""" This test suite exists for the maintainers currently. It's not run in our CI at the moment. Once attention backends become more mature, we can consider including this in our CI. To run this test suite: ```bash export RUN_ATTENTION_BACKEND_TESTS=yes export DIFFUSERS_ENABLE_HUB_KERNELS=yes pytest tests/others/test_attention_backends.py ``` Tests were conducted on an H100 with PyTorch 2.8.0 (CUDA 12.9). Slices for the compilation tests in "native" variants were obtained with a torch nightly version (2.10.0.dev20250924+cu128). """ import os import pytest import torch pytestmark = pytest.mark.skipif( os.getenv("RUN_ATTENTION_BACKEND_TESTS", "false") == "false", reason="Feature not mature enough." ) from diffusers import FluxPipeline # noqa: E402 from diffusers.utils import is_torch_version # noqa: E402 # fmt: off FORWARD_CASES = [ ("flash_hub", None), ( "_flash_3_hub", torch.tensor([0.0820, 0.0859, 0.0938, 0.1016, 0.0977, 0.0996, 0.1016, 0.1016, 0.2188, 0.2246, 0.2344, 0.2480, 0.2539, 0.2480, 0.2441, 0.2715], dtype=torch.bfloat16), ), ( "native", torch.tensor([0.0820, 0.0859, 0.0938, 0.1016, 0.0957, 0.0996, 0.0996, 0.1016, 0.2188, 0.2266, 0.2363, 0.2500, 0.2539, 0.2480, 0.2461, 0.2734], dtype=torch.bfloat16) ), ( "_native_cudnn", torch.tensor([0.0781, 0.0840, 0.0879, 0.0957, 0.0898, 0.0957, 0.0957, 0.0977, 0.2168, 0.2246, 0.2324, 0.2500, 0.2539, 0.2480, 0.2441, 0.2695], dtype=torch.bfloat16), ), ] COMPILE_CASES = [ ("flash_hub", None, True), ( "_flash_3_hub", torch.tensor([0.0410, 0.0410, 0.0449, 0.0508, 0.0508, 0.0605, 0.0625, 0.0605, 0.2344, 0.2461, 0.2578, 0.2734, 0.2852, 0.2812, 0.2773, 0.3047], dtype=torch.bfloat16), True, ), ( "native", torch.tensor([0.0410, 0.0410, 0.0449, 0.0508, 0.0508, 0.0605, 0.0605, 0.0605, 0.2344, 0.2461, 0.2578, 0.2773, 0.2871, 0.2832, 0.2773, 0.3066], dtype=torch.bfloat16), True, ), ( "_native_cudnn", torch.tensor([0.0410, 0.0410, 0.0430, 0.0508, 0.0488, 0.0586, 0.0605, 0.0586, 0.2344, 0.2461, 0.2578, 0.2773, 0.2871, 0.2832, 0.2793, 0.3086], dtype=torch.bfloat16), True, ), ] # fmt: on INFER_KW = { "prompt": "dance doggo dance", "height": 256, "width": 256, "num_inference_steps": 2, "guidance_scale": 3.5, "max_sequence_length": 128, "output_type": "pt", } def _backend_is_probably_supported(pipe, name: str): try: pipe.transformer.set_attention_backend(name) return pipe, True except Exception: return False def _check_if_slices_match(output, expected_slice): img = output.images.detach().cpu() generated_slice = img.flatten() generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]]) assert torch.allclose(generated_slice, expected_slice, atol=1e-4) @pytest.fixture(scope="session") def device(): if not torch.cuda.is_available(): pytest.skip("CUDA is required for these tests.") return torch.device("cuda:0") @pytest.fixture(scope="session") def pipe(device): repo_id = "black-forest-labs/FLUX.1-dev" pipe = FluxPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to(device) pipe.set_progress_bar_config(disable=True) return pipe @pytest.mark.parametrize("backend_name,expected_slice", FORWARD_CASES, ids=[c[0] for c in FORWARD_CASES]) def test_forward(pipe, backend_name, expected_slice): out = _backend_is_probably_supported(pipe, backend_name) if isinstance(out, bool): pytest.xfail(f"Backend '{backend_name}' not supported in this environment.") modified_pipe = out[0] out = modified_pipe(**INFER_KW, generator=torch.manual_seed(0)) _check_if_slices_match(out, expected_slice) @pytest.mark.parametrize( "backend_name,expected_slice,error_on_recompile", COMPILE_CASES, ids=[c[0] for c in COMPILE_CASES], ) def test_forward_with_compile(pipe, backend_name, expected_slice, error_on_recompile): if "native" in backend_name and error_on_recompile and not is_torch_version(">=", "2.9.0"): pytest.xfail(f"Test with {backend_name=} is compatible with a higher version of torch.") out = _backend_is_probably_supported(pipe, backend_name) if isinstance(out, bool): pytest.xfail(f"Backend '{backend_name}' not supported in this environment.") modified_pipe = out[0] modified_pipe.transformer.compile(fullgraph=True) torch.compiler.reset() with ( torch._inductor.utils.fresh_inductor_cache(), torch._dynamo.config.patch(error_on_recompile=error_on_recompile), ): out = modified_pipe(**INFER_KW, generator=torch.manual_seed(0)) _check_if_slices_match(out, expected_slice)