Commit 24b257f1 authored by sunzhq2's avatar sunzhq2
Browse files

init

parent 920b3c0f
{
"model": "resnet50-onnxruntime-fp32",
"model_path": "general_perf/model_zoo/regular/open_resnet50/resnet50-torch-fp32.onnx",
"framework": "Onnx",
"framework_version": "2.13.1",
"model_format": "pt",
"model_precision": "FP32",
"inputs": "input_1.1",
"outputs": "softmax_tensor:0",
"input_shape": {"input_1.1": [1, 3, 224, 224]},
"input_type": "FLOAT32",
"dataset_name": "open_imagenet",
"max_batch_size": 1024,
"layout": "NCHW"
}
{
"model": "resnet50-tf-fp32",
"model_path": "general_perf/model_zoo/regular/open_resnet50/resnet50-fp32",
"framework": "Tensorflow",
"framework_version": "2.4.0",
"model_format": "saved_model",
"model_precision": "FP32",
"inputs": "input_tensor:0",
"outputs": "softmax_tensor:0",
"input_shape": {"input_tensor:0": [1, 224, 224, 3]},
"input_type": "FLOAT32",
"dataset_name": "open_imagenet",
"max_batch_size": 64,
"layout": "NHWC"
}
\ No newline at end of file
{
"model": "resnet50-torch-fp16",
"model_path": "general_perf/model_zoo/regular/open_resnet50/resnet50.pt",
"framework": "Pytorch",
"framework_version": "1.8.1",
"model_format": "pt",
"model_precision": "FP16",
"inputs": "input_1.1",
"outputs": "softmax_tensor:0",
"input_shape": {"input_1.1": [1, 3, 224, 224]},
"input_type": "FLOAT16",
"dataset_name": "open_imagenet",
"max_batch_size": 1024,
"layout": "NCHW"
}
{
"model": "resnet50-torch-fp32",
"model_path": "general_perf/model_zoo/regular/open_resnet50/resnet50.pt",
"framework": "Pytorch",
"framework_version": "2.1.2+cu118",
"model_format": "pt",
"model_precision": "FP32",
"inputs": "input_1.1",
"outputs": "softmax_tensor:0",
"input_shape": {"input_1.1": [1, 3, 224, 224]},
"input_type": "FLOAT32",
"dataset_name": "open_imagenet",
"max_batch_size": 1024,
"layout": "NCHW"
}
{
"model": "roberta-torch-fp32",
"model_path": "general_perf/model_zoo/popular/open_roberta/roberta-base-squad.pt",
"framework": "Pytorch",
"framework_version": "2.1.2+cu118",
"model_format": "pt",
"model_precision": "FP32",
"inputs":"input_ids.1,attention_mask.1,token_type_ids.1",
"outputs":"start_logits,end_logits",
"input_shape": {"input_ids.1": [1,384], "attention_mask.1": [1,384], "token_type_ids.1": [1,384]},
"input_type": "LONG,LONG,LONG",
"dataset_name": "open_squad",
"max_batch_size": 64,
"is_quantized": false
}
\ No newline at end of file
{
"model": "roformer-tf-fp32",
"model_path": "general_perf/model_zoo/popular/open_roformer",
"framework": "Tensorflow",
"framework_version": "2.4.0",
"model_format": "saved_model",
"model_precision": "FP32",
"inputs": "input_segment:0,input_token:0",
"outputs": "Identity:0",
"input_shape": {"input_segment:0": [1, 1024], "input_token:0": [1, 1024]},
"input_type": "FLOAT32,FLOAT32",
"dataset_name": "open_cail2019",
"max_batch_size": 64
}
\ No newline at end of file
{
"model": "swin-large-torch-fp32",
"model_path": "general_perf/model_zoo/popular/swin-large/swin-transformer-large.pt",
"framework": "Pytorch",
"framework_version": "1.12.0",
"model_format": "pt",
"model_precision": "FP32",
"inputs":"pixel_values.1",
"outputs":"logits",
"input_shape": {"pixel_values.1": [1,3,384,384]},
"input_type": "FLOAT32",
"dataset_name": "open_imagenet",
"max_batch_size": 64,
"is_quantized": false
}
{
"model": "unet-onnx-fp32",
"model_path": "general_perf/model_zoo/sota/unet/model.onnx",
"framework": "Onnx",
"framework_version": "1.12.0",
"model_format": "onnx",
"model_precision": "FP32",
"inputs":"sample,timestep,encoder_hidden_states",
"outputs":"out_sample",
"input_shape": {"sample": [1,4,32,32],"timestep":[1],"encoder_hidden_states":[1,77,768]},
"input_type": "FLOAT32,INT64,FLOAT32",
"dataset_name": null,
"max_batch_size": 64,
"is_quantized": false
}
\ No newline at end of file
{
"model": "vae-decoder-onnx-fp32",
"model_path": "general_perf/model_zoo/sota/stable_diffusion/vae-decoder.onnx",
"framework": "Onnx",
"framework_version": "1.12.0",
"model_format": "onnx",
"model_precision": "FP32",
"inputs":"latent_sample",
"outputs":"Convsample_dim_0,Convsample_dim_1,Convsample_dim_2,Convsample_dim_3",
"input_shape": {"latent_sample": [1,4,32,32]},
"input_type": "FLOAT32",
"dataset_name": null,
"max_batch_size": 64,
"is_quantized": false
}
{
"model": "vae-encoder-onnx-fp32",
"model_path": "general_perf/model_zoo/sota/stable_diffusion/vae-encoder.onnx",
"framework": "Onnx",
"framework_version": "1.12.0",
"model_format": "onnx",
"model_precision": "FP32",
"inputs":"sample",
"outputs":"latent_sample",
"input_shape": {"sample": [1,3,256,256]},
"input_type": "FLOAT32",
"dataset_name": null,
"max_batch_size": 64,
"is_quantized": false
}
\ No newline at end of file
{
"model": "videobert-onnx-fp16",
"model_path": "general_perf/model_zoo/popular/open_videobert/video-bert.onnx",
"framework": "Onnx",
"framework_version": "1.8.1",
"model_format": "onnx",
"model_precision": "FP16",
"inputs":"image,text",
"outputs":"output",
"input_shape": {"image": [1,3,224,224], "text": [100, 77]},
"input_type": "FLOAT32,LONG",
"dataset_name": "open_cifar",
"max_batch_size": 64,
"is_quantized": false
}
\ No newline at end of file
{
"model": "videobert-onnx-fp32",
"model_path": "general_perf/model_zoo/popular/open_videobert/video-bert.onnx",
"framework": "Onnx",
"framework_version": "1.8.1",
"model_format": "onnx",
"model_precision": "FP32",
"inputs":"image,text",
"outputs":"output",
"input_shape": {"image": [1,3,224,224], "text": [100, 77]},
"input_type": "FLOAT32,LONG",
"dataset_name": "open_cifar",
"max_batch_size": 64,
"is_quantized": false
}
\ No newline at end of file
{
"model": "widedeep-tf-fp16",
"model_path": "general_perf/model_zoo/regular/open_wide_deep_saved_model",
"framework": "Onnx",
"framework_version": "2.13.1",
"model_format": "saved_model",
"model_precision": "FP16",
"inputs": "new_categorical_placeholder:0,new_numeric_placeholder:0",
"outputs": "import/head/predictions/probabilities:0",
"input_shape": {"new_categorical_placeholder:0": [26, 2], "new_numeric_placeholder:0": [1, 13]},
"input_type": "INT64,FLOAT32",
"dataset_name": "open_criteo_kaggle",
"max_batch_size": 260000
}
\ No newline at end of file
{
"model": "widedeep-tf-fp16",
"model_path": "general_perf/model_zoo/regular/open_wide_deep_saved_model",
"framework": "Tensorflow",
"framework_version": "2.13.1",
"model_format": "saved_model",
"model_precision": "FP16",
"inputs": "new_categorical_placeholder:0,new_numeric_placeholder:0",
"outputs": "import/head/predictions/probabilities:0",
"input_shape": {"new_categorical_placeholder:0": [26, 2], "new_numeric_placeholder:0": [1, 13]},
"input_type": "INT64,FLOAT32",
"dataset_name": "open_criteo_kaggle",
"max_batch_size": 260000
}
\ No newline at end of file
{
"model": "widedeep-tf-fp32",
"model_path": "general_perf/model_zoo/regular/open_wide_deep_saved_model",
"framework": "Tensorflow",
"framework_version": "2.13.1",
"model_format": "saved_model",
"model_precision": "FP32",
"inputs": "new_categorical_placeholder:0,new_numeric_placeholder:0",
"outputs": "import/head/predictions/probabilities:0",
"input_shape": {"new_categorical_placeholder:0": [26, 2], "new_numeric_placeholder:0": [1, 13]},
"input_type": "INT64,FLOAT32",
"dataset_name": "open_criteo_kaggle",
"max_batch_size": 260000
}
\ No newline at end of file
{
"model": "yolov5-onnx-fp32",
"model_path": "general_perf/model_zoo/popular/open_yolov5/yolov5s.onnx",
"framework": "Onnx",
"framework_version": "1.10.2",
"model_format": "onnx",
"model_precision": "FP32",
"inputs":"images",
"outputs":"output,345,403,461",
"input_shape": {"images": [1,3,640,640]},
"input_type": "FLOAT32",
"dataset_name": null,
"max_batch_size": 64
}
\ No newline at end of file
#!/bin/bash
# # 定义输入模型路径和输出模型路径的基本部分
# input_model="./model_zoo/regular/open_resnet50/resnet50-torch-fp32.onnx"
# output_model_base="./model_zoo/regular/open_resnet50/resnet50-mir-fp32"
# # 定义不同的批量大小
# batch_sizes=(1 32 64 128 256 512 1024 2048) # 根据需要可以调整
# # 循环遍历每个批量大小
# for bs in "${batch_sizes[@]}"; do
# # 构造输出模型文件名
# output_model="${output_model_base}-${bs}.onnx"
# # 构造 input_shape_dict
# input_shape_dict="{'input_1.1': [${bs}, 3, 224, 224]}"
# # 执行转换命令
# command="python -m paddle2onnx.optimize --input_model ${input_model} --output_model ${output_model} --input_shape_dict=\"${input_shape_dict}\""
# # 打印命令以供调试
# echo "Executing: ${command}"
# # 执行命令
# eval "${command}"
# done
# # 定义输入模型路径和输出模型路径的基本部分
# input_model="./model_zoo/regular/open_resnet50/resnet50-torch-fp16.onnx"
# output_model_base="./model_zoo/regular/open_resnet50/resnet50-mir-fp16"
# # 定义不同的批量大小
# batch_sizes=(1 32 64 128 256 512 1024 2048) # 根据需要可以调整
# # 循环遍历每个批量大小
# for bs in "${batch_sizes[@]}"; do
# # 构造输出模型文件名
# output_model="${output_model_base}-${bs}.onnx"
# # 构造 input_shape_dict
# input_shape_dict="{'input_1.1': [${bs}, 3, 224, 224]}"
# # 执行转换命令
# command="python -m paddle2onnx.optimize --input_model ${input_model} --output_model ${output_model} --input_shape_dict=\"${input_shape_dict}\""
# # 打印命令以供调试
# echo "Executing: ${command}"
# # 执行命令
# eval "${command}"
# done
# 定义输入模型路径和输出模型路径的基本部分
input_model="/home/workspace/ByteMLPerf/byte_infer_perf/general_perf/test/bert-best-fp16.onnx"
output_model_base="/home/workspace/ByteMLPerf/byte_infer_perf/general_perf/test/bert-mir-fp16"
# 定义不同的批量大小
batch_sizes=(1 32 64 128) # 根据需要可以调整
# 循环遍历每个批量大小
for bs in "${batch_sizes[@]}"; do
# 构造输出模型文件名
output_model="${output_model_base}-${bs}.onnx"
# 构造 input_shape_dict
input_shape_dict="{'input_ids.1': [${bs},384], 'attention_mask.1': [${bs},384], 'token_type_ids.1': [${bs},384]}"
# 执行转换命令
command="python -m paddle2onnx.optimize --input_model ${input_model} --output_model ${output_model} --input_shape_dict=\"${input_shape_dict}\""
# 打印命令以供调试
echo "Executing: ${command}"
# 执行命令
eval "${command}"
done
# 定义输入模型路径和输出模型路径的基本部分
# input_model="./model_zoo/regular/open_wide_deep_saved_model/widedeep-onnx-fp32.onnx"
# output_model_base="./model_zoo/regular/open_wide_deep_saved_model/widedeep-mir-fp32"
# # 定义不同的批量大小
# # batch_sizes=(1 1024 20000 40000 80000 120000) # 根据需要可以调整
# batch_sizes=(140000 160000 180000 200000 220000 240000 260000)
# # 循环遍历每个批量大小
# for bs in "${batch_sizes[@]}"; do
# new_value=$((bs * 26))
# # 构造输出模型文件名
# output_model="${output_model_base}-${bs}.onnx"
# # 构造 input_shape_dict
# input_shape_dict="{'new_categorical_placeholder:0': [${new_value}, 2], 'new_numeric_placeholder:0': [${bs}, 13]}"
# # 执行转换命令
# command="python -m paddle2onnx.optimize --input_model ${input_model} --output_model ${output_model} --input_shape_dict=\"${input_shape_dict}\""
# # 打印命令以供调试
# echo "Executing: ${command}"
# # 执行命令
# eval "${command}"
# done
# 定义输入模型路径和输出模型路径的基本部分
# input_model="./model_zoo/regular/open_wide_deep_saved_model/widedeep-onnx-fp16.onnx"
# output_model_base="./model_zoo/regular/open_wide_deep_saved_model/widedeep-mir-fp16"
# # 定义不同的批量大小
# # batch_sizes=(1 1024 20000 40000 80000 120000) # 根据需要可以调整
# batch_sizes=(1 1024 20000 40000 80000 120000 140000 160000 180000 200000 220000 240000 260000)
# # 循环遍历每个批量大小
# for bs in "${batch_sizes[@]}"; do
# new_value=$((bs * 26))
# # 构造输出模型文件名
# output_model="${output_model_base}-${bs}.onnx"
# # 构造 input_shape_dict
# input_shape_dict="{'new_categorical_placeholder:0': [${new_value}, 2], 'new_numeric_placeholder:0': [${bs}, 13]}"
# # 执行转换命令
# command="python -m paddle2onnx.optimize --input_model ${input_model} --output_model ${output_model} --input_shape_dict=\"${input_shape_dict}\""
# # 打印命令以供调试
# echo "Executing: ${command}"
# # 执行命令
# eval "${command}"
# done
#!/bin/bash
echo "******************* Downloading Model.... *******************"
mkdir -p general_perf/model_zoo/regular
mkdir -p general_perf/model_zoo/popular
mkdir -p general_perf/model_zoo/sota
mkdir -p general_perf/download
#--Basic Model--
# https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/bert_mhlo.tar
# https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/resnet50_mhlo.tar
if [ $1 == "bert-tf-fp32" -o $1 == "bert-torch-fp32" ]; then
wget -O general_perf/download/open_bert.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_bert.tar
tar xf general_perf/download/open_bert.tar -C general_perf/model_zoo/regular/
elif [ $1 == "resnet50-tf-fp32" -o $1 == "resnet50-torch-fp32" ]; then
wget -O general_perf/download/resnet50.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/resnet50.tar
tar xf general_perf/download/resnet50.tar -C general_perf/model_zoo/regular/
elif [ $1 == "widedeep-tf-fp32" ]; then
wget -O general_perf/download/open_wide_deep.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_wide_deep_saved_model.tar
tar xf general_perf/download/open_wide_deep.tar -C general_perf/model_zoo/regular/
#--Popular Model--
elif [ $1 == "albert-torch-fp32" ]; then
wget -O general_perf/download/open_albert.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_albert.tar
tar xf general_perf/download/open_albert.tar -C general_perf/model_zoo/popular/
elif [ $1 == "roformer-tf-fp32" ]; then
wget -O general_perf/download/open_roformer.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_roformer.tar
tar xf general_perf/download/open_roformer.tar -C general_perf/model_zoo/popular/
elif [ $1 == "videobert-onnx-fp32" ]; then
wget -O general_perf/download/open_videobert.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_videobert.tar
tar xf general_perf/download/open_videobert.tar -C general_perf/model_zoo/popular/
elif [ $1 == "yolov5-onnx-fp32" ]; then
wget -O general_perf/download/open_yolov5.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_yolov5.tar
tar xf general_perf/download/open_yolov5.tar -C general_perf/model_zoo/popular/
elif [ $1 == "conformer-encoder-onnx-fp32" ]; then
wget -O general_perf/download/open_conformer.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_conformer.tar
tar xf general_perf/download/open_conformer.tar -C general_perf/model_zoo/popular/
elif [ $1 == "roberta-torch-fp32" ]; then
wget -O general_perf/download/open_roberta.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_roberta.tar
tar xf general_perf/download/open_roberta.tar -C general_perf/model_zoo/popular/
elif [ $1 == "deberta-torch-fp32" ]; then
wget -O general_perf/download/open_deberta.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_deberta.tar
tar xf general_perf/download/open_deberta.tar -C general_perf/model_zoo/popular/
elif [ $1 == "swin-large-torch-fp32" ]; then
wget -O general_perf/download/open-swin-large.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open-swin-large.tar
tar xf general_perf/download/open-swin-large.tar -C general_perf/model_zoo/popular/
#--Sota Model--
elif [ $1 == "vae-encoder-onnx-fp32" -o $1 == "vae-decoder-onnx-fp32" -o $1 == "clip-onnx-fp32" ]; then
wget -O general_perf/download/stable_diffusion.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/stable_diffusion.tar
tar xf general_perf/download/stable_diffusion.tar -C general_perf/model_zoo/sota/
elif [ $1 == "unet-onnx-fp32" ]; then
wget -O general_perf/download/unet.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/unet.tar
tar xf general_perf/download/unet.tar -C general_perf/model_zoo/sota/
fi
# Download Datasets
if [ $2 == "open_imagenet" ] && [ ! -f "general_perf/download/open_imagenet.tar" ] ; then
wget -O general_perf/download/open_imagenet.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_imagenet.tar
tar xf general_perf/download/open_imagenet.tar -C general_perf/datasets/
elif [ $2 == "open_squad" ] && [ ! -f "general_perf/download/open_squad.tar" ]; then
wget -O general_perf/download/open_squad.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_squad.tar
tar xf general_perf/download/open_squad.tar -C general_perf/datasets/open_squad
elif [ $2 == "open_criteo_kaggle" ] && [ ! -f "general_perf/download/eval.csv" ]; then
wget -O general_perf/download/eval.csv https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/eval.csv
cp general_perf/download/eval.csv general_perf/datasets/open_criteo_kaggle/eval.csv
elif [ $2 == "open_cail2019" ] && [ ! -f "general_perf/download/open_cail2019.tar" ]; then
wget -O general_perf/download/open_cail2019.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_cail2019.tar
tar xf general_perf/download/open_cail2019.tar -C general_perf/datasets/open_cail2019 --strip-components 1
elif [ $2 == "open_cifar" ] && [ ! -f "general_perf/download/cifar-100-python.tar" ]; then
wget -O general_perf/download/cifar-100-python.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/cifar-100-python.tar
tar xf general_perf/download/cifar-100-python.tar -C general_perf/datasets/open_cifar
fi
echo "Extract Done."
matplotlib
pandas
virtualenv==16.7.9
scikit-learn
prompt_toolkit
tqdm
opencv-python
transformers
tokenization
fpdf
typing-extensions==3.7.4.3
numpy==1.23.0
#!/bin/bash
export PYTHONPATH=/opt/dtk/lib:$PYTHONPAT
source /home/workspace/dtk-24.04.3/env.sh
export PYTHONPATH=/home/workspace/dtk-24.04.3/lib:$PYTHONPAT
export LD_LIBRARY_PATH=/home/workspace/rocblas-install/lib/:$LD_LIBRARY_PATH
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task resnet50-torch-fp32 2>&1 | tee ./log/resnet50-torch-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task resnet50-torch-fp16 2>&1 | tee ./log/resnet50-torch-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task resnet50-onnxruntime-fp32 2>&1 | tee ./log/resnet50-onnxruntime-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task resnet50-onnxruntime-fp16 2>&1 | tee ./log/resnet50-onnxruntime-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-torch-fp32 2>&1 | tee ./log/bert-torch-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-torch-fp16 2>&1 | tee ./log/bert-torch-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-tf-fp32 2>&1 | tee ./log/bert-tf-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-tf-fp16 2>&1 | tee ./log/bert-tf-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-onnxruntime-fp32 2>&1 | tee ./log/bert-onnxruntime-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-onnxruntime-fp16 2>&1 | tee ./log/bert-onnxruntime-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task widedeep-tf-fp32 2>&1 | tee ./log/widedeep-tf-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task widedeep-tf-fp16 2>&1 | tee ./log/widedeep-tf-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task videobert-onnx-fp32 2>&1 | tee ./log/videobert-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task videobert-onnx-fp16 2>&1 | tee ./log/videobert-onnx-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task conformer-encoder-onnx-fp32 2>&1 | tee ./log/conformer-encoder-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task roformer-tf-fp32 2>&1 | tee ./log/roformer-tf-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task vae-encoder-onnx-fp32 2>&1 | tee ./log/vae-encoder-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task vae-decoder-onnx-fp32 2>&1 | tee ./log/vae-decoder-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task unet-onnx-fp32 2>&1 | tee ./log/unet-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task clip-onnx-fp32 2>&1 | tee ./log/clip-onnx-fp32.log
CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task yolov5-onnx-fp32 2>&1 | tee ./log/yolov5-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task roberta-torch-fp32 2>&1 | tee ./log/roberta-torch-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task deberta-torch-fp32 2>&1 | tee ./log/deberta-torch-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task swin-large-torch-fp32 2>&1 | tee ./log/swin-large-torch-fp32.log
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment