# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Validate a trained YOLOv5 model accuracy on a custom dataset Usage: $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640 """ import argparse import json import os import sys from pathlib import Path from threading import Thread import cv2 import numpy as np import torch from torchvision.transforms import Resize import migraphx from tqdm import tqdm import glob import time FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.experimental import attempt_load from utils.datasets import create_dataloader from utils.general import coco80_to_coco91_class, check_dataset, check_img_size, check_requirements, \ check_suffix, check_yaml, box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, \ increment_path, colorstr, print_args from utils.metrics import ap_per_class, ConfusionMatrix from utils.plots import output_to_target, plot_images, plot_val_study from utils.torch_utils import select_device, time_sync def process_batch(detections, labels, iouv): """ Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 Returns: correct (Array[N, 10]), for 10 IoU levels """ correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device) iou = box_iou(labels[:, 1:], detections[:, :4]) x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match if x[0].shape[0]: matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou] if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 1], return_index=True)[1]] # matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 0], return_index=True)[1]] matches = torch.Tensor(matches).to(iouv.device) correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv return correct def migraphx_yolov(model, data_tensor): # 将输入的tensor数据转换为numpy data_numpy=data_tensor.detach().cpu().numpy() device = torch.device("cuda") # 注意:这里需要执行赋值操作,否则会造成migraphx中输入数据步长不对 img_data = np.zeros(data_numpy.shape).astype("float32") for i in range(data_numpy.shape[0]): img_data[i, :, :, :] = data_numpy[i, :, :, :] # 执行推理 result = model.run({"images": img_data}) # 将结果转换为tensor result0=torch.from_numpy(np.array(result[0], copy=False)).to(device) return result0 def prepare_input(image): input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) input_img = cv2.resize(input_img, (640, 640)) input_img = input_img.transpose(2, 0, 1) input_img = np.expand_dims(input_img, 0) input_img = np.ascontiguousarray(input_img) input_img = input_img.astype(np.float32) input_img = input_img / 255 return input_img def run(data, weights=None, # model.pt path(s) batch_size=1, # batch size imgsz=640, # inference size (pixels) conf_thres=0.001, # confidence threshold iou_thres=0.65, # NMS IoU threshold device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu single_cls=False, # treat as single-class dataset save_hybrid=False, # save label+prediction hybrid results to *.txt dataloader=None, plots=False, ): resultdir = os.path.join('results', device) os.makedirs(resultdir, exist_ok=True) # 初始化模型并选择相应的计算设备 device = select_device(device, batch_size=batch_size) if os.path.isfile("/workspace/gaoruiqi_inference/cmcc-code/yolov5-6.0/yolov5m.mxr"): model = migraphx.load("/workspace/gaoruiqi_inference/cmcc-code/yolov5-6.0/yolov5m.mxr") else: # 解析推理模型 max_input = {"images":[24,3,1024,1024]} model = migraphx.parse_onnx(weights, map_input_dims=max_input) # 获取模型输入/输出节点信息 inputs = model.get_inputs() outputs = model.get_outputs() # 获取模型的输入name inputName = model.get_parameter_names()[0] # 获取模型的输入尺寸 inputShape = inputs[inputName].lens() inputHeight = int(inputShape[2]) inputWidth = int(inputShape[3]) migraphx.quantize_fp16(model) # 模型编译 model.compile(t=migraphx.get_target("gpu") ,device_id=0) gs = 32 imgsz = 640 # Data data = check_dataset(data) # check # Configure is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset nc = int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 niou = iouv.numel() # Dataloader task = 'val' # path to val images dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=False, prefix=colorstr(f'{task}: '))[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) class_map = coco80_to_coco91_class() s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 jdict, stats, ap, ap_class = [], [], [], [] # 数据预处理 i = 0 for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): img = img.to(device, non_blocking=True) img = img.half() img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width # Run model out = migraphx_yolov(model, img) # save to file out.cpu().numpy().tofile(f'{resultdir}/{i}_0.bin') i += 1 # Run NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) # Statistics per image for si, pred in enumerate(out): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class path, shape = Path(paths[si]), shapes[si][0] seen += 1 if len(pred) == 0: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Predictions if single_cls: pred[:, 5] = 0 predn = pred.clone() scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred # Evaluate if nl: tbox = xywh2xyxy(labels[:, 1:5]) # target boxes scale_coords(img[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels correct = process_batch(predn, labelsn, iouv) if plots: confusion_matrix.process_batch(predn, labelsn) else: correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls) # 计算统计数据 stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=False) ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results print('map50:', map50) print('map50-95:', map) def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') parser.add_argument('--weights', type=str, default='', help='model.onnx path(s)') parser.add_argument('--batch-size', type=int, default=32, help='batch size') parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') opt = parser.parse_args() opt.data = check_yaml(opt.data) # check YAML print_args(FILE.stem, opt) return opt def main(opt): # 检测requirements文件中需要的包是否安装好了 check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)