import roctracer_py import numpy as np import torch from torchvision import models, transforms # 创建wrapper实例 tracer = roctracer_py.RoctracerWrapper() # 添加标记 tracer.mark("Program start") # 开始一个范围 range_id = tracer.range_start("Computation") # 内存拷贝(模拟) tracer.range_push("Memory Copy") model = models.resnet50(pretrained=False) device = torch.device("cuda:0") # 指定设备为CPU model.to(device) tracer.range_pop() input = torch.zeros((1, 3, 224, 224), dtype=torch.float).to(device) tracer.range_push("Model infer") with torch.no_grad(): outputs = model(input) tracer.range_pop() # 停止范围 tracer.range_stop(range_id) print("Done!")