# Stable unCLIP Stable unCLIP checkpoints are finetuned from [stable diffusion 2.1](./stable_diffusion_2) checkpoints to condition on CLIP image embeddings. Stable unCLIP also still conditions on text embeddings. Given the two separate conditionings, stable unCLIP can be used for text guided image variation. When combined with an unCLIP prior, it can also be used for full text to image generation. ## Tips Stable unCLIP takes a `noise_level` as input during inference. `noise_level` determines how much noise is added to the image embeddings. A higher `noise_level` increases variation in the final un-noised images. By default, we do not add any additional noise to the image embeddings i.e. `noise_level = 0`. ### Available checkpoints: TODO ### Text-to-Image Generation ```python import torch from diffusers import StableUnCLIPPipeline pipe = StableUnCLIPPipeline.from_pretrained( "fusing/stable-unclip-2-1-l", torch_dtype=torch.float16 ) # TODO update model path pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" images = pipe(prompt).images images[0].save("astronaut_horse.png") ``` ### Text guided Image-to-Image Variation ```python import requests import torch from PIL import Image from io import BytesIO from diffusers import StableUnCLIPImg2ImgPipeline pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16 ) # TODO update model path pipe = pipe.to("cuda") url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((768, 512)) prompt = "A fantasy landscape, trending on artstation" images = pipe(prompt, init_image).images images[0].save("fantasy_landscape.png") ``` ### StableUnCLIPPipeline [[autodoc]] StableUnCLIPPipeline - all - __call__ - enable_attention_slicing - disable_attention_slicing - enable_vae_slicing - disable_vae_slicing - enable_xformers_memory_efficient_attention - disable_xformers_memory_efficient_attention ### StableUnCLIPImg2ImgPipeline [[autodoc]] StableUnCLIPImg2ImgPipeline - all - __call__ - enable_attention_slicing - disable_attention_slicing - enable_vae_slicing - disable_vae_slicing - enable_xformers_memory_efficient_attention - disable_xformers_memory_efficient_attention