# This config contains the default values for training WaveGlow model on LJSpeech dataset. # If you want to train model on other dataset, you can change config values according to your dataset. # Most dataset-specific arguments are in the head of the config file, see below. name: "WaveGlow" train_dataset: ??? validation_datasets: ??? # Default values for dataset with sample_rate=22050 sample_rate: 22050 n_mel_channels: 80 n_window_size: 1024 n_window_stride: 256 n_fft: 1024 lowfreq: 0 highfreq: 8000 window: hann model: sigma: 1.0 train_ds: dataset: _target_: "nemo.collections.tts.data.dataset.VocoderDataset" manifest_filepath: ${train_dataset} sample_rate: ${sample_rate} max_duration: null min_duration: 0.1 n_segments: 16000 dataloader_params: drop_last: false shuffle: true batch_size: 12 num_workers: 4 pin_memory: true validation_ds: dataset: _target_: "nemo.collections.tts.data.dataset.VocoderDataset" manifest_filepath: ${validation_datasets} sample_rate: ${sample_rate} max_duration: null min_duration: 0.1 dataloader_params: drop_last: false shuffle: false batch_size: 8 num_workers: 4 pin_memory: true preprocessor: _target_: nemo.collections.asr.parts.preprocessing.features.FilterbankFeatures nfilt: ${n_mel_channels} lowfreq: ${lowfreq} highfreq: ${highfreq} n_fft: ${n_fft} # Changing these parameters are not recommended, because WaveGlow is currently hardcoded to these values n_window_size: ${n_window_size} n_window_stride: ${n_window_stride} pad_to: 16 pad_value: -11.52 sample_rate: ${sample_rate} window: ${window} normalize: null preemph: null dither: 0.0 frame_splicing: 1 log: true log_zero_guard_type: clamp log_zero_guard_value: 1e-05 mag_power: 1.0 waveglow: _target_: nemo.collections.tts.modules.waveglow.WaveGlowModule n_early_every: 4 n_early_size: 2 n_flows: 12 n_group: 8 n_mel_channels: ${n_mel_channels} n_wn_channels: 256 n_wn_layers: 8 wn_kernel_size: 3 optim: name: adam lr: 1e-4 trainer: num_nodes: 1 devices: 1 accelerator: gpu strategy: ddp precision: 16 max_epochs: ??? accumulate_grad_batches: 1 enable_checkpointing: False # Provided by exp_manager logger: false # Provided by exp_manager log_every_n_steps: 200 check_val_every_n_epoch: 25 benchmark: false exp_manager: exp_dir: null name: ${name} create_tensorboard_logger: true create_checkpoint_callback: true create_wandb_logger: false wandb_logger_kwargs: name: null project: null entity: null resume_if_exists: false resume_ignore_no_checkpoint: false