import torch from ...util import default, instantiate_from_config class EDMSampling: def __init__(self, p_mean=-1.2, p_std=1.2): self.p_mean = p_mean self.p_std = p_std def __call__(self, n_samples, rand=None): log_sigma = self.p_mean + self.p_std * default(rand, torch.randn((n_samples,))) return log_sigma.exp() class DiscreteSampling: def __init__(self, discretization_config, num_idx, do_append_zero=False, flip=True, low_bound=0, up_bound=1): self.num_idx = num_idx self.sigmas = instantiate_from_config(discretization_config)( num_idx, do_append_zero=do_append_zero, flip=flip ) self.low_bound = int(low_bound * num_idx) self.up_bound = int(up_bound * num_idx) print(f'sigma sampling from {self.low_bound} to {self.up_bound}') def idx_to_sigma(self, idx): return self.sigmas[idx] def __call__(self, n_samples, rand=None, return_idx=False): idx = default( rand, torch.randint(self.low_bound, self.up_bound, (n_samples,)), ) if return_idx: return self.idx_to_sigma(idx), idx else: return self.idx_to_sigma(idx) class PartialDiscreteSampling: def __init__(self, discretization_config, total_num_idx, partial_num_idx, do_append_zero=False, flip=True): self.total_num_idx = total_num_idx self.partial_num_idx = partial_num_idx self.sigmas = instantiate_from_config(discretization_config)( total_num_idx, do_append_zero=do_append_zero, flip=flip ) def idx_to_sigma(self, idx): return self.sigmas[idx] def __call__(self, n_samples, rand=None): idx = default( rand, # torch.randint(self.total_num_idx-self.partial_num_idx, self.total_num_idx, (n_samples,)), torch.randint(0, self.partial_num_idx, (n_samples,)), ) return self.idx_to_sigma(idx)