# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ._common import _ALL_TRANSFORMER_BLOCK_IDENTIFIERS, _ATTENTION_CLASSES, _FEEDFORWARD_CLASSES def _get_identifiable_transformer_blocks_in_module(module: torch.nn.Module): module_list_with_transformer_blocks = [] for name, submodule in module.named_modules(): name_endswith_identifier = any(name.endswith(identifier) for identifier in _ALL_TRANSFORMER_BLOCK_IDENTIFIERS) is_modulelist = isinstance(submodule, torch.nn.ModuleList) if name_endswith_identifier and is_modulelist: module_list_with_transformer_blocks.append((name, submodule)) return module_list_with_transformer_blocks def _get_identifiable_attention_layers_in_module(module: torch.nn.Module): attention_layers = [] for name, submodule in module.named_modules(): if isinstance(submodule, _ATTENTION_CLASSES): attention_layers.append((name, submodule)) return attention_layers def _get_identifiable_feedforward_layers_in_module(module: torch.nn.Module): feedforward_layers = [] for name, submodule in module.named_modules(): if isinstance(submodule, _FEEDFORWARD_CLASSES): feedforward_layers.append((name, submodule)) return feedforward_layers