import torch from torch import nn from transformers import CLIPTextConfig, GPT2Tokenizer from diffusers import UNetGLIDEModel, ClassifierFreeGuidanceScheduler, CLIPTextModel from modeling_glide import GLIDE # wget https://openaipublic.blob.core.windows.net/diffusion/dec-2021/base.pt state_dict = torch.load("base.pt", map_location="cpu") state_dict = {k: nn.Parameter(v) for k, v in state_dict.items()} ### Convert the text encoder config = CLIPTextConfig( vocab_size=50257, max_position_embeddings=128, hidden_size=512, intermediate_size=2048, num_hidden_layers=16, num_attention_heads=8, use_padding_embeddings=True, ) model = CLIPTextModel(config).eval() tokenizer = GPT2Tokenizer("./glide-base/vocab.json", "./glide-base/merges.txt", pad_token="<|endoftext|>") #tokenizer.save_pretrained("./glide-base") hf_encoder = model.text_model hf_encoder.embeddings.token_embedding.weight = state_dict["token_embedding.weight"] hf_encoder.embeddings.position_embedding.weight.data = state_dict["positional_embedding"] hf_encoder.embeddings.padding_embedding.weight.data = state_dict["padding_embedding"] hf_encoder.final_layer_norm.weight = state_dict["final_ln.weight"] hf_encoder.final_layer_norm.bias = state_dict["final_ln.bias"] for layer_idx in range(config.num_hidden_layers): hf_layer = hf_encoder.encoder.layers[layer_idx] hf_layer.self_attn.qkv_proj.weight = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_qkv.weight"] hf_layer.self_attn.qkv_proj.bias = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_qkv.bias"] hf_layer.self_attn.out_proj.weight = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_proj.weight"] hf_layer.self_attn.out_proj.bias = state_dict[f"transformer.resblocks.{layer_idx}.attn.c_proj.bias"] hf_layer.layer_norm1.weight = state_dict[f"transformer.resblocks.{layer_idx}.ln_1.weight"] hf_layer.layer_norm1.bias = state_dict[f"transformer.resblocks.{layer_idx}.ln_1.bias"] hf_layer.layer_norm2.weight = state_dict[f"transformer.resblocks.{layer_idx}.ln_2.weight"] hf_layer.layer_norm2.bias = state_dict[f"transformer.resblocks.{layer_idx}.ln_2.bias"] hf_layer.mlp.fc1.weight = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_fc.weight"] hf_layer.mlp.fc1.bias = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_fc.bias"] hf_layer.mlp.fc2.weight = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_proj.weight"] hf_layer.mlp.fc2.bias = state_dict[f"transformer.resblocks.{layer_idx}.mlp.c_proj.bias"] #inputs = tokenizer(["an oil painting of a corgi", ""], padding="max_length", max_length=128, return_tensors="pt") #with torch.no_grad(): # outputs = model(**inputs) #model.save_pretrained("./glide-base") ### Convert the UNet unet_model = UNetGLIDEModel( in_channels=3, model_channels=192, out_channels=6, num_res_blocks=3, attention_resolutions=(2, 4, 8), dropout=0.1, channel_mult=(1, 2, 3, 4), num_heads=1, num_head_channels=64, num_heads_upsample=1, use_scale_shift_norm=True, resblock_updown=True, ) unet_model.load_state_dict(state_dict, strict=False) scheduler = ClassifierFreeGuidanceScheduler(timesteps=1000, beta_schedule="squaredcos_cap_v2") glide = GLIDE(unet=unet_model, noise_scheduler=scheduler, text_encoder=model, tokenizer=tokenizer) glide.save_pretrained("./glide-base")