# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import torch from ..configuration_utils import register_to_config from ..hooks import HookRegistry, LayerSkipConfig from ..hooks.layer_skip import _apply_layer_skip_hook from .guider_utils import BaseGuidance, rescale_noise_cfg if TYPE_CHECKING: from ..modular_pipelines.modular_pipeline import BlockState class AutoGuidance(BaseGuidance): """ AutoGuidance: https://huggingface.co/papers/2406.02507 Args: guidance_scale (`float`, defaults to `7.5`): The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and deterioration of image quality. auto_guidance_layers (`int` or `List[int]`, *optional*): The layer indices to apply skip layer guidance to. Can be a single integer or a list of integers. If not provided, `skip_layer_config` must be provided. auto_guidance_config (`LayerSkipConfig` or `List[LayerSkipConfig]`, *optional*): The configuration for the skip layer guidance. Can be a single `LayerSkipConfig` or a list of `LayerSkipConfig`. If not provided, `skip_layer_guidance_layers` must be provided. dropout (`float`, *optional*): The dropout probability for autoguidance on the enabled skip layers (either with `auto_guidance_layers` or `auto_guidance_config`). If not provided, the dropout probability will be set to 1.0. guidance_rescale (`float`, defaults to `0.0`): The rescale factor applied to the noise predictions. This is used to improve image quality and fix overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). use_original_formulation (`bool`, defaults to `False`): Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default, we use the diffusers-native implementation that has been in the codebase for a long time. See [~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details. start (`float`, defaults to `0.0`): The fraction of the total number of denoising steps after which guidance starts. stop (`float`, defaults to `1.0`): The fraction of the total number of denoising steps after which guidance stops. """ _input_predictions = ["pred_cond", "pred_uncond"] @register_to_config def __init__( self, guidance_scale: float = 7.5, auto_guidance_layers: Optional[Union[int, List[int]]] = None, auto_guidance_config: Union[LayerSkipConfig, List[LayerSkipConfig], Dict[str, Any]] = None, dropout: Optional[float] = None, guidance_rescale: float = 0.0, use_original_formulation: bool = False, start: float = 0.0, stop: float = 1.0, ): super().__init__(start, stop) self.guidance_scale = guidance_scale self.auto_guidance_layers = auto_guidance_layers self.auto_guidance_config = auto_guidance_config self.dropout = dropout self.guidance_rescale = guidance_rescale self.use_original_formulation = use_original_formulation if auto_guidance_layers is None and auto_guidance_config is None: raise ValueError( "Either `auto_guidance_layers` or `auto_guidance_config` must be provided to enable Skip Layer Guidance." ) if auto_guidance_layers is not None and auto_guidance_config is not None: raise ValueError("Only one of `auto_guidance_layers` or `auto_guidance_config` can be provided.") if (dropout is None and auto_guidance_layers is not None) or ( dropout is not None and auto_guidance_layers is None ): raise ValueError("`dropout` must be provided if `auto_guidance_layers` is provided.") if auto_guidance_layers is not None: if isinstance(auto_guidance_layers, int): auto_guidance_layers = [auto_guidance_layers] if not isinstance(auto_guidance_layers, list): raise ValueError( f"Expected `auto_guidance_layers` to be an int or a list of ints, but got {type(auto_guidance_layers)}." ) auto_guidance_config = [ LayerSkipConfig(layer, fqn="auto", dropout=dropout) for layer in auto_guidance_layers ] if isinstance(auto_guidance_config, dict): auto_guidance_config = LayerSkipConfig.from_dict(auto_guidance_config) if isinstance(auto_guidance_config, LayerSkipConfig): auto_guidance_config = [auto_guidance_config] if not isinstance(auto_guidance_config, list): raise ValueError( f"Expected `auto_guidance_config` to be a LayerSkipConfig or a list of LayerSkipConfig, but got {type(auto_guidance_config)}." ) elif isinstance(next(iter(auto_guidance_config), None), dict): auto_guidance_config = [LayerSkipConfig.from_dict(config) for config in auto_guidance_config] self.auto_guidance_config = auto_guidance_config self._auto_guidance_hook_names = [f"AutoGuidance_{i}" for i in range(len(self.auto_guidance_config))] def prepare_models(self, denoiser: torch.nn.Module) -> None: self._count_prepared += 1 if self._is_ag_enabled() and self.is_unconditional: for name, config in zip(self._auto_guidance_hook_names, self.auto_guidance_config): _apply_layer_skip_hook(denoiser, config, name=name) def cleanup_models(self, denoiser: torch.nn.Module) -> None: if self._is_ag_enabled() and self.is_unconditional: for name in self._auto_guidance_hook_names: registry = HookRegistry.check_if_exists_or_initialize(denoiser) registry.remove_hook(name, recurse=True) def prepare_inputs( self, data: "BlockState", input_fields: Optional[Dict[str, Union[str, Tuple[str, str]]]] = None ) -> List["BlockState"]: if input_fields is None: input_fields = self._input_fields tuple_indices = [0] if self.num_conditions == 1 else [0, 1] data_batches = [] for i in range(self.num_conditions): data_batch = self._prepare_batch(input_fields, data, tuple_indices[i], self._input_predictions[i]) data_batches.append(data_batch) return data_batches def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor: pred = None if not self._is_ag_enabled(): pred = pred_cond else: shift = pred_cond - pred_uncond pred = pred_cond if self.use_original_formulation else pred_uncond pred = pred + self.guidance_scale * shift if self.guidance_rescale > 0.0: pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale) return pred, {} @property def is_conditional(self) -> bool: return self._count_prepared == 1 @property def num_conditions(self) -> int: num_conditions = 1 if self._is_ag_enabled(): num_conditions += 1 return num_conditions def _is_ag_enabled(self) -> bool: if not self._enabled: return False is_within_range = True if self._num_inference_steps is not None: skip_start_step = int(self._start * self._num_inference_steps) skip_stop_step = int(self._stop * self._num_inference_steps) is_within_range = skip_start_step <= self._step < skip_stop_step is_close = False if self.use_original_formulation: is_close = math.isclose(self.guidance_scale, 0.0) else: is_close = math.isclose(self.guidance_scale, 1.0) return is_within_range and not is_close