import numpy as np import torch import torch.nn as nn from ..configuration_utils import ConfigMixin from ..modeling_utils import ModelMixin from .attention import AttentionBlock from .resnet import Downsample2D, ResnetBlock2D, Upsample2D def nonlinearity(x): # swish return x * torch.sigmoid(x) def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class Encoder(nn.Module): def __init__( self, *, ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, **ignore_kwargs, ): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,) + tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append( ResnetBlock2D( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttentionBlock(block_in, overwrite_qkv=True)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = Downsample2D(block_in, use_conv=resamp_with_conv, padding=0) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock2D( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) self.mid.attn_1 = AttentionBlock(block_in, overwrite_qkv=True) self.mid.block_2 = ResnetBlock2D( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d( block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x): # assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution) # timestep embedding temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, **ignorekwargs, ): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end # compute in_ch_mult, block_in and curr_res at lowest res block_in = ch * ch_mult[self.num_resolutions - 1] curr_res = resolution // 2 ** (self.num_resolutions - 1) self.z_shape = (1, z_channels, curr_res, curr_res) print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock2D( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) self.mid.attn_1 = AttentionBlock(block_in, overwrite_qkv=True) self.mid.block_2 = ResnetBlock2D( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout ) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): block.append( ResnetBlock2D( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttentionBlock(block_in, overwrite_qkv=True)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample2D(block_in, use_conv=resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z): # assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h, temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class VectorQuantizer(nn.Module): """ Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix multiplications and allows for post-hoc remapping of indices. """ # NOTE: due to a bug the beta term was applied to the wrong term. for # backwards compatibility we use the buggy version by default, but you can # specify legacy=False to fix it. def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True): super().__init__() self.n_e = n_e self.e_dim = e_dim self.beta = beta self.legacy = legacy self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) self.remap = remap if self.remap is not None: self.register_buffer("used", torch.tensor(np.load(self.remap))) self.re_embed = self.used.shape[0] self.unknown_index = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": self.unknown_index = self.re_embed self.re_embed = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: self.re_embed = n_e self.sane_index_shape = sane_index_shape def remap_to_used(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) match = (inds[:, :, None] == used[None, None, ...]).long() new = match.argmax(-1) unknown = match.sum(2) < 1 if self.unknown_index == "random": new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) else: new[unknown] = self.unknown_index return new.reshape(ishape) def unmap_to_all(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) if self.re_embed > self.used.shape[0]: # extra token inds[inds >= self.used.shape[0]] = 0 # simply set to zero back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) return back.reshape(ishape) def forward(self, z): # reshape z -> (batch, height, width, channel) and flatten z = z.permute(0, 2, 3, 1).contiguous() z_flattened = z.view(-1, self.e_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z d = ( torch.sum(z_flattened**2, dim=1, keepdim=True) + torch.sum(self.embedding.weight**2, dim=1) - 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t()) ) min_encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(min_encoding_indices).view(z.shape) perplexity = None min_encodings = None # compute loss for embedding if not self.legacy: loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() if self.remap is not None: min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis min_encoding_indices = self.remap_to_used(min_encoding_indices) min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten if self.sane_index_shape: min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def get_codebook_entry(self, indices, shape): # shape specifying (batch, height, width, channel) if self.remap is not None: indices = indices.reshape(shape[0], -1) # add batch axis indices = self.unmap_to_all(indices) indices = indices.reshape(-1) # flatten again # get quantized latent vectors z_q = self.embedding(indices) if shape is not None: z_q = z_q.view(shape) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q class DiagonalGaussianDistribution(object): def __init__(self, parameters, deterministic=False): self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) def sample(self): x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) return x def kl(self, other=None): if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=[1, 2, 3], ) def nll(self, sample, dims=[1, 2, 3]): if self.deterministic: return torch.Tensor([0.0]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) def mode(self): return self.mean class VQModel(ModelMixin, ConfigMixin): def __init__( self, ch, out_ch, num_res_blocks, attn_resolutions, in_channels, resolution, z_channels, n_embed, embed_dim, remap=None, sane_index_shape=False, # tell vector quantizer to return indices as bhw ch_mult=(1, 2, 4, 8), dropout=0.0, double_z=True, resamp_with_conv=True, give_pre_end=False, ): super().__init__() # register all __init__ params with self.register self.register_to_config( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, n_embed=n_embed, embed_dim=embed_dim, remap=remap, sane_index_shape=sane_index_shape, ch_mult=ch_mult, dropout=dropout, double_z=double_z, resamp_with_conv=resamp_with_conv, give_pre_end=give_pre_end, ) # pass init params to Encoder self.encoder = Encoder( ch=ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, ch_mult=ch_mult, dropout=dropout, resamp_with_conv=resamp_with_conv, double_z=double_z, give_pre_end=give_pre_end, ) self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1) self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape) self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) # pass init params to Decoder self.decoder = Decoder( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, ch_mult=ch_mult, dropout=dropout, resamp_with_conv=resamp_with_conv, give_pre_end=give_pre_end, ) def encode(self, x): h = self.encoder(x) h = self.quant_conv(h) return h def decode(self, h, force_not_quantize=False): # also go through quantization layer if not force_not_quantize: quant, emb_loss, info = self.quantize(h) else: quant = h quant = self.post_quant_conv(quant) dec = self.decoder(quant) return dec def forward(self, x): h = self.encode(x) dec = self.decode(h) return dec class AutoencoderKL(ModelMixin, ConfigMixin): def __init__( self, ch, out_ch, num_res_blocks, attn_resolutions, in_channels, resolution, z_channels, embed_dim, remap=None, sane_index_shape=False, # tell vector quantizer to return indices as bhw ch_mult=(1, 2, 4, 8), dropout=0.0, double_z=True, resamp_with_conv=True, give_pre_end=False, ): super().__init__() # register all __init__ params with self.register self.register_to_config( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, embed_dim=embed_dim, remap=remap, sane_index_shape=sane_index_shape, ch_mult=ch_mult, dropout=dropout, double_z=double_z, resamp_with_conv=resamp_with_conv, give_pre_end=give_pre_end, ) # pass init params to Encoder self.encoder = Encoder( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, ch_mult=ch_mult, dropout=dropout, resamp_with_conv=resamp_with_conv, double_z=double_z, give_pre_end=give_pre_end, ) # pass init params to Decoder self.decoder = Decoder( ch=ch, out_ch=out_ch, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, in_channels=in_channels, resolution=resolution, z_channels=z_channels, ch_mult=ch_mult, dropout=dropout, resamp_with_conv=resamp_with_conv, give_pre_end=give_pre_end, ) self.quant_conv = torch.nn.Conv2d(2 * z_channels, 2 * embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward(self, x, sample_posterior=False): posterior = self.encode(x) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec