# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ## Tasks This script works with all GLUE Benchmark tasks, more details about the GLUE Benchmark could be found at https://gluebenchmark.com/ More details on how to use this script could be found in tutorials/nlp/GLUE_Benchmark.ipynb ## Model Training To train GLUEModel with the default config file, run: python glue_benchmark.py \ model.dataset.data_dir= \ model.task_name=TASK_NAME \ trainer.max_epochs= \ trainer.devices="[] Supported task names: ["cola", "sst-2", "mrpc", "sts-b", "qqp", "mnli", "qnli", "rte", "wnli"] Note, MNLI task includes both matched and mismatched dev sets """ import os import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from nemo.collections.nlp.models import GLUEModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_name="glue_benchmark_config") def main(cfg: DictConfig) -> None: # PTL 2.0 has find_unused_parameters as False by default, so its required to set it to True # when there are unused parameters like here if cfg.trainer.strategy == 'ddp': cfg.trainer.strategy = "ddp_find_unused_parameters_true" logging.info(f'Config: {OmegaConf.to_yaml(cfg)}') trainer = pl.Trainer(**cfg.trainer) exp_manager_cfg = cfg.get("exp_manager", None) if exp_manager_cfg: exp_manager_cfg.name = cfg.model.task_name logging.info(f'Setting task_name to {exp_manager_cfg.name} in exp_manager') exp_manager(trainer, exp_manager_cfg) if cfg.model.nemo_path and os.path.exists(cfg.model.nemo_path): model = GLUEModel.restore_from(cfg.model.nemo_path) logging.info(f'Restoring model from {cfg.model.nemo_path}') model.update_data_dir(data_dir=cfg.model.dataset.data_dir) model.setup_training_data() model.setup_multiple_validation_data() trainer.fit(model) else: model = GLUEModel(cfg.model, trainer=trainer) trainer.fit(model) if cfg.model.nemo_path: model.save_to(cfg.model.nemo_path) if __name__ == '__main__': main()