# Copyright 2025 The HuggingFace Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from PIL import Image from transformers import ( AutoTokenizer, CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModelWithProjection, T5EncoderModel, ) from diffusers import ( AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanAnimatePipeline, WanAnimateTransformer3DModel, ) from ...testing_utils import ( backend_empty_cache, enable_full_determinism, require_torch_accelerator, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class WanAnimatePipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = WanAnimatePipeline params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS required_optional_params = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback_on_step_end", "callback_on_step_end_tensor_inputs", ] ) test_xformers_attention = False supports_dduf = False def get_dummy_components(self): torch.manual_seed(0) vae = AutoencoderKLWan( base_dim=3, z_dim=16, dim_mult=[1, 1, 1, 1], num_res_blocks=1, temperal_downsample=[False, True, True], ) torch.manual_seed(0) scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) channel_sizes = {"4": 16, "8": 16, "16": 16} transformer = WanAnimateTransformer3DModel( patch_size=(1, 2, 2), num_attention_heads=2, attention_head_dim=12, in_channels=36, latent_channels=16, out_channels=16, text_dim=32, freq_dim=256, ffn_dim=32, num_layers=2, cross_attn_norm=True, qk_norm="rms_norm_across_heads", image_dim=4, rope_max_seq_len=32, motion_encoder_channel_sizes=channel_sizes, motion_encoder_size=16, motion_style_dim=8, motion_dim=4, motion_encoder_dim=16, face_encoder_hidden_dim=16, face_encoder_num_heads=2, inject_face_latents_blocks=2, ) torch.manual_seed(0) image_encoder_config = CLIPVisionConfig( hidden_size=4, projection_dim=4, num_hidden_layers=2, num_attention_heads=2, image_size=4, intermediate_size=16, patch_size=1, ) image_encoder = CLIPVisionModelWithProjection(image_encoder_config) torch.manual_seed(0) image_processor = CLIPImageProcessor(crop_size=4, size=4) components = { "transformer": transformer, "vae": vae, "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, "image_encoder": image_encoder, "image_processor": image_processor, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) num_frames = 17 height = 16 width = 16 face_height = 16 face_width = 16 image = Image.new("RGB", (height, width)) pose_video = [Image.new("RGB", (height, width))] * num_frames face_video = [Image.new("RGB", (face_height, face_width))] * num_frames inputs = { "image": image, "pose_video": pose_video, "face_video": face_video, "prompt": "dance monkey", "negative_prompt": "negative", "height": height, "width": width, "segment_frame_length": 77, # TODO: can we set this to num_frames? "num_inference_steps": 2, "mode": "animate", "prev_segment_conditioning_frames": 1, "generator": generator, "guidance_scale": 1.0, "output_type": "pt", "max_sequence_length": 16, } return inputs def test_inference(self): """Test basic inference in animation mode.""" device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) video = pipe(**inputs).frames[0] self.assertEqual(video.shape, (17, 3, 16, 16)) expected_video = torch.randn(17, 3, 16, 16) max_diff = np.abs(video - expected_video).max() self.assertLessEqual(max_diff, 1e10) def test_inference_replacement(self): """Test the pipeline in replacement mode with background and mask videos.""" device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["mode"] = "replace" num_frames = 17 height = 16 width = 16 inputs["background_video"] = [Image.new("RGB", (height, width))] * num_frames inputs["mask_video"] = [Image.new("L", (height, width))] * num_frames video = pipe(**inputs).frames[0] self.assertEqual(video.shape, (17, 3, 16, 16)) @unittest.skip("Test not supported") def test_attention_slicing_forward_pass(self): pass @unittest.skip( "Setting the Wan Animate latents to zero at the last denoising step does not guarantee that the output will be" " zero. I believe this is because the latents are further processed in the outer loop where we loop over" " inference segments." ) def test_callback_inputs(self): pass @slow @require_torch_accelerator class WanAnimatePipelineIntegrationTests(unittest.TestCase): prompt = "A painting of a squirrel eating a burger." def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) @unittest.skip("TODO: test needs to be implemented") def test_wan_animate(self): pass