores
acc_s_cast = T.alloc_fragment([G, BS], dtype) # Casted scores for softmax
acc_o = T.alloc_fragment([G, BV], accum_dtype) # Output accumulator
scores_max = T.alloc_fragment([G], accum_dtype)
scores_max_prev = T.alloc_fragment([G], accum_dtype)
scores_scale = T.alloc_fragment([G], accum_dtype)
scores_sum = T.alloc_fragment([G], accum_dtype)
logsum = T.alloc_fragment([G], accum_dtype)
i_v, i_bh = by, bz
i_b, i_h = i_bh // head_kv, i_bh % head_kv
NS = S
# Copy Q for the single position
T.copy(Q[i_b, 0, i_h * G:(i_h + 1) * G, :], Q_shared) # Changed i_t to 0
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
# Main attention computation loop over selected blocks
for i in T.Pipelined(NS, num_stages=num_stages):
i_s = BlockIndices[i_b, 0, i_h, i] * BS # Get block offset
if i_s >= 0: # Skip invalid/padding blocks
# Load current key block to shared memory
T.copy(K[i_b, i_s:i_s + BS, i_h, :], K_shared)
# Compute QK^T attention scores
T.clear(acc_s)
T.gemm(
Q_shared,
K_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullRow)
# Online softmax with numerical stability
# 1. Compute max for scaling
# 2. Compute exponentials and sum
# 3. Maintain running logsum for normalization
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=True)
for i in T.Parallel(G):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(G, BS):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
for i in T.Parallel(G):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
T.copy(acc_s, acc_s_cast)
# Accumulate attention-weighted values
T.copy(V[i_b, i_s:i_s + BS, i_h, i_v * BV:(i_v + 1) * BV], V_shared)
T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
# Final normalization and output
for i, j in T.Parallel(G, BV):
acc_o[i, j] /= logsum[i] # Normalize by logsum
T.copy(acc_o, O_shared)
T.copy(O_shared, Output[i_b, 0, i_h * G:(i_h + 1) * G,
i_v * BV:(i_v + 1) * BV]) # Changed i_t to 0
return native_sparse_attention
def main():
B, SEQ_LEN, H, HQ, D, S, block_size, dtype = 2, 64, 1, 16, 16, 1, 32, torch.float16
groups = HQ // H
SEQ_LEN_Q = 1
kernel = native_sparse_attention(
batch=B,
heads=HQ,
seq_len=SEQ_LEN,
dim=D,
block_size=block_size,
groups=HQ // H,
selected_blocks=S,
)
Q = torch.randn((B, SEQ_LEN_Q, HQ, D), dtype=dtype, device='cuda').requires_grad_(True)
K = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
V = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
mask = torch.randint(0, 2, (B, SEQ_LEN, groups), device='cuda')
DO = torch.randn((B, SEQ_LEN_Q, HQ, D), dtype=dtype, device='cuda')
block_indices = torch.full((B, SEQ_LEN_Q, H, S), SEQ_LEN, dtype=torch.long, device='cuda')
for b in range(B):
for t in range(SEQ_LEN_Q):
for h in range(H):
i_i = torch.randperm(max(1, (t // block_size)))[:S]
block_indices[b, t, h, :len(i_i)] = i_i
block_indices = block_indices.sort(-1)[0]
block_counts = torch.randint(1, S + 1, (B, SEQ_LEN_Q, H), device='cuda')
out = kernel(Q, K, V, block_indices.to(torch.int32))
ref = naive_nsa_simple_inference(
q=Q,
k=K,
v=V,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
)
torch.testing.assert_close(ref, out, atol=1e-2, rtol=1e-2)
if __name__ == "__main__":
main()
# ruff: noqa
import torch
from reference import naive_nsa
import tilelang
from tilelang import language as T
import tilelang.testing
tilelang.testing.set_random_seed(0)
@tilelang.jit(
out_idx=[-1],
pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
})
def native_sparse_attention(batch,
heads,
seq_len,
dim,
is_causal,
scale=None,
block_size=64,
groups=1,
selected_blocks=16):
if scale is None:
scale = (1.0 / dim)**0.5 * 1.44269504 # log2(e)
else:
scale = scale * 1.44269504 # log2(e)
head_kv = heads // groups
q_shape = [batch, seq_len, heads, dim]
kv_shape = [batch, seq_len, head_kv, dim]
block_indices_shape = [batch, seq_len, head_kv, selected_blocks]
block_indices_dtype = "int32"
dtype = "float16"
accum_dtype = "float"
block_S = block_size
block_T = min(128, tilelang.math.next_power_of_2(dim))
NK = tilelang.cdiv(dim, block_T)
NV = tilelang.cdiv(dim, block_T)
assert NK == 1, "The key dimension can not be larger than 256"
S = selected_blocks
G = groups
BS = block_S
BK = BV = block_T
num_stages = 2
threads = 32
@T.prim_func
def native_sparse_attention(
Q: T.Tensor(q_shape, dtype),
K: T.Tensor(kv_shape, dtype),
V: T.Tensor(kv_shape, dtype),
BlockIndices: T.Tensor(block_indices_shape, block_indices_dtype),
Output: T.Tensor(q_shape, dtype),
):
with T.Kernel(seq_len, NV, batch * head_kv, threads=threads) as (bx, by, bz):
Q_shared = T.alloc_shared([G, BK], dtype)
K_shared = T.alloc_shared([BS, BK], dtype)
V_shared = T.alloc_shared([BS, BV], dtype)
O_shared = T.alloc_shared([G, BV], dtype)
acc_s = T.alloc_fragment([G, BS], accum_dtype)
acc_s_cast = T.alloc_fragment([G, BS], dtype)
acc_o = T.alloc_fragment([G, BV], accum_dtype)
scores_max = T.alloc_fragment([G], accum_dtype)
scores_max_prev = T.alloc_fragment([G], accum_dtype)
scores_scale = T.alloc_fragment([G], accum_dtype)
scores_sum = T.alloc_fragment([G], accum_dtype)
logsum = T.alloc_fragment([G], accum_dtype)
i_t, i_v, i_bh = bx, by, bz
i_b, i_h = i_bh // head_kv, i_bh % head_kv
NS = S
T.copy(Q[i_b, i_t, i_h * G:(i_h + 1) * G, :], Q_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
for i in T.Pipelined(NS, num_stages=num_stages):
i_s = BlockIndices[i_b, i_t, i_h, i] * BS
if i_s <= i_t and i_s >= 0:
# [BS, BK]
T.copy(K[i_b, i_s:i_s + BS, i_h, :], K_shared)
if is_causal:
for i, j in T.Parallel(G, BS):
acc_s[i, j] = T.if_then_else(i_t >= (i_s + j), 0,
-T.infinity(acc_s.dtype))
else:
T.clear(acc_s)
T.gemm(
Q_shared,
K_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullRow)
# Softmax
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=True)
for i in T.Parallel(G):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(G, BS):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
for i in T.Parallel(G):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
T.copy(acc_s, acc_s_cast)
# Rescale
for i, j in T.Parallel(G, BV):
acc_o[i, j] *= scores_scale[i]
# V * softmax(Q * K)
T.copy(V[i_b, i_s:i_s + BS, i_h, i_v * BV:(i_v + 1) * BV], V_shared)
T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
for i, j in T.Parallel(G, BV):
acc_o[i, j] /= logsum[i]
T.copy(acc_o, O_shared)
T.copy(O_shared, Output[i_b, i_t, i_h * G:(i_h + 1) * G, i_v * BV:(i_v + 1) * BV])
return native_sparse_attention
def main():
B, SEQ_LEN, H, HQ, D, S, block_size, dtype, scale = 2, 64, 1, 16, 32, 1, 32, torch.float16, 0.1
kernel = native_sparse_attention(
batch=B,
heads=HQ,
seq_len=SEQ_LEN,
dim=D,
is_causal=True,
block_size=block_size,
groups=HQ // H,
selected_blocks=S,
scale=scale,
)
print(kernel.get_kernel_source())
torch.random.manual_seed(0)
Q = torch.randn((B, SEQ_LEN, HQ, D), dtype=dtype, device='cuda').requires_grad_(True)
K = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
V = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
g_slc = torch.ones((B, SEQ_LEN, HQ), dtype=dtype, device='cuda').requires_grad_(True)
g_swa = torch.ones((B, SEQ_LEN, HQ), dtype=dtype, device='cuda').requires_grad_(True)
DO = torch.randn((B, SEQ_LEN, HQ, D), dtype=dtype, device='cuda')
block_indices = torch.full((B, SEQ_LEN, H, S), SEQ_LEN, dtype=torch.long, device='cuda')
for b in range(B):
for t in range(SEQ_LEN):
for h in range(H):
i_i = torch.randperm(max(1, (t // block_size)))[:S]
block_indices[b, t, h, :len(i_i)] = i_i
block_indices = block_indices.sort(-1)[0]
block_counts = torch.randint(1, S + 1, (B, SEQ_LEN, H), device='cuda')
out = kernel(Q, K, V, block_indices.to(torch.int32))
ref = naive_nsa(
q=Q,
k=K,
v=V,
g_slc=g_slc,
g_swa=g_swa,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
scale=scale,
)
print("out", out)
print("ref", ref)
torch.testing.assert_close(ref, out, atol=1e-2, rtol=1e-2)
if __name__ == "__main__":
main()
# ruff: noqa
import torch
from typing import Optional, Union
from packaging.version import parse
import tilelang
from tilelang import language as T
import tilelang.testing
import fla
if parse(fla.__version__) < parse("0.2.1"):
from fla.ops.common.utils import prepare_token_indices
else:
from fla.ops.utils import prepare_token_indices
from reference import naive_nsa
from einops import rearrange
@tilelang.jit(
pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
})
def native_sparse_attention_varlen(batch,
heads,
c_seq_len,
dim,
is_causal,
scale=None,
block_size=64,
groups=1,
selected_blocks=16):
if scale is None:
scale = (1.0 / dim)**0.5 * 1.44269504 # log2(e)
head_kv = heads // groups
q_shape = [c_seq_len, heads, dim]
kv_shape = [c_seq_len, head_kv, dim]
o_slc_shape = [c_seq_len, heads, dim]
o_swa_shape = [c_seq_len, heads, dim]
lse_slc_shape = [c_seq_len, heads]
lse_swa_shape = [c_seq_len, heads]
block_indices_shape = [c_seq_len, head_kv, selected_blocks]
block_counts_shape = [c_seq_len, head_kv]
offsets_shape = [batch + 1]
token_indices_shape = [c_seq_len, 2]
block_indices_dtype = "int32"
block_counts_dtype = "int32"
offsets_dtype = "int32"
token_indices_dtype = "int32"
dtype = "float16"
accum_dtype = "float"
block_S = block_size
block_T = min(128, tilelang.math.next_power_of_2(dim))
NK = tilelang.cdiv(dim, block_T)
NV = tilelang.cdiv(dim, block_T)
assert NK == 1, "The key dimension can not be larger than 256"
S = selected_blocks
G = groups
BS = block_S
BK = BV = block_T
num_stages = 0
threads = 32
@T.prim_func
def native_sparse_attention_varlen(
Q: T.Tensor(q_shape, dtype),
K: T.Tensor(kv_shape, dtype),
V: T.Tensor(kv_shape, dtype),
O_slc: T.Tensor(o_slc_shape, dtype),
BlockIndices: T.Tensor(block_indices_shape, block_indices_dtype),
BlockCounts: T.Tensor(block_counts_shape, block_counts_dtype),
Offsets: T.Tensor(offsets_shape, offsets_dtype),
TokenIndices: T.Tensor(token_indices_shape, token_indices_dtype),
):
with T.Kernel(c_seq_len, NV, batch * head_kv, threads=threads) as (bx, by, bz):
Q_shared = T.alloc_shared([G, BK], dtype)
K_shared = T.alloc_shared([BS, BK], dtype)
V_shared = T.alloc_shared([BS, BV], dtype)
O_shared = T.alloc_shared([G, BV], dtype)
acc_s = T.alloc_fragment([G, BS], accum_dtype)
acc_s_cast = T.alloc_fragment([G, BS], dtype)
acc_o = T.alloc_fragment([G, BV], accum_dtype)
scores_max = T.alloc_fragment([G], accum_dtype)
scores_max_prev = T.alloc_fragment([G], accum_dtype)
scores_scale = T.alloc_fragment([G], accum_dtype)
scores_sum = T.alloc_fragment([G], accum_dtype)
logsum = T.alloc_fragment([G], accum_dtype)
i_c, i_v, i_bh = bx, by, bz
i_b, i_h = i_bh // head_kv, i_bh % head_kv
i_n, i_t = TokenIndices[i_c, 0], TokenIndices[i_c, 1]
bos = Offsets[i_n]
eos = Offsets[i_n + 1]
current_seq_len = eos - bos
NS = BlockCounts[i_t, i_h]
T.copy(Q[bos + i_t, i_h * G:(i_h + 1) * G, :BK], Q_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
for i in T.Pipelined(NS, num_stages=num_stages):
i_s = BlockIndices[bos + i_t, i_h, i] * BS
if i_s <= i_t and i_s >= 0:
# [BS, BK]
# Lei: may have some padding issues
# we should learn from mha varlen templates to handle this
T.copy(K[bos + i_s:bos + i_s + BS, i_h, :BK], K_shared)
if is_causal:
for i, j in T.Parallel(G, BS):
acc_s[i, j] = T.if_then_else(i_t >= (i_s + j), 0,
-T.infinity(acc_s.dtype))
else:
T.clear(acc_s)
T.gemm(
Q_shared,
K_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullRow)
# Softmax
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=True)
for i in T.Parallel(G):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(G, BS):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
for i in T.Parallel(G):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
T.copy(acc_s, acc_s_cast)
# Rescale
for i, j in T.Parallel(G, BV):
acc_o[i, j] *= scores_scale[i]
# V * softmax(Q * K)
T.copy(V[bos + i_s:bos + i_s + BS, i_h, i_v * BV:(i_v + 1) * BV], V_shared)
T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
for i, j in T.Parallel(G, BV):
acc_o[i, j] /= logsum[i]
T.copy(acc_o, O_shared)
T.copy(O_shared, O_slc[bos + i_t, i_h * G:(i_h + 1) * G, i_v * BV:(i_v + 1) * BV])
return native_sparse_attention_varlen
def parallel_nsa_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
block_indices: torch.LongTensor,
block_counts: Union[torch.LongTensor, int],
block_size: int,
window_size: int,
scale: float,
offsets: Optional[torch.LongTensor] = None,
token_indices: Optional[torch.LongTensor] = None,
):
B, C_SEQ_LEN, H, K, V, S = *k.shape, v.shape[-1], block_indices.shape[-1]
batch = len(offsets) - 1
HQ = q.shape[2]
G = HQ // H
BS = block_size
WS = window_size
kernel = native_sparse_attention_varlen(
batch=batch,
heads=HQ,
c_seq_len=C_SEQ_LEN,
dim=K,
is_causal=True,
block_size=block_size,
groups=G,
selected_blocks=S,
)
o_slc = torch.empty(B, C_SEQ_LEN, HQ, V, dtype=v.dtype, device=q.device)
kernel(
q.view(C_SEQ_LEN, HQ, D), k.view(C_SEQ_LEN, H, D), v.view(C_SEQ_LEN, H, D),
o_slc.view(C_SEQ_LEN, HQ, V),
block_indices.to(torch.int32).view(C_SEQ_LEN, H, S),
block_counts.to(torch.int32).view(C_SEQ_LEN, H), offsets.to(torch.int32),
token_indices.to(torch.int32))
return o_slc
@torch.compile
class ParallelNSAFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, block_indices, block_counts, block_size, window_size, scale, offsets):
ctx.dtype = q.dtype
# 2-d sequence indices denoting the offsets of tokens in each sequence
# for example, if the passed `offsets` is [0, 2, 6],
# then there are 2 and 4 tokens in the 1st and 2nd sequences respectively, and `token_indices` will be
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
token_indices = prepare_token_indices(offsets) if offsets is not None else None
o_slc = parallel_nsa_fwd(
q=q,
k=k,
v=v,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
window_size=window_size,
scale=scale,
offsets=offsets,
token_indices=token_indices)
return o_slc.to(q.dtype)
def parallel_nsa(q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g_slc: torch.Tensor,
g_swa: torch.Tensor,
block_indices: torch.LongTensor,
block_counts: Optional[Union[torch.LongTensor, int]] = None,
block_size: int = 64,
window_size: int = 0,
scale: Optional[float] = None,
cu_seqlens: Optional[torch.LongTensor] = None,
head_first: bool = False) -> torch.Tensor:
r"""
Args:
q (torch.Tensor):
queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
k (torch.Tensor):
keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
v (torch.Tensor):
values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
g_slc (torch.Tensor):
Gate score for selected attention of shape `[B, T, HQ]` if `head_first=False` else `[B, HQ, T]`.
g_swa (torch.Tensor):
Gate score for sliding attentionof shape `[B, T, HQ]` if `head_first=False` else `[B, HQ, T]`.
block_indices (torch.LongTensor):
Block indices of shape `[B, T, H, S]` if `head_first=False` else `[B, H, T, S]`.
`S` is the number of selected blocks for each query token, which is set to 16 in the paper.
block_counts (Union[torch.LongTensor, int]):
Number of selected blocks for each token.
If a tensor is provided, with shape `[B, T, H]` if `head_first=True` else `[B, T, H]`,
each token can select the same number of blocks.
If not provided, it will default to `S`, Default: `None`
block_size (int):
Selected block size. Default: 64.
window_size (int):
Sliding window size. Default: 0.
scale (Optional[int]):
Scale factor for attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
head_first (Optional[bool]):
Whether the inputs are in the head-first format. Default: `False`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
Returns:
o (torch.Tensor):
Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
"""
if scale is None:
scale = k.shape[-1]**-0.5
if cu_seqlens is not None:
assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
if head_first:
q, k, v, block_indices = map(lambda x: rearrange(x, 'b h t d -> b t h d'),
(q, k, v, block_indices))
g_slc, g_swa = map(lambda x: rearrange(x, 'b h t -> b t h'), (g_slc, g_swa))
if isinstance(block_counts, torch.Tensor):
block_counts = rearrange(block_counts, 'b h t -> b t h')
assert q.shape[2] % (k.shape[2] * 16) == 0, "Group size must be a multiple of 16 in NSA"
if isinstance(block_counts, int):
block_indices = block_indices[:, :, :, :block_counts]
block_counts = None
o_slc = ParallelNSAFunction.apply(q, k, v, block_indices, block_counts, block_size, window_size,
scale, cu_seqlens)
if window_size > 0:
assert False, "Window size is not supported yet"
else:
o = o_slc * g_slc.unsqueeze(-1)
if head_first:
o = rearrange(o, 'b t h d -> b h t d')
return o
if __name__ == "__main__":
N, C_SEQ_LEN, H, HQ, D, S, block_size, dtype = 2, 64, 1, 16, 64, 1, 32, torch.float16
torch.manual_seed(42)
# randomly split the sequence into N segments
offsets = torch.cat([
torch.tensor([0], dtype=torch.long),
torch.arange(16, C_SEQ_LEN)[torch.randperm(C_SEQ_LEN - 1)[:N - 1]],
torch.tensor([C_SEQ_LEN], dtype=torch.long)
], 0).cuda().sort()[0]
# seq-first required for inputs with variable lengths
perm_q = torch.randperm(C_SEQ_LEN, device='cuda')
perm_k = torch.randperm(C_SEQ_LEN, device='cuda')
perm_v = torch.randperm(C_SEQ_LEN, device='cuda')
q = torch.linspace(
0, 1, steps=C_SEQ_LEN, dtype=dtype,
device='cuda')[perm_q].view(1, C_SEQ_LEN, 1, 1).expand(1, C_SEQ_LEN, HQ,
D).clone().requires_grad_(True)
k = torch.linspace(
0, 1, steps=C_SEQ_LEN, dtype=dtype,
device='cuda')[perm_k].view(1, C_SEQ_LEN, 1, 1).expand(1, C_SEQ_LEN, H,
D).clone().requires_grad_(True)
v = torch.linspace(
0, 1, steps=C_SEQ_LEN, dtype=dtype,
device='cuda')[perm_v].view(1, C_SEQ_LEN, 1, 1).expand(1, C_SEQ_LEN, H,
D).clone().requires_grad_(True)
g_slc = torch.rand((1, C_SEQ_LEN, HQ), dtype=dtype, device='cuda').requires_grad_(True)
g_swa = torch.rand((1, C_SEQ_LEN, HQ), dtype=dtype, device='cuda').requires_grad_(True)
do = torch.randn((1, C_SEQ_LEN, HQ, D), dtype=dtype, device='cuda')
token_indices = prepare_token_indices(offsets).tolist()
block_indices = torch.full((1, C_SEQ_LEN, H, S), C_SEQ_LEN, dtype=torch.long, device='cuda')
for i in range(C_SEQ_LEN):
_, t = token_indices[i]
for h in range(H):
i_i = torch.randperm(max(1, tilelang.cdiv(t, block_size)))[:S]
block_indices[0, i, h, :len(i_i)] = i_i
block_indices = block_indices.sort(-1)[0]
block_counts = torch.randint(1, S + 1, (1, C_SEQ_LEN, H), device='cuda')
ref = naive_nsa(
q=q,
k=k,
v=v,
g_slc=g_slc,
g_swa=g_swa,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
cu_seqlens=offsets)
tri = parallel_nsa(
q=q,
k=k,
v=v,
g_slc=g_slc,
g_swa=g_swa,
block_indices=block_indices,
block_counts=block_counts,
block_size=block_size,
cu_seqlens=offsets)
print("tri", tri)
print("ref", ref)
torch.testing.assert_close(ref, tri, atol=1e-2, rtol=1e-2)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment