import argparse import torch from torch import nn from transformers import CLIPTextConfig, GPT2Tokenizer from modelling_text_encoder import CLIPTextModel # wget https://openaipublic.blob.core.windows.net/diffusion/dec-2021/base.pt state_dict = torch.load("base.pt", map_location="cpu") state_dict = {k: nn.Parameter(v) for k, v in state_dict.items()} config = CLIPTextConfig( hidden_size=512, intermediate_size=2048, num_hidden_layers=16, num_attention_heads=8, max_position_embeddings=128, use_padding_embeddings=True, ) model = CLIPTextModel(config).eval() tokenizer = GPT2Tokenizer("./glide-base/vocab.json", "./glide-base/merges.txt", pad_token="<|endoftext|>") tokenizer.save_pretrained("./glide-base") hf_encoder = model.text_model hf_encoder.embeddings.token_embedding.weight = state_dict["token_embedding.weight"] hf_encoder.embeddings.position_embedding.weight.data = state_dict["positional_embedding"] hf_encoder.embeddings.padding_embedding.weight.data = state_dict["padding_embedding"] hf_encoder.final_layer_norm.weight = state_dict["final_ln.weight"] hf_encoder.final_layer_norm.bias = state_dict["final_ln.bias"] for layer_idx in range(config.num_hidden_layers): hf_layer = hf_encoder.encoder.layers[layer_idx] hf_layer.self_attn.qkv_proj.weight = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_qkv.weight"] hf_layer.self_attn.qkv_proj.bias = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_qkv.bias"] hf_layer.self_attn.out_proj.weight = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_proj.weight"] hf_layer.self_attn.out_proj.bias = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_proj.bias"] hf_layer.layer_norm1.weight = state_dict[f"transformer.resblocks.{layer_idx}.ln_1.weight"] hf_layer.layer_norm1.bias = state_dict[f"transformer.resblocks.{layer_idx}.ln_1.bias"] hf_layer.layer_norm2.weight = state_dict[f"transformer.resblocks.{layer_idx}.ln_2.weight"] hf_layer.layer_norm2.bias = state_dict[f"transformer.resblocks.{layer_idx}.ln_2.bias"] hf_layer.mlp.fc1.weight = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_fc.weight"] hf_layer.mlp.fc1.bias = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_fc.bias"] hf_layer.mlp.fc2.weight = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_proj.weight"] hf_layer.mlp.fc2.bias = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_proj.bias"] inputs = tokenizer(["an oil painting of a corgi", ""], padding="max_length", max_length=128, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) model.save_pretrained("./glide-base")