Commit 522a602f authored by wangkx1's avatar wangkx1
Browse files

siton bug

parent abb99c90
_BASE_: [
'../ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml',
'../datasets/voc.yml',
]
log_iter: 50
snapshot_epoch: 5
weights: output/ppyoloe_plus_crn_s_30e_voc/model_final
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/ppyoloe_plus_crn_s_80e_coco.pdparams
depth_mult: 0.33
width_mult: 0.50
TrainReader:
batch_size: 8 # default 8 gpus, total bs = 64
EvalReader:
batch_size: 4
epoch: 30
LearningRate:
base_lr: 0.001
schedulers:
- !CosineDecay
max_epochs: 36
- !LinearWarmup
start_factor: 0.
epochs: 1
PPYOLOEHead:
static_assigner_epoch: -1
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 300
score_threshold: 0.01
nms_threshold: 0.7
_BASE_: [
'../yolov5/yolov5_s_300e_coco.yml',
'../datasets/voc.yml',
]
log_iter: 50
snapshot_epoch: 5
weights: output/yolov5_s_60e_voc/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/yolov5_s_300e_coco.pdparams
depth_mult: 0.33
width_mult: 0.50
TrainReader:
batch_size: 16 # default 8 gpus, total bs = 128
EvalReader:
batch_size: 4
epoch: 60
LearningRate:
base_lr: 0.001
schedulers:
- !YOLOv5LRDecay
max_epochs: 60
min_lr_ratio: 0.01
- !ExpWarmup
epochs: 1
_BASE_: [
'../yolov7/yolov7_tiny_300e_coco.yml',
'../datasets/voc.yml',
]
log_iter: 50
snapshot_epoch: 5
weights: output/yolov7_tiny_60e_voc/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/yolov7_tiny_300e_coco.pdparams
arch: tiny
act: LeakyReLU
TrainReader:
batch_size: 32 # default 8 gpus, total bs = 256
EvalReader:
batch_size: 4
epoch: 60
LearningRate:
base_lr: 0.001
schedulers:
- !YOLOv5LRDecay
max_epochs: 60
min_lr_ratio: 0.1
- !ExpWarmup
epochs: 1
_BASE_: [
'../yolox/yolox_s_300e_coco.yml',
'../datasets/voc.yml',
]
log_iter: 50
snapshot_epoch: 5
weights: output/yolox_s_40e_voc/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams
depth_mult: 0.33
width_mult: 0.50
TrainReader:
batch_size: 8 # default 8 gpus, total bs = 64
EvalReader:
batch_size: 4
epoch: 40
LearningRate:
base_lr: 0.001
schedulers:
- !CosineDecay
max_epochs: 40
min_lr_ratio: 0.05
last_plateau_epochs: 4
- !ExpWarmup
epochs: 1
# YOLOF (You Only Look One-level Feature)
## ModelZOO
| 网络网络 | 输入尺寸 | 图片数/GPU | Epochs | 模型推理耗时(ms) | mAP<sup>val<br>0.5:0.95 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
| :--------------------- | :------- | :-------: | :----: | :----------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |
| YOLOF-R_50_C5 (paper) | 800x1333 | 4 | 12 | - | 37.7 | - | - | - | - |
| YOLOF-R_50_C5 | 800x1333 | 4 | 12 | - | 38.1 | 44.16 | 241.64 | [下载链接](https://paddledet.bj.bcebos.com/models/yolof_r50_c5_1x_coco.pdparams) | [配置文件](./yolof_r50_c5_1x_coco.yml) |
**注意:**
- YOLOF模型训练过程中默认使用8 GPUs进行混合精度训练,总batch_size默认为32。
## Citations
```
@inproceedings{chen2021you,
title={You Only Look One-level Feature},
author={Chen, Qiang and Wang, Yingming and Yang, Tong and Zhang, Xiangyu and Cheng, Jian and Sun, Jian},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
year={2021}
}
```
epoch: 12
LearningRate:
base_lr: 0.06
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [8, 11]
- !LinearWarmup
start_factor: 0.00066
steps: 1500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
architecture: YOLOF
find_unused_parameters: True
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
YOLOF:
backbone: ResNet
neck: DilatedEncoder
head: YOLOFHead
ResNet:
depth: 50
variant: b # resnet-va in paper
freeze_at: 0 # res2
return_idx: [3] # only res5 feature
lr_mult_list: [0.3333, 0.3333, 0.3333, 0.3333]
DilatedEncoder:
in_channels: [2048]
out_channels: [512]
block_mid_channels: 128
num_residual_blocks: 4
block_dilations: [2, 4, 6, 8]
YOLOFHead:
conv_feat:
name: YOLOFFeat
feat_in: 512
feat_out: 512
num_cls_convs: 2
num_reg_convs: 4
norm_type: bn
anchor_generator:
name: AnchorGenerator
anchor_sizes: [[32, 64, 128, 256, 512]]
aspect_ratios: [1.0]
strides: [32]
bbox_assigner:
name: UniformAssigner
pos_ignore_thr: 0.15
neg_ignore_thr: 0.7
match_times: 4
loss_class:
name: FocalLoss
gamma: 2.0
alpha: 0.25
loss_bbox:
name: GIoULoss
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.05
nms_threshold: 0.6
worker_num: 4
TrainReader:
sample_transforms:
- Decode: {}
- RandomShift: {prob: 0.5, max_shift: 32}
- Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- RandomFlip: {}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 4
shuffle: True
drop_last: True
collate_batch: False
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
- NormalizeImage: {is_scale: True, mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
TestReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
- NormalizeImage: {is_scale: True, mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
fuse_normalize: True
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'./_base_/optimizer_1x.yml',
'./_base_/yolof_r50_c5.yml',
'./_base_/yolof_reader.yml'
]
log_iter: 50
snapshot_epoch: 1
weights: output/yolof_r50_c5_1x_coco/model_final
# YOLOv3
## Model Zoo
### YOLOv3 on COCO
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | mAP<sup>val<br>0.5:0.95 | 下载 | 配置文件 |
| :------------------- | :------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
| DarkNet53(paper) | 608 | 8 | 270e | - | 33.0 | - | - |
| DarkNet53(paper) | 416 | 8 | 270e | - | 31.0 | - | - |
| DarkNet53(paper) | 320 | 8 | 270e | - | 28.2 | - | - |
| DarkNet53 | 608 | 8 | 270e | - | **39.1** | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](./yolov3_darknet53_270e_coco.yml) |
| DarkNet53 | 416 | 8 | 270e | - | 37.7 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](./yolov3_darknet53_270e_coco.yml) |
| DarkNet53 | 320 | 8 | 270e | - | 34.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](./yolov3_darknet53_270e_coco.yml) |
| ResNet50_vd-DCN | 608 | 8 | 270e | - | **40.6** | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams) | [配置文件](./yolov3_r50vd_dcn_270e_coco.yml) |
| ResNet50_vd-DCN | 416 | 8 | 270e | - | 38.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams) | [配置文件](./yolov3_r50vd_dcn_270e_coco.yml) |
| ResNet50_vd-DCN | 320 | 8 | 270e | - | 35.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams) | [配置文件](./yolov3_r50vd_dcn_270e_coco.yml) |
| ResNet34 | 608 | 8 | 270e | - | 36.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams) | [配置文件](./yolov3_r34_270e_coco.yml) |
| ResNet34 | 416 | 8 | 270e | - | 34.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams) | [配置文件](./yolov3_r34_270e_coco.yml) |
| ResNet34 | 320 | 8 | 270e | - | 31.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams) | [配置文件](./yolov3_r34_270e_coco.yml) |
| MobileNet-V1 | 608 | 8 | 270e | - | 29.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](./yolov3_mobilenet_v1_270e_coco.yml) |
| MobileNet-V1 | 416 | 8 | 270e | - | 29.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](./yolov3_mobilenet_v1_270e_coco.yml) |
| MobileNet-V1 | 320 | 8 | 270e | - | 27.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](./yolov3_mobilenet_v1_270e_coco.yml) |
| MobileNet-V3 | 608 | 8 | 270e | - | 31.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](./yolov3_mobilenet_v3_large_270e_coco.yml) |
| MobileNet-V3 | 416 | 8 | 270e | - | 29.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](./yolov3_mobilenet_v3_large_270e_coco.yml) |
| MobileNet-V3 | 320 | 8 | 270e | - | 27.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](./yolov3_mobilenet_v3_large_270e_coco.yml) |
| MobileNet-V1-SSLD | 608 | 8 | 270e | - | 31.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [配置文件](./yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 416 | 8 | 270e | - | 30.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [配置文件](./yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 320 | 8 | 270e | - | 28.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [配置文件](./yolov3_mobilenet_v1_ssld_270e_coco.yml) |
### YOLOv3 on Pasacl VOC
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| mAP(0.50,11point) | 下载 | 配置文件 |
| :----------- | :--: | :-----: | :-----: |:------------: |:----: | :-------: | :----: |
| DarkNet53 | 608 | 8 | 270e | - | **85.4** (56.1 mAP<br>0.5:0.95) | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_voc.pdparams) | [配置文件](./yolov3_darknet53_270e_voc.yml) |
| DarkNet53 | 416 | 8 | 270e | - | 85.2 (57.3 mAP<br>0.5:0.95) | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_voc.pdparams) | [配置文件](./yolov3_darknet53_270e_voc.yml) |
| DarkNet53 | 320 | 8 | 270e | - | 84.3 (55.2 mAP<br>0.5:0.95) | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_voc.pdparams) | [配置文件](./yolov3_darknet53_270e_voc.yml) |
| MobileNet-V1 | 608 | 8 | 270e | - | 75.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v1_270e_voc.yml) |
| MobileNet-V1 | 416 | 8 | 270e | - | 76.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v1_270e_voc.yml) |
| MobileNet-V1 | 320 | 8 | 270e | - | 74.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v1_270e_voc.yml) |
| MobileNet-V3 | 608 | 8 | 270e | - | 79.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v3_large_270e_voc.yml) |
| MobileNet-V3 | 416 | 8 | 270e | - | 78.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v3_large_270e_voc.yml) |
| MobileNet-V3 | 320 | 8 | 270e | - | 76.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v3_large_270e_voc.yml) |
| MobileNet-V1-SSLD | 608 | 8 | 270e | - | 78.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 416 | 8 | 270e | - | 79.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 320 | 8 | 270e | - | 77.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 608 | 8 | 270e | - | 80.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 416 | 8 | 270e | - | 79.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 320 | 8 | 270e | - | 77.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [配置文件](./yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
**注意:**
- YOLOv3模型训练过程中默认使用8 GPUs,总batch_size默认为64,评估时网络尺度默认为`608*608`
- `416*416``320*320`尺度只需更改`EvalReader``Resize`参数为相应值即可,无需重新训练模型,如:
```
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [416, 416], keep_ratio: False, interp: 2} # or [320, 320]
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- Permute: {}
batch_size: 1
```
- VOC数据集可以从此[链接](https://bj.bcebos.com/v1/paddledet/data/voc.zip)下载,默认评估指标为mAP(0.50,11point),如果想转为COCO格式指标的mAP<br>0.5:0.95,可以参照[yolov3_darknet53_270e_voc](./yolov3_darknet53_270e_voc.yml) 添加以下几行重新eval:
```
metric: COCO
EvalDataset:
!COCODataSet
image_dir: VOCdevkit/VOC2007/JPEGImages
anno_path: voc_test.json
dataset_dir: dataset/voc
```
## Citations
```
@misc{redmon2018yolov3,
title={YOLOv3: An Incremental Improvement},
author={Joseph Redmon and Ali Farhadi},
year={2018},
eprint={1804.02767},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
epoch: 270
LearningRate:
base_lr: 0.001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones:
- 216
- 243
- !LinearWarmup
start_factor: 0.
steps: 4000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
epoch: 40
LearningRate:
base_lr: 0.0001
schedulers:
- name: PiecewiseDecay
gamma: 0.1
milestones:
- 32
- 36
- name: LinearWarmup
start_factor: 0.3333333333333333
steps: 100
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
architecture: YOLOv3
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/DarkNet53_pretrained.pdparams
norm_type: sync_bn
YOLOv3:
backbone: DarkNet
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: BBoxPostProcess
DarkNet:
depth: 53
return_idx: [2, 3, 4]
# use default config
# YOLOv3FPN:
YOLOv3Head:
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
loss: YOLOv3Loss
YOLOv3Loss:
ignore_thresh: 0.7
downsample: [32, 16, 8]
label_smooth: false
BBoxPostProcess:
decode:
name: YOLOBox
conf_thresh: 0.005
downsample_ratio: 32
clip_bbox: true
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.01
nms_threshold: 0.45
nms_top_k: 1000
architecture: YOLOv3
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_pretrained.pdparams
norm_type: sync_bn
YOLOv3:
backbone: MobileNet
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: BBoxPostProcess
MobileNet:
scale: 1
feature_maps: [4, 6, 13]
with_extra_blocks: false
extra_block_filters: []
# use default config
# YOLOv3FPN:
YOLOv3Head:
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
loss: YOLOv3Loss
YOLOv3Loss:
ignore_thresh: 0.7
downsample: [32, 16, 8]
label_smooth: false
BBoxPostProcess:
decode:
name: YOLOBox
conf_thresh: 0.005
downsample_ratio: 32
clip_bbox: true
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.01
nms_threshold: 0.45
nms_top_k: 1000
architecture: YOLOv3
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
norm_type: sync_bn
YOLOv3:
backbone: MobileNetV3
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: BBoxPostProcess
MobileNetV3:
model_name: large
scale: 1.
with_extra_blocks: false
extra_block_filters: []
feature_maps: [7, 13, 16]
# use default config
# YOLOv3FPN:
YOLOv3Head:
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
loss: YOLOv3Loss
YOLOv3Loss:
ignore_thresh: 0.7
downsample: [32, 16, 8]
label_smooth: false
BBoxPostProcess:
decode:
name: YOLOBox
conf_thresh: 0.005
downsample_ratio: 32
clip_bbox: true
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.01
nms_threshold: 0.45
nms_top_k: 1000
architecture: YOLOv3
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
norm_type: sync_bn
YOLOv3:
backbone: MobileNetV3
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: BBoxPostProcess
MobileNetV3:
model_name: small
scale: 1.
with_extra_blocks: false
extra_block_filters: []
feature_maps: [4, 9, 12]
# use default config
# YOLOv3FPN:
YOLOv3Head:
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
loss: YOLOv3Loss
YOLOv3Loss:
ignore_thresh: 0.7
downsample: [32, 16, 8]
label_smooth: false
BBoxPostProcess:
decode:
name: YOLOBox
conf_thresh: 0.005
downsample_ratio: 32
clip_bbox: true
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.01
nms_threshold: 0.45
nms_top_k: 1000
architecture: YOLOv3
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_pretrained.pdparams
norm_type: sync_bn
YOLOv3:
backbone: ResNet
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: BBoxPostProcess
ResNet:
depth: 34
return_idx: [1, 2, 3]
freeze_at: -1
freeze_norm: false
norm_decay: 0.
YOLOv3Head:
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
loss: YOLOv3Loss
YOLOv3Loss:
ignore_thresh: 0.7
downsample: [32, 16, 8]
label_smooth: false
BBoxPostProcess:
decode:
name: YOLOBox
conf_thresh: 0.005
downsample_ratio: 32
clip_bbox: true
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.01
nms_threshold: 0.45
nms_top_k: 1000
architecture: YOLOv3
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams
norm_type: sync_bn
YOLOv3:
backbone: ResNet
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: BBoxPostProcess
ResNet:
depth: 50
variant: d
return_idx: [1, 2, 3]
dcn_v2_stages: [3]
freeze_at: -1
freeze_norm: false
norm_decay: 0.
# YOLOv3FPN:
YOLOv3Head:
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
loss: YOLOv3Loss
YOLOv3Loss:
ignore_thresh: 0.7
downsample: [32, 16, 8]
label_smooth: false
BBoxPostProcess:
decode:
name: YOLOBox
conf_thresh: 0.005
downsample_ratio: 32
clip_bbox: true
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.01
nms_threshold: 0.45
nms_top_k: 1000
worker_num: 2
TrainReader:
inputs_def:
num_max_boxes: 50
sample_transforms:
- Decode: {}
- Mixup: {alpha: 1.5, beta: 1.5}
- RandomDistort: {}
- RandomExpand: {fill_value: [123.675, 116.28, 103.53]}
- RandomCrop: {}
- RandomFlip: {}
batch_transforms:
- BatchRandomResize: {target_size: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608], random_size: True, random_interp: True, keep_ratio: False}
- NormalizeBox: {}
- PadBox: {num_max_boxes: 50}
- BboxXYXY2XYWH: {}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- Permute: {}
- Gt2YoloTarget: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]}
batch_size: 8
shuffle: true
drop_last: true
mixup_epoch: 250
use_shared_memory: true
EvalReader:
inputs_def:
num_max_boxes: 50
sample_transforms:
- Decode: {}
- Resize: {target_size: [608, 608], keep_ratio: False, interp: 2}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- Permute: {}
batch_size: 1
TestReader:
inputs_def:
image_shape: [3, 608, 608]
sample_transforms:
- Decode: {}
- Resize: {target_size: [608, 608], keep_ratio: False, interp: 2}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- Permute: {}
batch_size: 1
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/optimizer_270e.yml',
'_base_/yolov3_darknet53.yml',
'_base_/yolov3_reader.yml',
]
snapshot_epoch: 5
weights: output/yolov3_darknet53_270e_coco/model_final
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment