Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangkx1
siton-paddleyolo
Commits
522a602f
Commit
522a602f
authored
Jul 22, 2024
by
wangkx1
Browse files
siton bug
parent
abb99c90
Changes
468
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
708 additions
and
0 deletions
+708
-0
configs/voc/ppyoloe_plus_crn_s_30e_voc.yml
configs/voc/ppyoloe_plus_crn_s_30e_voc.yml
+39
-0
configs/voc/yolov5_s_60e_voc.yml
configs/voc/yolov5_s_60e_voc.yml
+29
-0
configs/voc/yolov7_tiny_60e_voc.yml
configs/voc/yolov7_tiny_60e_voc.yml
+29
-0
configs/voc/yolox_s_40e_voc.yml
configs/voc/yolox_s_40e_voc.yml
+29
-0
configs/yolof/README.md
configs/yolof/README.md
+22
-0
configs/yolof/_base_/optimizer_1x.yml
configs/yolof/_base_/optimizer_1x.yml
+19
-0
configs/yolof/_base_/yolof_r50_c5.yml
configs/yolof/_base_/yolof_r50_c5.yml
+54
-0
configs/yolof/_base_/yolof_reader.yml
configs/yolof/_base_/yolof_reader.yml
+38
-0
configs/yolof/yolof_r50_c5_1x_coco.yml
configs/yolof/yolof_r50_c5_1x_coco.yml
+10
-0
configs/yolov3/README.md
configs/yolov3/README.md
+85
-0
configs/yolov3/_base_/optimizer_270e.yml
configs/yolov3/_base_/optimizer_270e.yml
+21
-0
configs/yolov3/_base_/optimizer_40e.yml
configs/yolov3/_base_/optimizer_40e.yml
+21
-0
configs/yolov3/_base_/yolov3_darknet53.yml
configs/yolov3/_base_/yolov3_darknet53.yml
+41
-0
configs/yolov3/_base_/yolov3_mobilenet_v1.yml
configs/yolov3/_base_/yolov3_mobilenet_v1.yml
+43
-0
configs/yolov3/_base_/yolov3_mobilenet_v3_large.yml
configs/yolov3/_base_/yolov3_mobilenet_v3_large.yml
+44
-0
configs/yolov3/_base_/yolov3_mobilenet_v3_small.yml
configs/yolov3/_base_/yolov3_mobilenet_v3_small.yml
+44
-0
configs/yolov3/_base_/yolov3_r34.yml
configs/yolov3/_base_/yolov3_r34.yml
+41
-0
configs/yolov3/_base_/yolov3_r50vd_dcn.yml
configs/yolov3/_base_/yolov3_r50vd_dcn.yml
+45
-0
configs/yolov3/_base_/yolov3_reader.yml
configs/yolov3/_base_/yolov3_reader.yml
+44
-0
configs/yolov3/yolov3_darknet53_270e_coco.yml
configs/yolov3/yolov3_darknet53_270e_coco.yml
+10
-0
No files found.
configs/voc/ppyoloe_plus_crn_s_30e_voc.yml
0 → 100644
View file @
522a602f
_BASE_
:
[
'
../ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml'
,
'
../datasets/voc.yml'
,
]
log_iter
:
50
snapshot_epoch
:
5
weights
:
output/ppyoloe_plus_crn_s_30e_voc/model_final
pretrain_weights
:
https://bj.bcebos.com/v1/paddledet/models/ppyoloe_plus_crn_s_80e_coco.pdparams
depth_mult
:
0.33
width_mult
:
0.50
TrainReader
:
batch_size
:
8
# default 8 gpus, total bs = 64
EvalReader
:
batch_size
:
4
epoch
:
30
LearningRate
:
base_lr
:
0.001
schedulers
:
-
!CosineDecay
max_epochs
:
36
-
!LinearWarmup
start_factor
:
0.
epochs
:
1
PPYOLOEHead
:
static_assigner_epoch
:
-1
nms
:
name
:
MultiClassNMS
nms_top_k
:
1000
keep_top_k
:
300
score_threshold
:
0.01
nms_threshold
:
0.7
configs/voc/yolov5_s_60e_voc.yml
0 → 100644
View file @
522a602f
_BASE_
:
[
'
../yolov5/yolov5_s_300e_coco.yml'
,
'
../datasets/voc.yml'
,
]
log_iter
:
50
snapshot_epoch
:
5
weights
:
output/yolov5_s_60e_voc/model_final
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/yolov5_s_300e_coco.pdparams
depth_mult
:
0.33
width_mult
:
0.50
TrainReader
:
batch_size
:
16
# default 8 gpus, total bs = 128
EvalReader
:
batch_size
:
4
epoch
:
60
LearningRate
:
base_lr
:
0.001
schedulers
:
-
!YOLOv5LRDecay
max_epochs
:
60
min_lr_ratio
:
0.01
-
!ExpWarmup
epochs
:
1
configs/voc/yolov7_tiny_60e_voc.yml
0 → 100644
View file @
522a602f
_BASE_
:
[
'
../yolov7/yolov7_tiny_300e_coco.yml'
,
'
../datasets/voc.yml'
,
]
log_iter
:
50
snapshot_epoch
:
5
weights
:
output/yolov7_tiny_60e_voc/model_final
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/yolov7_tiny_300e_coco.pdparams
arch
:
tiny
act
:
LeakyReLU
TrainReader
:
batch_size
:
32
# default 8 gpus, total bs = 256
EvalReader
:
batch_size
:
4
epoch
:
60
LearningRate
:
base_lr
:
0.001
schedulers
:
-
!YOLOv5LRDecay
max_epochs
:
60
min_lr_ratio
:
0.1
-
!ExpWarmup
epochs
:
1
configs/voc/yolox_s_40e_voc.yml
0 → 100644
View file @
522a602f
_BASE_
:
[
'
../yolox/yolox_s_300e_coco.yml'
,
'
../datasets/voc.yml'
,
]
log_iter
:
50
snapshot_epoch
:
5
weights
:
output/yolox_s_40e_voc/model_final
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams
depth_mult
:
0.33
width_mult
:
0.50
TrainReader
:
batch_size
:
8
# default 8 gpus, total bs = 64
EvalReader
:
batch_size
:
4
epoch
:
40
LearningRate
:
base_lr
:
0.001
schedulers
:
-
!CosineDecay
max_epochs
:
40
min_lr_ratio
:
0.05
last_plateau_epochs
:
4
-
!ExpWarmup
epochs
:
1
configs/yolof/README.md
0 → 100644
View file @
522a602f
# YOLOF (You Only Look One-level Feature)
## ModelZOO
| 网络网络 | 输入尺寸 | 图片数/GPU | Epochs | 模型推理耗时(ms) | mAP
<sup>
val
<br>
0.5:0.95 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
| :--------------------- | :------- | :-------: | :----: | :----------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |
| YOLOF-R_50_C5 (paper) | 800x1333 | 4 | 12 | - | 37.7 | - | - | - | - |
| YOLOF-R_50_C5 | 800x1333 | 4 | 12 | - | 38.1 | 44.16 | 241.64 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolof_r50_c5_1x_coco.pdparams
)
|
[
配置文件
](
./yolof_r50_c5_1x_coco.yml
)
|
**注意:**
-
YOLOF模型训练过程中默认使用8 GPUs进行混合精度训练,总batch_size默认为32。
## Citations
```
@inproceedings{chen2021you,
title={You Only Look One-level Feature},
author={Chen, Qiang and Wang, Yingming and Yang, Tong and Zhang, Xiangyu and Cheng, Jian and Sun, Jian},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
year={2021}
}
```
configs/yolof/_base_/optimizer_1x.yml
0 → 100644
View file @
522a602f
epoch
:
12
LearningRate
:
base_lr
:
0.06
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
8
,
11
]
-
!LinearWarmup
start_factor
:
0.00066
steps
:
1500
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
configs/yolof/_base_/yolof_r50_c5.yml
0 → 100644
View file @
522a602f
architecture
:
YOLOF
find_unused_parameters
:
True
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
YOLOF
:
backbone
:
ResNet
neck
:
DilatedEncoder
head
:
YOLOFHead
ResNet
:
depth
:
50
variant
:
b
# resnet-va in paper
freeze_at
:
0
# res2
return_idx
:
[
3
]
# only res5 feature
lr_mult_list
:
[
0.3333
,
0.3333
,
0.3333
,
0.3333
]
DilatedEncoder
:
in_channels
:
[
2048
]
out_channels
:
[
512
]
block_mid_channels
:
128
num_residual_blocks
:
4
block_dilations
:
[
2
,
4
,
6
,
8
]
YOLOFHead
:
conv_feat
:
name
:
YOLOFFeat
feat_in
:
512
feat_out
:
512
num_cls_convs
:
2
num_reg_convs
:
4
norm_type
:
bn
anchor_generator
:
name
:
AnchorGenerator
anchor_sizes
:
[[
32
,
64
,
128
,
256
,
512
]]
aspect_ratios
:
[
1.0
]
strides
:
[
32
]
bbox_assigner
:
name
:
UniformAssigner
pos_ignore_thr
:
0.15
neg_ignore_thr
:
0.7
match_times
:
4
loss_class
:
name
:
FocalLoss
gamma
:
2.0
alpha
:
0.25
loss_bbox
:
name
:
GIoULoss
nms
:
name
:
MultiClassNMS
nms_top_k
:
1000
keep_top_k
:
100
score_threshold
:
0.05
nms_threshold
:
0.6
configs/yolof/_base_/yolof_reader.yml
0 → 100644
View file @
522a602f
worker_num
:
4
TrainReader
:
sample_transforms
:
-
Decode
:
{}
-
RandomShift
:
{
prob
:
0.5
,
max_shift
:
32
}
-
Resize
:
{
target_size
:
[
800
,
1333
],
keep_ratio
:
True
,
interp
:
1
}
-
NormalizeImage
:
{
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
],
is_scale
:
True
}
-
RandomFlip
:
{}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
4
shuffle
:
True
drop_last
:
True
collate_batch
:
False
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
[
800
,
1333
],
keep_ratio
:
True
,
interp
:
1
}
-
NormalizeImage
:
{
is_scale
:
True
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
[
800
,
1333
],
keep_ratio
:
True
,
interp
:
1
}
-
NormalizeImage
:
{
is_scale
:
True
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
fuse_normalize
:
True
configs/yolof/yolof_r50_c5_1x_coco.yml
0 → 100644
View file @
522a602f
_BASE_
:
[
'
../datasets/coco_detection.yml'
,
'
../runtime.yml'
,
'
./_base_/optimizer_1x.yml'
,
'
./_base_/yolof_r50_c5.yml'
,
'
./_base_/yolof_reader.yml'
]
log_iter
:
50
snapshot_epoch
:
1
weights
:
output/yolof_r50_c5_1x_coco/model_final
configs/yolov3/README.md
0 → 100644
View file @
522a602f
# YOLOv3
## Model Zoo
### YOLOv3 on COCO
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | mAP
<sup>
val
<br>
0.5:0.95 | 下载 | 配置文件 |
| :------------------- | :------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
| DarkNet53(paper) | 608 | 8 | 270e | - | 33.0 | - | - |
| DarkNet53(paper) | 416 | 8 | 270e | - | 31.0 | - | - |
| DarkNet53(paper) | 320 | 8 | 270e | - | 28.2 | - | - |
| DarkNet53 | 608 | 8 | 270e | - |
**39.1**
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_darknet53_270e_coco.yml
)
|
| DarkNet53 | 416 | 8 | 270e | - | 37.7 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_darknet53_270e_coco.yml
)
|
| DarkNet53 | 320 | 8 | 270e | - | 34.8 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_darknet53_270e_coco.yml
)
|
| ResNet50_vd-DCN | 608 | 8 | 270e | - |
**40.6**
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_r50vd_dcn_270e_coco.yml
)
|
| ResNet50_vd-DCN | 416 | 8 | 270e | - | 38.2 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_r50vd_dcn_270e_coco.yml
)
|
| ResNet50_vd-DCN | 320 | 8 | 270e | - | 35.1 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_r50vd_dcn_270e_coco.yml
)
|
| ResNet34 | 608 | 8 | 270e | - | 36.2 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_r34_270e_coco.yml
)
|
| ResNet34 | 416 | 8 | 270e | - | 34.3 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_r34_270e_coco.yml
)
|
| ResNet34 | 320 | 8 | 270e | - | 31.2 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_r34_270e_coco.yml
)
|
| MobileNet-V1 | 608 | 8 | 270e | - | 29.4 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_270e_coco.yml
)
|
| MobileNet-V1 | 416 | 8 | 270e | - | 29.3 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_270e_coco.yml
)
|
| MobileNet-V1 | 320 | 8 | 270e | - | 27.2 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_270e_coco.yml
)
|
| MobileNet-V3 | 608 | 8 | 270e | - | 31.4 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v3_large_270e_coco.yml
)
|
| MobileNet-V3 | 416 | 8 | 270e | - | 29.6 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v3_large_270e_coco.yml
)
|
| MobileNet-V3 | 320 | 8 | 270e | - | 27.1 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v3_large_270e_coco.yml
)
|
| MobileNet-V1-SSLD | 608 | 8 | 270e | - | 31.0 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_ssld_270e_coco.yml
)
|
| MobileNet-V1-SSLD | 416 | 8 | 270e | - | 30.6 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_ssld_270e_coco.yml
)
|
| MobileNet-V1-SSLD | 320 | 8 | 270e | - | 28.4 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_ssld_270e_coco.yml
)
|
### YOLOv3 on Pasacl VOC
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| mAP(0.50,11point) | 下载 | 配置文件 |
| :----------- | :--: | :-----: | :-----: |:------------: |:----: | :-------: | :----: |
| DarkNet53 | 608 | 8 | 270e | - |
**85.4**
(56.1 mAP
<br>
0.5:0.95) |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_darknet53_270e_voc.yml
)
|
| DarkNet53 | 416 | 8 | 270e | - | 85.2 (57.3 mAP
<br>
0.5:0.95) |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_darknet53_270e_voc.yml
)
|
| DarkNet53 | 320 | 8 | 270e | - | 84.3 (55.2 mAP
<br>
0.5:0.95) |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_darknet53_270e_voc.yml
)
|
| MobileNet-V1 | 608 | 8 | 270e | - | 75.2 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_270e_voc.yml
)
|
| MobileNet-V1 | 416 | 8 | 270e | - | 76.2 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_270e_voc.yml
)
|
| MobileNet-V1 | 320 | 8 | 270e | - | 74.3 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_270e_voc.yml
)
|
| MobileNet-V3 | 608 | 8 | 270e | - | 79.6 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v3_large_270e_voc.yml
)
|
| MobileNet-V3 | 416 | 8 | 270e | - | 78.6 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v3_large_270e_voc.yml
)
|
| MobileNet-V3 | 320 | 8 | 270e | - | 76.4 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v3_large_270e_voc.yml
)
|
| MobileNet-V1-SSLD | 608 | 8 | 270e | - | 78.3 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_ssld_270e_voc.yml
)
|
| MobileNet-V1-SSLD | 416 | 8 | 270e | - | 79.6 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_ssld_270e_voc.yml
)
|
| MobileNet-V1-SSLD | 320 | 8 | 270e | - | 77.3 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v1_ssld_270e_voc.yml
)
|
| MobileNet-V3-SSLD | 608 | 8 | 270e | - | 80.4 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v3_large_ssld_270e_voc.yml
)
|
| MobileNet-V3-SSLD | 416 | 8 | 270e | - | 79.2 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v3_large_ssld_270e_voc.yml
)
|
| MobileNet-V3-SSLD | 320 | 8 | 270e | - | 77.3 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams
)
|
[
配置文件
](
./yolov3_mobilenet_v3_large_ssld_270e_voc.yml
)
|
**注意:**
-
YOLOv3模型训练过程中默认使用8 GPUs,总batch_size默认为64,评估时网络尺度默认为
`608*608`
;
-
`416*416`
和
`320*320`
尺度只需更改
`EvalReader`
的
`Resize`
参数为相应值即可,无需重新训练模型,如:
```
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [416, 416], keep_ratio: False, interp: 2} # or [320, 320]
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- Permute: {}
batch_size: 1
```
-
VOC数据集可以从此
[
链接
](
https://bj.bcebos.com/v1/paddledet/data/voc.zip
)
下载,默认评估指标为mAP(0.50,11point),如果想转为COCO格式指标的mAP
<br>
0.5:0.95,可以参照
[
yolov3_darknet53_270e_voc
](
./yolov3_darknet53_270e_voc.yml
)
添加以下几行重新eval:
```
metric: COCO
EvalDataset:
!COCODataSet
image_dir: VOCdevkit/VOC2007/JPEGImages
anno_path: voc_test.json
dataset_dir: dataset/voc
```
## Citations
```
@misc{redmon2018yolov3,
title={YOLOv3: An Incremental Improvement},
author={Joseph Redmon and Ali Farhadi},
year={2018},
eprint={1804.02767},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
configs/yolov3/_base_/optimizer_270e.yml
0 → 100644
View file @
522a602f
epoch
:
270
LearningRate
:
base_lr
:
0.001
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
-
216
-
243
-
!LinearWarmup
start_factor
:
0.
steps
:
4000
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0005
type
:
L2
configs/yolov3/_base_/optimizer_40e.yml
0 → 100644
View file @
522a602f
epoch
:
40
LearningRate
:
base_lr
:
0.0001
schedulers
:
-
name
:
PiecewiseDecay
gamma
:
0.1
milestones
:
-
32
-
36
-
name
:
LinearWarmup
start_factor
:
0.3333333333333333
steps
:
100
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0005
type
:
L2
configs/yolov3/_base_/yolov3_darknet53.yml
0 → 100644
View file @
522a602f
architecture
:
YOLOv3
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/DarkNet53_pretrained.pdparams
norm_type
:
sync_bn
YOLOv3
:
backbone
:
DarkNet
neck
:
YOLOv3FPN
yolo_head
:
YOLOv3Head
post_process
:
BBoxPostProcess
DarkNet
:
depth
:
53
return_idx
:
[
2
,
3
,
4
]
# use default config
# YOLOv3FPN:
YOLOv3Head
:
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
anchor_masks
:
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
loss
:
YOLOv3Loss
YOLOv3Loss
:
ignore_thresh
:
0.7
downsample
:
[
32
,
16
,
8
]
label_smooth
:
false
BBoxPostProcess
:
decode
:
name
:
YOLOBox
conf_thresh
:
0.005
downsample_ratio
:
32
clip_bbox
:
true
nms
:
name
:
MultiClassNMS
keep_top_k
:
100
score_threshold
:
0.01
nms_threshold
:
0.45
nms_top_k
:
1000
configs/yolov3/_base_/yolov3_mobilenet_v1.yml
0 → 100644
View file @
522a602f
architecture
:
YOLOv3
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_pretrained.pdparams
norm_type
:
sync_bn
YOLOv3
:
backbone
:
MobileNet
neck
:
YOLOv3FPN
yolo_head
:
YOLOv3Head
post_process
:
BBoxPostProcess
MobileNet
:
scale
:
1
feature_maps
:
[
4
,
6
,
13
]
with_extra_blocks
:
false
extra_block_filters
:
[]
# use default config
# YOLOv3FPN:
YOLOv3Head
:
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
anchor_masks
:
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
loss
:
YOLOv3Loss
YOLOv3Loss
:
ignore_thresh
:
0.7
downsample
:
[
32
,
16
,
8
]
label_smooth
:
false
BBoxPostProcess
:
decode
:
name
:
YOLOBox
conf_thresh
:
0.005
downsample_ratio
:
32
clip_bbox
:
true
nms
:
name
:
MultiClassNMS
keep_top_k
:
100
score_threshold
:
0.01
nms_threshold
:
0.45
nms_top_k
:
1000
configs/yolov3/_base_/yolov3_mobilenet_v3_large.yml
0 → 100644
View file @
522a602f
architecture
:
YOLOv3
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
norm_type
:
sync_bn
YOLOv3
:
backbone
:
MobileNetV3
neck
:
YOLOv3FPN
yolo_head
:
YOLOv3Head
post_process
:
BBoxPostProcess
MobileNetV3
:
model_name
:
large
scale
:
1.
with_extra_blocks
:
false
extra_block_filters
:
[]
feature_maps
:
[
7
,
13
,
16
]
# use default config
# YOLOv3FPN:
YOLOv3Head
:
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
anchor_masks
:
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
loss
:
YOLOv3Loss
YOLOv3Loss
:
ignore_thresh
:
0.7
downsample
:
[
32
,
16
,
8
]
label_smooth
:
false
BBoxPostProcess
:
decode
:
name
:
YOLOBox
conf_thresh
:
0.005
downsample_ratio
:
32
clip_bbox
:
true
nms
:
name
:
MultiClassNMS
keep_top_k
:
100
score_threshold
:
0.01
nms_threshold
:
0.45
nms_top_k
:
1000
configs/yolov3/_base_/yolov3_mobilenet_v3_small.yml
0 → 100644
View file @
522a602f
architecture
:
YOLOv3
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
norm_type
:
sync_bn
YOLOv3
:
backbone
:
MobileNetV3
neck
:
YOLOv3FPN
yolo_head
:
YOLOv3Head
post_process
:
BBoxPostProcess
MobileNetV3
:
model_name
:
small
scale
:
1.
with_extra_blocks
:
false
extra_block_filters
:
[]
feature_maps
:
[
4
,
9
,
12
]
# use default config
# YOLOv3FPN:
YOLOv3Head
:
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
anchor_masks
:
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
loss
:
YOLOv3Loss
YOLOv3Loss
:
ignore_thresh
:
0.7
downsample
:
[
32
,
16
,
8
]
label_smooth
:
false
BBoxPostProcess
:
decode
:
name
:
YOLOBox
conf_thresh
:
0.005
downsample_ratio
:
32
clip_bbox
:
true
nms
:
name
:
MultiClassNMS
keep_top_k
:
100
score_threshold
:
0.01
nms_threshold
:
0.45
nms_top_k
:
1000
configs/yolov3/_base_/yolov3_r34.yml
0 → 100644
View file @
522a602f
architecture
:
YOLOv3
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_pretrained.pdparams
norm_type
:
sync_bn
YOLOv3
:
backbone
:
ResNet
neck
:
YOLOv3FPN
yolo_head
:
YOLOv3Head
post_process
:
BBoxPostProcess
ResNet
:
depth
:
34
return_idx
:
[
1
,
2
,
3
]
freeze_at
:
-1
freeze_norm
:
false
norm_decay
:
0.
YOLOv3Head
:
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
anchor_masks
:
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
loss
:
YOLOv3Loss
YOLOv3Loss
:
ignore_thresh
:
0.7
downsample
:
[
32
,
16
,
8
]
label_smooth
:
false
BBoxPostProcess
:
decode
:
name
:
YOLOBox
conf_thresh
:
0.005
downsample_ratio
:
32
clip_bbox
:
true
nms
:
name
:
MultiClassNMS
keep_top_k
:
100
score_threshold
:
0.01
nms_threshold
:
0.45
nms_top_k
:
1000
configs/yolov3/_base_/yolov3_r50vd_dcn.yml
0 → 100644
View file @
522a602f
architecture
:
YOLOv3
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams
norm_type
:
sync_bn
YOLOv3
:
backbone
:
ResNet
neck
:
YOLOv3FPN
yolo_head
:
YOLOv3Head
post_process
:
BBoxPostProcess
ResNet
:
depth
:
50
variant
:
d
return_idx
:
[
1
,
2
,
3
]
dcn_v2_stages
:
[
3
]
freeze_at
:
-1
freeze_norm
:
false
norm_decay
:
0.
# YOLOv3FPN:
YOLOv3Head
:
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
anchor_masks
:
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
loss
:
YOLOv3Loss
YOLOv3Loss
:
ignore_thresh
:
0.7
downsample
:
[
32
,
16
,
8
]
label_smooth
:
false
BBoxPostProcess
:
decode
:
name
:
YOLOBox
conf_thresh
:
0.005
downsample_ratio
:
32
clip_bbox
:
true
nms
:
name
:
MultiClassNMS
keep_top_k
:
100
score_threshold
:
0.01
nms_threshold
:
0.45
nms_top_k
:
1000
configs/yolov3/_base_/yolov3_reader.yml
0 → 100644
View file @
522a602f
worker_num
:
2
TrainReader
:
inputs_def
:
num_max_boxes
:
50
sample_transforms
:
-
Decode
:
{}
-
Mixup
:
{
alpha
:
1.5
,
beta
:
1.5
}
-
RandomDistort
:
{}
-
RandomExpand
:
{
fill_value
:
[
123.675
,
116.28
,
103.53
]}
-
RandomCrop
:
{}
-
RandomFlip
:
{}
batch_transforms
:
-
BatchRandomResize
:
{
target_size
:
[
320
,
352
,
384
,
416
,
448
,
480
,
512
,
544
,
576
,
608
],
random_size
:
True
,
random_interp
:
True
,
keep_ratio
:
False
}
-
NormalizeBox
:
{}
-
PadBox
:
{
num_max_boxes
:
50
}
-
BboxXYXY2XYWH
:
{}
-
NormalizeImage
:
{
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
],
is_scale
:
True
}
-
Permute
:
{}
-
Gt2YoloTarget
:
{
anchor_masks
:
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]],
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]],
downsample_ratios
:
[
32
,
16
,
8
]}
batch_size
:
8
shuffle
:
true
drop_last
:
true
mixup_epoch
:
250
use_shared_memory
:
true
EvalReader
:
inputs_def
:
num_max_boxes
:
50
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
[
608
,
608
],
keep_ratio
:
False
,
interp
:
2
}
-
NormalizeImage
:
{
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
],
is_scale
:
True
}
-
Permute
:
{}
batch_size
:
1
TestReader
:
inputs_def
:
image_shape
:
[
3
,
608
,
608
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
[
608
,
608
],
keep_ratio
:
False
,
interp
:
2
}
-
NormalizeImage
:
{
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
],
is_scale
:
True
}
-
Permute
:
{}
batch_size
:
1
configs/yolov3/yolov3_darknet53_270e_coco.yml
0 → 100644
View file @
522a602f
_BASE_
:
[
'
../datasets/coco_detection.yml'
,
'
../runtime.yml'
,
'
_base_/optimizer_270e.yml'
,
'
_base_/yolov3_darknet53.yml'
,
'
_base_/yolov3_reader.yml'
,
]
snapshot_epoch
:
5
weights
:
output/yolov3_darknet53_270e_coco/model_final
Prev
1
…
10
11
12
13
14
15
16
17
18
…
24
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment