Commit d476eeba authored by renzhc's avatar renzhc
Browse files

upload mmpretrain

parent 62b8498e
Pipeline #1662 failed with stages
in 0 seconds
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b0'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b1'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b2'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1408,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b3'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b4'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1792,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b5'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b6'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2304,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b7'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2560,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='b8'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2816,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
# `em` means EfficientNet-EdgeTPU-M arch
backbone=dict(type='EfficientNet', arch='em', act_cfg=dict(type='ReLU')),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
# `es` means EfficientNet-EdgeTPU-S arch
backbone=dict(type='EfficientNet', arch='es', act_cfg=dict(type='ReLU')),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNet', arch='l2'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=5504,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='b0'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='b1'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='b2'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1408,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='b3'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1536,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='l'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='m'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='s'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(type='EfficientNetV2', arch='xl'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment