# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from tqdm.auto import tqdm from ...pipeline_utils import DiffusionPipeline class DDIMPipeline(DiffusionPipeline): def __init__(self, unet, scheduler): super().__init__() scheduler = scheduler.set_format("pt") self.register_modules(unet=unet, scheduler=scheduler) def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50): # eta corresponds to η in paper and should be between [0, 1] if torch_device is None: torch_device = "cuda" if torch.cuda.is_available() else "cpu" self.unet.to(torch_device) # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.in_channels, self.unet.image_size, self.unet.image_size), generator=generator, ) image = image.to(torch_device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in tqdm(self.scheduler.timesteps): # 1. predict noise model_output with torch.no_grad(): model_output = self.unet(image, t) if isinstance(model_output, dict): model_output = model_output["sample"] # 2. predict previous mean of image x_t-1 and add variance depending on eta # do x_t -> x_t-1 image = self.scheduler.step(model_output, t, image, eta)["prev_sample"] return {"sample": image}