Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
sunzhq2
bytemlperf-dcu
Commits
24b257f1
Commit
24b257f1
authored
Nov 19, 2024
by
sunzhq2
Browse files
init
parent
920b3c0f
Changes
330
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
503 additions
and
0 deletions
+503
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/resnet50-onnxruntime-fp32.json
...erf/general_perf/model_zoo/resnet50-onnxruntime-fp32.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/resnet50-tf-fp32.json
...e_infer_perf/general_perf/model_zoo/resnet50-tf-fp32.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/resnet50-torch-fp16.json
...nfer_perf/general_perf/model_zoo/resnet50-torch-fp16.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/resnet50-torch-fp32.json
...nfer_perf/general_perf/model_zoo/resnet50-torch-fp32.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/roberta-torch-fp32.json
...infer_perf/general_perf/model_zoo/roberta-torch-fp32.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/roformer-tf-fp32.json
...e_infer_perf/general_perf/model_zoo/roformer-tf-fp32.json
+14
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/swin-large-torch-fp32.json
...er_perf/general_perf/model_zoo/swin-large-torch-fp32.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/unet-onnx-fp32.json
...yte_infer_perf/general_perf/model_zoo/unet-onnx-fp32.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/vae-decoder-onnx-fp32.json
...er_perf/general_perf/model_zoo/vae-decoder-onnx-fp32.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/vae-encoder-onnx-fp32.json
...er_perf/general_perf/model_zoo/vae-encoder-onnx-fp32.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/videobert-onnx-fp16.json
...nfer_perf/general_perf/model_zoo/videobert-onnx-fp16.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/videobert-onnx-fp32.json
...nfer_perf/general_perf/model_zoo/videobert-onnx-fp32.json
+15
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/widedeep-onnxruntime-fp16.json
...erf/general_perf/model_zoo/widedeep-onnxruntime-fp16.json
+14
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/widedeep-tf-fp16.json
...e_infer_perf/general_perf/model_zoo/widedeep-tf-fp16.json
+14
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/widedeep-tf-fp32.json
...e_infer_perf/general_perf/model_zoo/widedeep-tf-fp32.json
+14
-0
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/yolov5-onnx-fp32.json
...e_infer_perf/general_perf/model_zoo/yolov5-onnx-fp32.json
+14
-0
ByteMLPerf/byte_infer_perf/general_perf/onnx.sh
ByteMLPerf/byte_infer_perf/general_perf/onnx.sh
+135
-0
ByteMLPerf/byte_infer_perf/general_perf/prepare_model_and_dataset.sh
...byte_infer_perf/general_perf/prepare_model_and_dataset.sh
+75
-0
ByteMLPerf/byte_infer_perf/general_perf/requirements.txt
ByteMLPerf/byte_infer_perf/general_perf/requirements.txt
+12
-0
ByteMLPerf/byte_infer_perf/general_perf/run_bytemlperf.sh
ByteMLPerf/byte_infer_perf/general_perf/run_bytemlperf.sh
+46
-0
No files found.
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/resnet50-onnxruntime-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"resnet50-onnxruntime-fp32"
,
"model_path"
:
"general_perf/model_zoo/regular/open_resnet50/resnet50-torch-fp32.onnx"
,
"framework"
:
"Onnx"
,
"framework_version"
:
"2.13.1"
,
"model_format"
:
"pt"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"input_1.1"
,
"outputs"
:
"softmax_tensor:0"
,
"input_shape"
:
{
"input_1.1"
:
[
1
,
3
,
224
,
224
]},
"input_type"
:
"FLOAT32"
,
"dataset_name"
:
"open_imagenet"
,
"max_batch_size"
:
1024
,
"layout"
:
"NCHW"
}
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/resnet50-tf-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"resnet50-tf-fp32"
,
"model_path"
:
"general_perf/model_zoo/regular/open_resnet50/resnet50-fp32"
,
"framework"
:
"Tensorflow"
,
"framework_version"
:
"2.4.0"
,
"model_format"
:
"saved_model"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"input_tensor:0"
,
"outputs"
:
"softmax_tensor:0"
,
"input_shape"
:
{
"input_tensor:0"
:
[
1
,
224
,
224
,
3
]},
"input_type"
:
"FLOAT32"
,
"dataset_name"
:
"open_imagenet"
,
"max_batch_size"
:
64
,
"layout"
:
"NHWC"
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/resnet50-torch-fp16.json
0 → 100644
View file @
24b257f1
{
"model"
:
"resnet50-torch-fp16"
,
"model_path"
:
"general_perf/model_zoo/regular/open_resnet50/resnet50.pt"
,
"framework"
:
"Pytorch"
,
"framework_version"
:
"1.8.1"
,
"model_format"
:
"pt"
,
"model_precision"
:
"FP16"
,
"inputs"
:
"input_1.1"
,
"outputs"
:
"softmax_tensor:0"
,
"input_shape"
:
{
"input_1.1"
:
[
1
,
3
,
224
,
224
]},
"input_type"
:
"FLOAT16"
,
"dataset_name"
:
"open_imagenet"
,
"max_batch_size"
:
1024
,
"layout"
:
"NCHW"
}
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/resnet50-torch-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"resnet50-torch-fp32"
,
"model_path"
:
"general_perf/model_zoo/regular/open_resnet50/resnet50.pt"
,
"framework"
:
"Pytorch"
,
"framework_version"
:
"2.1.2+cu118"
,
"model_format"
:
"pt"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"input_1.1"
,
"outputs"
:
"softmax_tensor:0"
,
"input_shape"
:
{
"input_1.1"
:
[
1
,
3
,
224
,
224
]},
"input_type"
:
"FLOAT32"
,
"dataset_name"
:
"open_imagenet"
,
"max_batch_size"
:
1024
,
"layout"
:
"NCHW"
}
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/roberta-torch-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"roberta-torch-fp32"
,
"model_path"
:
"general_perf/model_zoo/popular/open_roberta/roberta-base-squad.pt"
,
"framework"
:
"Pytorch"
,
"framework_version"
:
"2.1.2+cu118"
,
"model_format"
:
"pt"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"input_ids.1,attention_mask.1,token_type_ids.1"
,
"outputs"
:
"start_logits,end_logits"
,
"input_shape"
:
{
"input_ids.1"
:
[
1
,
384
],
"attention_mask.1"
:
[
1
,
384
],
"token_type_ids.1"
:
[
1
,
384
]},
"input_type"
:
"LONG,LONG,LONG"
,
"dataset_name"
:
"open_squad"
,
"max_batch_size"
:
64
,
"is_quantized"
:
false
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/roformer-tf-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"roformer-tf-fp32"
,
"model_path"
:
"general_perf/model_zoo/popular/open_roformer"
,
"framework"
:
"Tensorflow"
,
"framework_version"
:
"2.4.0"
,
"model_format"
:
"saved_model"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"input_segment:0,input_token:0"
,
"outputs"
:
"Identity:0"
,
"input_shape"
:
{
"input_segment:0"
:
[
1
,
1024
],
"input_token:0"
:
[
1
,
1024
]},
"input_type"
:
"FLOAT32,FLOAT32"
,
"dataset_name"
:
"open_cail2019"
,
"max_batch_size"
:
64
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/swin-large-torch-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"swin-large-torch-fp32"
,
"model_path"
:
"general_perf/model_zoo/popular/swin-large/swin-transformer-large.pt"
,
"framework"
:
"Pytorch"
,
"framework_version"
:
"1.12.0"
,
"model_format"
:
"pt"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"pixel_values.1"
,
"outputs"
:
"logits"
,
"input_shape"
:
{
"pixel_values.1"
:
[
1
,
3
,
384
,
384
]},
"input_type"
:
"FLOAT32"
,
"dataset_name"
:
"open_imagenet"
,
"max_batch_size"
:
64
,
"is_quantized"
:
false
}
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/unet-onnx-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"unet-onnx-fp32"
,
"model_path"
:
"general_perf/model_zoo/sota/unet/model.onnx"
,
"framework"
:
"Onnx"
,
"framework_version"
:
"1.12.0"
,
"model_format"
:
"onnx"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"sample,timestep,encoder_hidden_states"
,
"outputs"
:
"out_sample"
,
"input_shape"
:
{
"sample"
:
[
1
,
4
,
32
,
32
],
"timestep"
:[
1
],
"encoder_hidden_states"
:[
1
,
77
,
768
]},
"input_type"
:
"FLOAT32,INT64,FLOAT32"
,
"dataset_name"
:
null
,
"max_batch_size"
:
64
,
"is_quantized"
:
false
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/vae-decoder-onnx-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"vae-decoder-onnx-fp32"
,
"model_path"
:
"general_perf/model_zoo/sota/stable_diffusion/vae-decoder.onnx"
,
"framework"
:
"Onnx"
,
"framework_version"
:
"1.12.0"
,
"model_format"
:
"onnx"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"latent_sample"
,
"outputs"
:
"Convsample_dim_0,Convsample_dim_1,Convsample_dim_2,Convsample_dim_3"
,
"input_shape"
:
{
"latent_sample"
:
[
1
,
4
,
32
,
32
]},
"input_type"
:
"FLOAT32"
,
"dataset_name"
:
null
,
"max_batch_size"
:
64
,
"is_quantized"
:
false
}
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/vae-encoder-onnx-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"vae-encoder-onnx-fp32"
,
"model_path"
:
"general_perf/model_zoo/sota/stable_diffusion/vae-encoder.onnx"
,
"framework"
:
"Onnx"
,
"framework_version"
:
"1.12.0"
,
"model_format"
:
"onnx"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"sample"
,
"outputs"
:
"latent_sample"
,
"input_shape"
:
{
"sample"
:
[
1
,
3
,
256
,
256
]},
"input_type"
:
"FLOAT32"
,
"dataset_name"
:
null
,
"max_batch_size"
:
64
,
"is_quantized"
:
false
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/videobert-onnx-fp16.json
0 → 100644
View file @
24b257f1
{
"model"
:
"videobert-onnx-fp16"
,
"model_path"
:
"general_perf/model_zoo/popular/open_videobert/video-bert.onnx"
,
"framework"
:
"Onnx"
,
"framework_version"
:
"1.8.1"
,
"model_format"
:
"onnx"
,
"model_precision"
:
"FP16"
,
"inputs"
:
"image,text"
,
"outputs"
:
"output"
,
"input_shape"
:
{
"image"
:
[
1
,
3
,
224
,
224
],
"text"
:
[
100
,
77
]},
"input_type"
:
"FLOAT32,LONG"
,
"dataset_name"
:
"open_cifar"
,
"max_batch_size"
:
64
,
"is_quantized"
:
false
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/videobert-onnx-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"videobert-onnx-fp32"
,
"model_path"
:
"general_perf/model_zoo/popular/open_videobert/video-bert.onnx"
,
"framework"
:
"Onnx"
,
"framework_version"
:
"1.8.1"
,
"model_format"
:
"onnx"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"image,text"
,
"outputs"
:
"output"
,
"input_shape"
:
{
"image"
:
[
1
,
3
,
224
,
224
],
"text"
:
[
100
,
77
]},
"input_type"
:
"FLOAT32,LONG"
,
"dataset_name"
:
"open_cifar"
,
"max_batch_size"
:
64
,
"is_quantized"
:
false
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/widedeep-onnxruntime-fp16.json
0 → 100644
View file @
24b257f1
{
"model"
:
"widedeep-tf-fp16"
,
"model_path"
:
"general_perf/model_zoo/regular/open_wide_deep_saved_model"
,
"framework"
:
"Onnx"
,
"framework_version"
:
"2.13.1"
,
"model_format"
:
"saved_model"
,
"model_precision"
:
"FP16"
,
"inputs"
:
"new_categorical_placeholder:0,new_numeric_placeholder:0"
,
"outputs"
:
"import/head/predictions/probabilities:0"
,
"input_shape"
:
{
"new_categorical_placeholder:0"
:
[
26
,
2
],
"new_numeric_placeholder:0"
:
[
1
,
13
]},
"input_type"
:
"INT64,FLOAT32"
,
"dataset_name"
:
"open_criteo_kaggle"
,
"max_batch_size"
:
260000
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/widedeep-tf-fp16.json
0 → 100644
View file @
24b257f1
{
"model"
:
"widedeep-tf-fp16"
,
"model_path"
:
"general_perf/model_zoo/regular/open_wide_deep_saved_model"
,
"framework"
:
"Tensorflow"
,
"framework_version"
:
"2.13.1"
,
"model_format"
:
"saved_model"
,
"model_precision"
:
"FP16"
,
"inputs"
:
"new_categorical_placeholder:0,new_numeric_placeholder:0"
,
"outputs"
:
"import/head/predictions/probabilities:0"
,
"input_shape"
:
{
"new_categorical_placeholder:0"
:
[
26
,
2
],
"new_numeric_placeholder:0"
:
[
1
,
13
]},
"input_type"
:
"INT64,FLOAT32"
,
"dataset_name"
:
"open_criteo_kaggle"
,
"max_batch_size"
:
260000
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/widedeep-tf-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"widedeep-tf-fp32"
,
"model_path"
:
"general_perf/model_zoo/regular/open_wide_deep_saved_model"
,
"framework"
:
"Tensorflow"
,
"framework_version"
:
"2.13.1"
,
"model_format"
:
"saved_model"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"new_categorical_placeholder:0,new_numeric_placeholder:0"
,
"outputs"
:
"import/head/predictions/probabilities:0"
,
"input_shape"
:
{
"new_categorical_placeholder:0"
:
[
26
,
2
],
"new_numeric_placeholder:0"
:
[
1
,
13
]},
"input_type"
:
"INT64,FLOAT32"
,
"dataset_name"
:
"open_criteo_kaggle"
,
"max_batch_size"
:
260000
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/model_zoo/yolov5-onnx-fp32.json
0 → 100644
View file @
24b257f1
{
"model"
:
"yolov5-onnx-fp32"
,
"model_path"
:
"general_perf/model_zoo/popular/open_yolov5/yolov5s.onnx"
,
"framework"
:
"Onnx"
,
"framework_version"
:
"1.10.2"
,
"model_format"
:
"onnx"
,
"model_precision"
:
"FP32"
,
"inputs"
:
"images"
,
"outputs"
:
"output,345,403,461"
,
"input_shape"
:
{
"images"
:
[
1
,
3
,
640
,
640
]},
"input_type"
:
"FLOAT32"
,
"dataset_name"
:
null
,
"max_batch_size"
:
64
}
\ No newline at end of file
ByteMLPerf/byte_infer_perf/general_perf/onnx.sh
0 → 100644
View file @
24b257f1
#!/bin/bash
# # 定义输入模型路径和输出模型路径的基本部分
# input_model="./model_zoo/regular/open_resnet50/resnet50-torch-fp32.onnx"
# output_model_base="./model_zoo/regular/open_resnet50/resnet50-mir-fp32"
# # 定义不同的批量大小
# batch_sizes=(1 32 64 128 256 512 1024 2048) # 根据需要可以调整
# # 循环遍历每个批量大小
# for bs in "${batch_sizes[@]}"; do
# # 构造输出模型文件名
# output_model="${output_model_base}-${bs}.onnx"
# # 构造 input_shape_dict
# input_shape_dict="{'input_1.1': [${bs}, 3, 224, 224]}"
# # 执行转换命令
# command="python -m paddle2onnx.optimize --input_model ${input_model} --output_model ${output_model} --input_shape_dict=\"${input_shape_dict}\""
# # 打印命令以供调试
# echo "Executing: ${command}"
# # 执行命令
# eval "${command}"
# done
# # 定义输入模型路径和输出模型路径的基本部分
# input_model="./model_zoo/regular/open_resnet50/resnet50-torch-fp16.onnx"
# output_model_base="./model_zoo/regular/open_resnet50/resnet50-mir-fp16"
# # 定义不同的批量大小
# batch_sizes=(1 32 64 128 256 512 1024 2048) # 根据需要可以调整
# # 循环遍历每个批量大小
# for bs in "${batch_sizes[@]}"; do
# # 构造输出模型文件名
# output_model="${output_model_base}-${bs}.onnx"
# # 构造 input_shape_dict
# input_shape_dict="{'input_1.1': [${bs}, 3, 224, 224]}"
# # 执行转换命令
# command="python -m paddle2onnx.optimize --input_model ${input_model} --output_model ${output_model} --input_shape_dict=\"${input_shape_dict}\""
# # 打印命令以供调试
# echo "Executing: ${command}"
# # 执行命令
# eval "${command}"
# done
# 定义输入模型路径和输出模型路径的基本部分
input_model
=
"/home/workspace/ByteMLPerf/byte_infer_perf/general_perf/test/bert-best-fp16.onnx"
output_model_base
=
"/home/workspace/ByteMLPerf/byte_infer_perf/general_perf/test/bert-mir-fp16"
# 定义不同的批量大小
batch_sizes
=(
1 32 64 128
)
# 根据需要可以调整
# 循环遍历每个批量大小
for
bs
in
"
${
batch_sizes
[@]
}
"
;
do
# 构造输出模型文件名
output_model
=
"
${
output_model_base
}
-
${
bs
}
.onnx"
# 构造 input_shape_dict
input_shape_dict
=
"{'input_ids.1': [
${
bs
}
,384], 'attention_mask.1': [
${
bs
}
,384], 'token_type_ids.1': [
${
bs
}
,384]}"
# 执行转换命令
command
=
"python -m paddle2onnx.optimize --input_model
${
input_model
}
--output_model
${
output_model
}
--input_shape_dict=
\"
${
input_shape_dict
}
\"
"
# 打印命令以供调试
echo
"Executing:
${
command
}
"
# 执行命令
eval
"
${
command
}
"
done
# 定义输入模型路径和输出模型路径的基本部分
# input_model="./model_zoo/regular/open_wide_deep_saved_model/widedeep-onnx-fp32.onnx"
# output_model_base="./model_zoo/regular/open_wide_deep_saved_model/widedeep-mir-fp32"
# # 定义不同的批量大小
# # batch_sizes=(1 1024 20000 40000 80000 120000) # 根据需要可以调整
# batch_sizes=(140000 160000 180000 200000 220000 240000 260000)
# # 循环遍历每个批量大小
# for bs in "${batch_sizes[@]}"; do
# new_value=$((bs * 26))
# # 构造输出模型文件名
# output_model="${output_model_base}-${bs}.onnx"
# # 构造 input_shape_dict
# input_shape_dict="{'new_categorical_placeholder:0': [${new_value}, 2], 'new_numeric_placeholder:0': [${bs}, 13]}"
# # 执行转换命令
# command="python -m paddle2onnx.optimize --input_model ${input_model} --output_model ${output_model} --input_shape_dict=\"${input_shape_dict}\""
# # 打印命令以供调试
# echo "Executing: ${command}"
# # 执行命令
# eval "${command}"
# done
# 定义输入模型路径和输出模型路径的基本部分
# input_model="./model_zoo/regular/open_wide_deep_saved_model/widedeep-onnx-fp16.onnx"
# output_model_base="./model_zoo/regular/open_wide_deep_saved_model/widedeep-mir-fp16"
# # 定义不同的批量大小
# # batch_sizes=(1 1024 20000 40000 80000 120000) # 根据需要可以调整
# batch_sizes=(1 1024 20000 40000 80000 120000 140000 160000 180000 200000 220000 240000 260000)
# # 循环遍历每个批量大小
# for bs in "${batch_sizes[@]}"; do
# new_value=$((bs * 26))
# # 构造输出模型文件名
# output_model="${output_model_base}-${bs}.onnx"
# # 构造 input_shape_dict
# input_shape_dict="{'new_categorical_placeholder:0': [${new_value}, 2], 'new_numeric_placeholder:0': [${bs}, 13]}"
# # 执行转换命令
# command="python -m paddle2onnx.optimize --input_model ${input_model} --output_model ${output_model} --input_shape_dict=\"${input_shape_dict}\""
# # 打印命令以供调试
# echo "Executing: ${command}"
# # 执行命令
# eval "${command}"
# done
ByteMLPerf/byte_infer_perf/general_perf/prepare_model_and_dataset.sh
0 → 100644
View file @
24b257f1
#!/bin/bash
echo
"******************* Downloading Model.... *******************"
mkdir
-p
general_perf/model_zoo/regular
mkdir
-p
general_perf/model_zoo/popular
mkdir
-p
general_perf/model_zoo/sota
mkdir
-p
general_perf/download
#--Basic Model--
# https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/bert_mhlo.tar
# https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/resnet50_mhlo.tar
if
[
$1
==
"bert-tf-fp32"
-o
$1
==
"bert-torch-fp32"
]
;
then
wget
-O
general_perf/download/open_bert.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_bert.tar
tar
xf general_perf/download/open_bert.tar
-C
general_perf/model_zoo/regular/
elif
[
$1
==
"resnet50-tf-fp32"
-o
$1
==
"resnet50-torch-fp32"
]
;
then
wget
-O
general_perf/download/resnet50.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/resnet50.tar
tar
xf general_perf/download/resnet50.tar
-C
general_perf/model_zoo/regular/
elif
[
$1
==
"widedeep-tf-fp32"
]
;
then
wget
-O
general_perf/download/open_wide_deep.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_wide_deep_saved_model.tar
tar
xf general_perf/download/open_wide_deep.tar
-C
general_perf/model_zoo/regular/
#--Popular Model--
elif
[
$1
==
"albert-torch-fp32"
]
;
then
wget
-O
general_perf/download/open_albert.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_albert.tar
tar
xf general_perf/download/open_albert.tar
-C
general_perf/model_zoo/popular/
elif
[
$1
==
"roformer-tf-fp32"
]
;
then
wget
-O
general_perf/download/open_roformer.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_roformer.tar
tar
xf general_perf/download/open_roformer.tar
-C
general_perf/model_zoo/popular/
elif
[
$1
==
"videobert-onnx-fp32"
]
;
then
wget
-O
general_perf/download/open_videobert.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_videobert.tar
tar
xf general_perf/download/open_videobert.tar
-C
general_perf/model_zoo/popular/
elif
[
$1
==
"yolov5-onnx-fp32"
]
;
then
wget
-O
general_perf/download/open_yolov5.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_yolov5.tar
tar
xf general_perf/download/open_yolov5.tar
-C
general_perf/model_zoo/popular/
elif
[
$1
==
"conformer-encoder-onnx-fp32"
]
;
then
wget
-O
general_perf/download/open_conformer.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_conformer.tar
tar
xf general_perf/download/open_conformer.tar
-C
general_perf/model_zoo/popular/
elif
[
$1
==
"roberta-torch-fp32"
]
;
then
wget
-O
general_perf/download/open_roberta.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_roberta.tar
tar
xf general_perf/download/open_roberta.tar
-C
general_perf/model_zoo/popular/
elif
[
$1
==
"deberta-torch-fp32"
]
;
then
wget
-O
general_perf/download/open_deberta.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_deberta.tar
tar
xf general_perf/download/open_deberta.tar
-C
general_perf/model_zoo/popular/
elif
[
$1
==
"swin-large-torch-fp32"
]
;
then
wget
-O
general_perf/download/open-swin-large.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open-swin-large.tar
tar
xf general_perf/download/open-swin-large.tar
-C
general_perf/model_zoo/popular/
#--Sota Model--
elif
[
$1
==
"vae-encoder-onnx-fp32"
-o
$1
==
"vae-decoder-onnx-fp32"
-o
$1
==
"clip-onnx-fp32"
]
;
then
wget
-O
general_perf/download/stable_diffusion.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/stable_diffusion.tar
tar
xf general_perf/download/stable_diffusion.tar
-C
general_perf/model_zoo/sota/
elif
[
$1
==
"unet-onnx-fp32"
]
;
then
wget
-O
general_perf/download/unet.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/unet.tar
tar
xf general_perf/download/unet.tar
-C
general_perf/model_zoo/sota/
fi
# Download Datasets
if
[
$2
==
"open_imagenet"
]
&&
[
!
-f
"general_perf/download/open_imagenet.tar"
]
;
then
wget
-O
general_perf/download/open_imagenet.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_imagenet.tar
tar
xf general_perf/download/open_imagenet.tar
-C
general_perf/datasets/
elif
[
$2
==
"open_squad"
]
&&
[
!
-f
"general_perf/download/open_squad.tar"
]
;
then
wget
-O
general_perf/download/open_squad.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_squad.tar
tar
xf general_perf/download/open_squad.tar
-C
general_perf/datasets/open_squad
elif
[
$2
==
"open_criteo_kaggle"
]
&&
[
!
-f
"general_perf/download/eval.csv"
]
;
then
wget
-O
general_perf/download/eval.csv https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/eval.csv
cp
general_perf/download/eval.csv general_perf/datasets/open_criteo_kaggle/eval.csv
elif
[
$2
==
"open_cail2019"
]
&&
[
!
-f
"general_perf/download/open_cail2019.tar"
]
;
then
wget
-O
general_perf/download/open_cail2019.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/open_cail2019.tar
tar
xf general_perf/download/open_cail2019.tar
-C
general_perf/datasets/open_cail2019
--strip-components
1
elif
[
$2
==
"open_cifar"
]
&&
[
!
-f
"general_perf/download/cifar-100-python.tar"
]
;
then
wget
-O
general_perf/download/cifar-100-python.tar https://lf-bytemlperf.17mh.cn/obj/bytemlperf-zoo/cifar-100-python.tar
tar
xf general_perf/download/cifar-100-python.tar
-C
general_perf/datasets/open_cifar
fi
echo
"Extract Done."
ByteMLPerf/byte_infer_perf/general_perf/requirements.txt
0 → 100644
View file @
24b257f1
matplotlib
pandas
virtualenv==16.7.9
scikit-learn
prompt_toolkit
tqdm
opencv-python
transformers
tokenization
fpdf
typing-extensions==3.7.4.3
numpy==1.23.0
ByteMLPerf/byte_infer_perf/general_perf/run_bytemlperf.sh
0 → 100644
View file @
24b257f1
#!/bin/bash
export
PYTHONPATH
=
/opt/dtk/lib:
$PYTHONPAT
source
/home/workspace/dtk-24.04.3/env.sh
export
PYTHONPATH
=
/home/workspace/dtk-24.04.3/lib:
$PYTHONPAT
export
LD_LIBRARY_PATH
=
/home/workspace/rocblas-install/lib/:
$LD_LIBRARY_PATH
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task resnet50-torch-fp32 2>&1 | tee ./log/resnet50-torch-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task resnet50-torch-fp16 2>&1 | tee ./log/resnet50-torch-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task resnet50-onnxruntime-fp32 2>&1 | tee ./log/resnet50-onnxruntime-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task resnet50-onnxruntime-fp16 2>&1 | tee ./log/resnet50-onnxruntime-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-torch-fp32 2>&1 | tee ./log/bert-torch-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-torch-fp16 2>&1 | tee ./log/bert-torch-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-tf-fp32 2>&1 | tee ./log/bert-tf-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-tf-fp16 2>&1 | tee ./log/bert-tf-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-onnxruntime-fp32 2>&1 | tee ./log/bert-onnxruntime-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task bert-onnxruntime-fp16 2>&1 | tee ./log/bert-onnxruntime-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task widedeep-tf-fp32 2>&1 | tee ./log/widedeep-tf-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task widedeep-tf-fp16 2>&1 | tee ./log/widedeep-tf-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task videobert-onnx-fp32 2>&1 | tee ./log/videobert-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task videobert-onnx-fp16 2>&1 | tee ./log/videobert-onnx-fp16.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task conformer-encoder-onnx-fp32 2>&1 | tee ./log/conformer-encoder-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task roformer-tf-fp32 2>&1 | tee ./log/roformer-tf-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task vae-encoder-onnx-fp32 2>&1 | tee ./log/vae-encoder-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task vae-decoder-onnx-fp32 2>&1 | tee ./log/vae-decoder-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task unet-onnx-fp32 2>&1 | tee ./log/unet-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task clip-onnx-fp32 2>&1 | tee ./log/clip-onnx-fp32.log
CUDA_VISIBLE_DEVICES
=
0 python launch.py
--hardware_type
DCU
--task
yolov5-onnx-fp32 2>&1 |
tee
./log/yolov5-onnx-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task roberta-torch-fp32 2>&1 | tee ./log/roberta-torch-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task deberta-torch-fp32 2>&1 | tee ./log/deberta-torch-fp32.log
# CUDA_VISIBLE_DEVICES=0 python launch.py --hardware_type DCU --task swin-large-torch-fp32 2>&1 | tee ./log/swin-large-torch-fp32.log
Prev
1
…
3
4
5
6
7
8
9
10
11
…
17
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment