#!/usr/bin/env python3 # !pip install diffusers from diffusers import DiffusionPipeline import PIL.Image import numpy as np model_id = "fusing/ddpm-cifar10" model_id = "fusing/ddpm-lsun-bedroom" # load model and scheduler ddpm = DiffusionPipeline.from_pretrained(model_id) # run pipeline in inference (sample random noise and denoise) image = ddpm() # process image to PIL image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = (image_processed + 1.0) * 127.5 image_processed = image_processed.numpy().astype(np.uint8) image_pil = PIL.Image.fromarray(image_processed[0]) # save image image_pil.save("/home/patrick/images/show.png")