# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # Training the model Basic run (on CPU for 50 epochs): python examples/audio_tasks/speech_enhancement.py \ # (Optional: --config-path= --config-name=) \ model.train_ds.manifest_filepath="" \ model.validation_ds.manifest_filepath="" \ trainer.devices=1 \ trainer.accelerator='cpu' \ trainer.max_epochs=50 PyTorch Lightning Trainer arguments and args of the model and the optimizer can be added or overriden from CLI """ import pytorch_lightning as pl import torch from omegaconf import OmegaConf from nemo.collections.asr.models import EncMaskDecAudioToAudioModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager @hydra_runner(config_path="./conf", config_name="masking") def main(cfg): logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg, resolve=True)}') trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get("exp_manager", None)) model = EncMaskDecAudioToAudioModel(cfg=cfg.model, trainer=trainer) # Initialize the weights of the model from another model, if provided via config model.maybe_init_from_pretrained_checkpoint(cfg) # Train the model trainer.fit(model) # Run on test data, if available if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: if trainer.is_global_zero: # Destroy the current process group and let the trainer initialize it again with a single device. if torch.distributed.is_initialized(): torch.distributed.destroy_process_group() # Run test on a single device trainer = pl.Trainer(devices=1, accelerator=cfg.trainer.accelerator) if model.prepare_test(trainer): trainer.test(model) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter