# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn from .attention import AttentionBlockNew from .resnet import Downsample2D, ResnetBlock, Upsample2D def get_down_block( down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample, resnet_eps, resnet_act_fn, attn_num_head_channels, downsample_padding=None, ): if down_block_type == "UNetResDownBlock2D": return UNetResDownBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, downsample_padding=downsample_padding, ) elif down_block_type == "UNetResAttnDownBlock2D": return UNetResAttnDownBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, attn_num_head_channels=attn_num_head_channels, ) def get_up_block( up_block_type, num_layers, in_channels, out_channels, prev_output_channel, temb_channels, add_upsample, resnet_eps, resnet_act_fn, attn_num_head_channels, ): if up_block_type == "UNetResUpBlock2D": return UNetResUpBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, ) elif up_block_type == "UNetResAttnUpBlock2D": return UNetResAttnUpBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, attn_num_head_channels=attn_num_head_channels, ) class UNetMidBlock2D(nn.Module): def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, attention_type="default", output_scale_factor=1.0, **kwargs, ): super().__init__() self.attention_type = attention_type # there is always at least one resnet resnets = [ ResnetBlock( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] for _ in range(num_layers): attentions.append( AttentionBlockNew( in_channels, num_head_channels=attn_num_head_channels, rescale_output_factor=output_scale_factor, eps=resnet_eps, ) ) resnets.append( ResnetBlock( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) def forward(self, hidden_states, temb=None, encoder_states=None): hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet in zip(self.attentions, self.resnets[1:]): if self.attention_type == "default": hidden_states = attn(hidden_states) else: hidden_states = attn(hidden_states, encoder_states) hidden_states = resnet(hidden_states, temb) return hidden_states class UNetResAttnDownBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, attention_type="default", output_scale_factor=1.0, add_downsample=True, ): super().__init__() resnets = [] attentions = [] self.attention_type = attention_type for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) attentions.append( AttentionBlockNew( out_channels, num_head_channels=attn_num_head_channels, rescale_output_factor=output_scale_factor, eps=resnet_eps, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [Downsample2D(in_channels, use_conv=True, out_channels=out_channels, padding=1, name="op")] ) else: self.downsamplers = None def forward(self, hidden_states, temb=None): output_states = () for resnet, attn in zip(self.resnets, self.attentions): hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states) output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states class UNetResDownBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_downsample=True, downsample_padding=1, ): super().__init__() resnets = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample2D( in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None def forward(self, hidden_states, temb=None): output_states = () for resnet in self.resnets: hidden_states = resnet(hidden_states, temb) output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states class UNetResAttnUpBlock2D(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attention_type="default", attn_num_head_channels=1, output_scale_factor=1.0, add_upsample=True, ): super().__init__() resnets = [] attentions = [] self.attention_type = attention_type for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) attentions.append( AttentionBlockNew( out_channels, num_head_channels=attn_num_head_channels, rescale_output_factor=output_scale_factor, eps=resnet_eps, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None def forward(self, hidden_states, res_hidden_states_tuple, temb=None): for resnet, attn in zip(self.resnets, self.attentions): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) return hidden_states class UNetResUpBlock2D(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_upsample=True, ): super().__init__() resnets = [] for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None def forward(self, hidden_states, res_hidden_states_tuple, temb=None): for resnet in self.resnets: # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) return hidden_states