# Copyright 2025 The Kandinsky Team and The HuggingFace Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from transformers import ( AutoProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, Qwen2_5_VLConfig, Qwen2_5_VLForConditionalGeneration, ) from diffusers import ( AutoencoderKLHunyuanVideo, FlowMatchEulerDiscreteScheduler, Kandinsky5T2VPipeline, Kandinsky5Transformer3DModel, ) from ...testing_utils import ( enable_full_determinism, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class Kandinsky5T2VPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = Kandinsky5T2VPipeline batch_params = ["prompt", "negative_prompt"] params = frozenset(["prompt", "height", "width", "num_frames", "num_inference_steps", "guidance_scale"]) required_optional_params = { "num_inference_steps", "generator", "latents", "return_dict", "callback_on_step_end", "callback_on_step_end_tensor_inputs", "max_sequence_length", } test_xformers_attention = False supports_optional_components = True supports_dduf = False test_attention_slicing = False def get_dummy_components(self): torch.manual_seed(0) vae = AutoencoderKLHunyuanVideo( act_fn="silu", block_out_channels=[32, 64], down_block_types=[ "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", ], in_channels=3, latent_channels=16, layers_per_block=1, mid_block_add_attention=False, norm_num_groups=32, out_channels=3, scaling_factor=0.476986, spatial_compression_ratio=8, temporal_compression_ratio=4, up_block_types=[ "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", ], ) scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) qwen_hidden_size = 32 torch.manual_seed(0) qwen_config = Qwen2_5_VLConfig( text_config={ "hidden_size": qwen_hidden_size, "intermediate_size": qwen_hidden_size, "num_hidden_layers": 2, "num_attention_heads": 2, "num_key_value_heads": 2, "rope_scaling": { "mrope_section": [2, 2, 4], "rope_type": "default", "type": "default", }, "rope_theta": 1000000.0, }, vision_config={ "depth": 2, "hidden_size": qwen_hidden_size, "intermediate_size": qwen_hidden_size, "num_heads": 2, "out_hidden_size": qwen_hidden_size, }, hidden_size=qwen_hidden_size, vocab_size=152064, vision_end_token_id=151653, vision_start_token_id=151652, vision_token_id=151654, ) text_encoder = Qwen2_5_VLForConditionalGeneration(qwen_config) tokenizer = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration") clip_hidden_size = 16 torch.manual_seed(0) clip_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=clip_hidden_size, intermediate_size=16, layer_norm_eps=1e-05, num_attention_heads=2, num_hidden_layers=2, pad_token_id=1, vocab_size=1000, projection_dim=clip_hidden_size, ) text_encoder_2 = CLIPTextModel(clip_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") torch.manual_seed(0) transformer = Kandinsky5Transformer3DModel( in_visual_dim=16, in_text_dim=qwen_hidden_size, in_text_dim2=clip_hidden_size, time_dim=16, out_visual_dim=16, patch_size=(1, 2, 2), model_dim=16, ff_dim=32, num_text_blocks=1, num_visual_blocks=2, axes_dims=(1, 1, 2), visual_cond=False, attention_type="regular", ) return { "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "transformer": transformer, "scheduler": scheduler, } def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) return { "prompt": "a red square", "height": 32, "width": 32, "num_frames": 5, "num_inference_steps": 2, "guidance_scale": 4.0, "generator": generator, "output_type": "pt", "max_sequence_length": 8, } def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = pipe(**inputs) video = output.frames[0] self.assertEqual(video.shape, (3, 3, 16, 16)) def test_attention_slicing_forward_pass(self): pass @unittest.skip("Only SDPA or NABLA (flex)") def test_xformers_memory_efficient_attention(self): pass @unittest.skip("TODO:Test does not work") def test_encode_prompt_works_in_isolation(self): pass @unittest.skip("TODO: revisit") def test_inference_batch_single_identical(self): pass