# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import unittest import tempfile from diffusers import GaussianDDPMScheduler, DDIMScheduler torch.backends.cuda.matmul.allow_tf32 = False class SchedulerCommonTest(unittest.TestCase): scheduler_class = None @property def dummy_image(self): batch_size = 4 num_channels = 3 height = 8 width = 8 image = np.random.rand(batch_size, num_channels, height, width) return image def get_scheduler_config(self): raise NotImplementedError def dummy_model(self): def model(image, residual, t, *args): return (image + residual) * t / (t + 1) return model def test_from_pretrained_save_pretrained(self): image = self.dummy_image residual = 0.1 * image scheduler_config = self.get_scheduler_config() scheduler = self.scheduler_class(scheduler_config()) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_pretrained(tmpdirname) new_scheduler = self.scheduler_class.from_config(tmpdirname) output = scheduler(residual, image, 1) new_output = new_scheduler(residual, image, 1) import ipdb; ipdb.set_trace() def test_step(self): scheduler_config = self.get_scheduler_config() scheduler = self.scheduler_class(scheduler_config()) image = self.dummy_image residual = 0.1 * image output_0 = scheduler(residual, image, 0) output_1 = scheduler(residual, image, 1) self.assertEqual(output_0.shape, image.shape) self.assertEqual(output_0.shape, output_1.shape)